Question 1 Start a new page

(a) (i) The base of a certain solid S_{1} is the region bounded by the parabola $y^{2}=4 a x$ and the line $x=a$, where $a>0$.

By taking slices parallel to the y-axis in this base where each cross-section is an equilateral triangle, find the volume of S_{1}.
(ii) The area bounded by $y^{2}=4 a x$ and the line $x=a$ is rotated about the line $x=a$ to form a solid of revolution.

By considering slices parallel to the x-axis:
(α) Show that the cross-sectional area A is given by:

$$
A=\pi\left(a^{2}-\frac{1}{2} y^{2}+\frac{1}{16 a^{2}} y^{4}\right)
$$

(β) Hence, find the volume of the solid of revolution.
(b) A particle P of mass $m \mathrm{~kg}$, is attached to the end of a light wire 5 cm long which rotates as a conical pendulum with uniform speed in a horizontal plane below a fixed point O to which the wire is attached. The particle rotates so that the angular velocity is ω rads $/ \mathrm{sec}$.
(i) Show that the angular velocity is $\frac{26 \pi}{5} \mathrm{rads} / \mathrm{sec}$ when the particle is rotating at 156 rpm .
(ii) Find the semi-vertical angle θ of the conical pendulum (answer to the nearest degree and take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$).
(c) A particle moves in a straight line. It is placed at the origin O on the x-axis and is then released from rest.

When it is at position x, the acceleration \ddot{x}, of the particle is given by:

$$
\ddot{x}=-9 x+\frac{5}{(2-x)^{2}} .
$$

(i) Show that: $\quad v^{2}=\frac{x(3 x-5)(3 x-1)}{2-x}$ for $x \neq 2$.
(ii) Prove that the particle moves between two points on the x-axis, and find these points.

Question 2 Start a new page

(a) Consider the right-triangle $A B C$, where $X Y$ and $B C$ are the lengths r and R respectively. Given $V W$ is parallel to $X Y$ and $B C$. The distance between $X Y$ and $B C$ is H, the length $V W=s, X V=x$ and length $A X=a$, as shown.

(i) Show using similar triangles: $\quad s=\frac{R-r}{H}\left(x+\frac{H r}{R-r}\right)$.
(ii) The frustum of a cone where the radius of the top and bottom faces are r and R respectively and the height is H, is shown below.

By considering a cross-sectional slice of the frustum parallel to the top face at a distance x units from the top, and using integration, show that the volume V of the frustum is given by :

$$
V=\frac{\pi H}{3}\left(R^{2}+R r+r^{2}\right) .
$$

Question 2 Continued

Marks
(b) An object of unit mass falls under gravity through a resistive medium.

The object falls from rest from a height of 50 metres above the ground.
The resistive force, in Newtons, is of magnitude $\frac{1}{100}$ the square of the objects speed $v \mathrm{~ms}^{-1}$ when it has travelled a distance x metres. Let g be the acceleration due to gravity in ms^{-2}.
(i) Draw a diagram to show the forces acting on the body.

Hence, show that the equation of motion of the body is:

$$
\ddot{x}=g-\frac{v^{2}}{100} .
$$

(ii) Show that the terminal speed, $u \mathrm{~ms}^{-1}$, of the body is given by:

$$
u=\sqrt{100 g}
$$

(iii) Prove that: $\quad \ddot{x}=v \frac{d v}{d x}$.
(iv) Show that:

$$
\frac{v^{2}}{u^{2}}=1-e^{-\frac{x}{50}}
$$

(v) Find the distance fallen when the object has reached a speed equal to 50% of its terminal speed (correct to 1 decimal place).
(vi) Find the speed attained, as a percentage of the terminal speed, when the object hits the ground (correct to 1 decimal place).

Question 3 Start a new page

(a) The region bounded by the curves $y=\frac{1}{x+1}$ and $y=\frac{1}{x+2}$ and the lines $x=0$ and $x=2$, is rotated about the y-axis, forming a solid of revolution with a volume of V units ${ }^{3}$.
(i) Show that: $V=2 \pi \int_{0}^{2} \frac{x}{(x+1)(x+2)} d x$.
(ii) Find V, correct to three significant figures.
where g is the acceleration due to gravity, in ms^{-2}.
(ii) Find the distance travelled (to the nearest metre) and the exact time taken for the car to come to rest once the engine is stopped.

Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$.

Question3 Continued

(c) A light inextensible string $A B C$ is such that $A B=\frac{5 a}{3}$ and $B C=\frac{5 a}{4}$.

A particle of mass $m \mathrm{~kg}$ is attached to the string at C and another particle of mass 7 mkg is fixed at B. The end A is tied to a fixed point and the whole system rotates steadily about the vertical $A H$ (as shown), in such a way that B and C describe horizontal circles of radii a and $2 a$ respectively and each has the same angular velocity ω.
(i) By resolving the forces at C,
show that the tension in the string $B C$ is $\frac{5 m g}{3}$ Newtons.

(ii) Hence, find the tension in the part of string $A B$.
(iii) Find the speed of the particle at B.

Question 4 Start a new page

(a) A rectangular hyperbola has the equation $x^{\mathbf{\square}}-y^{\mathbf{】}}=8$.

Write down its eccentricity, the coordinates of the foci and the equation of each directrix.
Sketch the curve, indicating on your diagram each focus, directrix and asymptote.
(b) This curve is rotated anti-clockwise through 45°, where the equation of the curve takes the form $x y=4$.
(i) Prove that the equation of the normal to the rectangular hyperbola $x y=4$ at the point $P\left(2 p, \frac{2}{p}\right)$ is $p y-p^{3} x=2\left(1-p^{4}\right)$.
(ii) If this normal meets the hyperbola again at $Q\left(2 q, \frac{2}{q}\right)$ with parameter q, prove that $q=-\frac{1}{p^{3}}$.
(iii) Hence, or otherwise, explain why there exists only one chord of the hyperbola where the gradients of the normal, at both ends, are equal.

Find the equation of this special chord $P Q$.
(iv) Find the equation of the locus of the midpoint R of the chord $P Q$, as p and q vary.

End of Exam Paper

 (\(\beta\)) Volune of cross- sectuan disc \(=\pi\left(a^{2}-\frac{1}{2} y^{2}+\frac{1}{160^{2}}+y^{2}\right) \delta_{y}\)
 SOLUTIONS TO: YEARIZ-Term2-ME2-2008
Qu. (1)

Area of equitateral $A=\frac{1}{2} \times 2 y \times 2 y \times \sin 60$
$=2 y^{2} \times \frac{\sqrt{3}}{2}$
$=\sqrt{3} y^{2}$
$=\sqrt{3} \times 4 a x \quad\left(y^{2}=4 a x\right)$

$$
\begin{equation*}
A(x)=4 \sqrt{3} u x \tag{1}
\end{equation*}
$$

Volume of cross-sectional slice $=\delta v=4 \sqrt{3}$ ax δx Volume of Solici $=S_{1}=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{x=a} 4 \sqrt{3} a x \delta x$
$=\int_{0}^{a} 4 \sqrt{3} a x d x$
$=4 \sqrt{3} a\left[\frac{x^{2}}{2}\right]_{0}^{a}$
$=4 \sqrt{3} a\left(\frac{a^{2}-0}{2}\right)$
(ii)

$(\alpha) A=$ Area of inuss-sethon $=\pi r^{2}$

$$
\begin{aligned}
& =\pi(a-x)^{2} \\
& =\pi\left(a-\frac{y^{2}}{4 a}\right)^{2} \\
& =\pi\left(a^{2}-2 \cdot a \cdot \frac{y^{2}}{2}+\left(\frac{y}{4 a}\right)^{2}\right) \\
A & =\pi\left(a^{2}-\frac{1}{2} y^{2}+\frac{y^{2}}{4 a}+\frac{1}{18 a^{2}} y^{4}\right)
\end{aligned}
$$

(1)(b)

(i) $\omega=156$ revs $/ \mathrm{min}$.
$=156 \times 2 \pi$ rachiars $/ \mathrm{min}$
$=\frac{156 \times 2 \pi}{60} \mathrm{radians} / \mathrm{sec}$ (1)
$\omega=\frac{26 \pi}{5} \quad$ radians $/ \mathrm{sec}$
(ii) Resolving fones at P

$$
\begin{array}{ll}
\text { Vertically: } \quad 0=m g-T_{1} \cos \theta \\
& m g=T_{1} \cos \theta \ldots(1) \\
\text { Normally: } & m r \omega^{2}=T_{1} \sin \theta \ldots \text { (2) }
\end{array}
$$

$$
\text { hut } \sin \theta=\frac{r}{0.05} \Rightarrow r=0.05 \sin \theta
$$

$$
\text { (2) } \div(1): \frac{T \sin \theta}{T \cos \theta}=\frac{m r \omega^{2}}{y \operatorname{lng}}
$$

$$
\begin{aligned}
& \tan \theta=\frac{r \omega^{2}}{9} \\
& \tan \theta=\frac{0.05 \sin \theta}{9.8} \times \frac{20^{2} \pi^{2}}{5^{2}}(1)\binom{F \tan (3)}{\omega-\frac{6 \pi}{5}}
\end{aligned}
$$

$$
\sec \theta=\frac{0.05 \times 26^{2} \times \pi^{2}}{9.8 \times 5^{2}}
$$

$$
\text { OR } \cos \theta=\frac{98 \times 5^{2}}{0.05 \times 26^{2} \times \pi^{2}}
$$

$\theta=43^{\circ}$ (nearest dogrec)
1.(c) (1) $\quad \ddot{x}=-9 x+\frac{5}{(2-x)^{2}}$

$$
\begin{align*}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-9 x+5(2-x)^{-2} \tag{1}\\
\frac{1}{2} v^{2} & =-\frac{9 x^{2}}{2}+5(2-x)^{-1}+c
\end{align*}
$$

When $x=0, v=0$:

$$
\begin{align*}
0 & =5(2)^{-1}+c \\
c & =-\frac{5}{2} \\
\frac{1}{2} v^{2} & =\frac{5}{2-x}-\frac{9 x^{2}}{2}-\frac{5}{2} \\
v^{2} & =\frac{10}{2-x}-9 x^{2}-5 \tag{1}\\
& =\frac{10-9 x^{2}(2-x)-5(2-x)}{2-x} \\
& =\frac{1 \varnothing-18 x^{2}+9 x^{3}-16+5 x}{2-x} \\
& =\frac{x\left(9 x^{2}-18 x+5\right)}{2-x} \\
\therefore v^{2} & =\frac{x(3 x-1)(3 x-5)}{2-x}
\end{align*}
$$

(ii) Particle is at rest $(v-0)$:

$$
\begin{aligned}
& 0=\frac{x(3 x-1)(3 x-5)}{2-x} \\
& 0=x(3 x-1)(3 x-5), x \neq 2 \\
& x=0, x=\frac{1}{3}, x=\frac{5}{3}
\end{aligned}
$$

$$
V^{2} \geqslant 0 \text { when } 0 \leqslant x \leqslant \frac{1}{3} \text { and } x \geqslant \frac{5}{3}, x \neq 2
$$

However, since panticle was at $x=0$ omitially, then the pardirie in

Qu2
(a) (i)
$\frac{a}{a+H}=\frac{r}{R}$ (corvespanding sxas of simitan Δ 's are in pinparinn)

$$
\begin{equation*}
a R=a r+H r \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a=\frac{r H}{R-r} \quad-\cdots-(1) \tag{0}
\end{equation*}
$$

Similarb; $\frac{a}{a+x}=\frac{r}{5}$

$$
a s=r(a+x)
$$

$$
\begin{equation*}
\therefore=\frac{R-r}{H}\left(\frac{r H}{R-r}+x\right) \text { as reguinas } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
S=\frac{r}{a}(a+x)-\cdots-2 \tag{1}
\end{equation*}
$$

$$
\text { Sub. (1) into (2): } S=r^{2} \times \frac{(R-r)}{r H}\left(\frac{r H}{R-r}+x\right)
$$

(ii) Volume of cross-sectional slice $=\pi s^{2} \delta x$

$$
=\frac{\pi(R-r)^{2}}{H^{2}}\left(\frac{r H}{R-r}+x\right)^{2} \delta x
$$

Volume of solid $=V=\frac{\pi(R-r)^{2}}{H^{2}} \int_{0}^{H}\left(\frac{r H}{R-r}+x\right)^{2} d x$
$=\frac{\pi(R-r)^{2}}{H^{2}} \int_{0}^{H}\left(\frac{r^{2} H^{2}}{(R-r)^{2}}+\frac{2 x r H}{R-r}+x^{2}\right) d x-$
$=\frac{\pi(R-r)^{2}}{H^{2}}\left[\frac{r^{2} H^{2} x}{(R-r)^{2}}+\frac{x^{2} r H}{R-r}+\frac{x^{3}}{3}\right]_{0}^{1+}$
$=\frac{\pi(R-r)^{2}}{H^{2}}\left(\frac{r^{2} H^{3}}{(R-)^{2}}+\frac{H^{3} r}{R-r}+\frac{H^{3}}{3}\right)$ (1)
$=\frac{\pi(R-r)^{2}}{H^{2}} \cdot \frac{H^{3}}{3(R-r)^{2}}\left(3 r^{2}+3 r(R-r)+(R-r)^{2}\right)$
$=\frac{\pi H}{3}\left(3 r^{2}+3 r R=3 r^{2}+R^{2}-2 R r+r^{2}\right)$
$=\frac{\pi サ}{3}\left(R^{2}+R_{r}+r^{2}\right)$
(iii) $\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}$

$$
\ddot{x}=\frac{d v}{d x} \cdot v
$$

$$
\begin{align*}
\frac{-x}{50} & =\ln \left(\frac{u^{2}-v^{2}}{u^{2}}\right) \\
\frac{-x}{50} & =\ln \left(1-\frac{v^{2}}{4 x^{2}}\right) \\
1-\frac{v^{2}}{u^{2}} & =e^{-\frac{x}{50}} \tag{1}\\
\frac{v^{2}}{u^{2}} & =1-e^{-\frac{x}{50}} \quad \text { as required }
\end{align*}
$$

(v) $\begin{aligned} & v=\frac{1}{2} u \\ & v^{2}=1\end{aligned}$ $\frac{v^{2}}{u^{2}}=\frac{1}{4}$
$\begin{aligned} 1-e^{-\frac{x}{50}} & =\frac{1}{4} \\ e^{-\frac{x}{50}} & =\end{aligned}$
$\begin{aligned} e^{-\frac{x}{50}} & =\frac{3}{4} \\ -\frac{x}{50} & =\ln \frac{3}{4}\end{aligned}$
$x=-50 \ln \frac{3}{4}$
$\div 14.38410362$
as requires

$$
\therefore x=14.4(1 d p)
$$

(vi) Body hits ground, when $x=50$:

$$
\begin{aligned}
\frac{v^{2}}{u^{2}} & =1-e^{-1} \\
\frac{v}{u} & =\sqrt{1-e^{-1}} \\
& =0.795060097 \\
\frac{v}{u} & =79.5 \% \quad(1 \mathrm{dp}) \\
v & =79.5 \% \times u
\end{aligned}
$$

\therefore Speed of particle when it huts the cpu nd is 79.5% of terminal speed.

$$
\begin{align*}
& 0=-50 \cdot \ln u^{2}+c \\
& c=50 \cdot \ln u^{2} . \tag{1}
\end{align*}
$$

$\therefore x=-50 \ln \left(u^{2}-v^{2}\right)+50 \ln u^{2}$

$$
\begin{align*}
& \begin{array}{l}
\text { (i) } m \ddot{x}=m g-\frac{1}{100} v^{2} \\
\text { since } m=1
\end{array} \tag{1}\\
& \ddot{x}=g-\frac{v^{2}}{100} \text { as required } \\
& \begin{array}{c}
\text { (ii) Terminal velouty }(\ddot{u}=0) \\
0=9-1 u^{2}
\end{array} \\
& \begin{array}{l}
0=g-\frac{1}{100} u^{2} \\
u^{2}=100 g \\
u=\sqrt{100 g}
\end{array}
\end{align*}
$$

(a)

Qu 3

(i) By the methad of cy lindencul shelis:

$$
\begin{aligned}
& J=2 \pi r H \\
& =2 \pi x\left(\frac{1}{x+1}-\frac{1}{x+2}\right) \\
& =2 \pi x\left(\frac{x+2-(x+1)}{(x+1)(x+2)}\right) \\
& =2 \pi x \times \frac{1}{(x+1)(x+2)} \cdot(1)
\end{aligned}
$$

$$
\delta v=\frac{2 \pi x}{(x+1)(x+2)}
$$

Volume of solid $=V=2 \pi \int_{0}^{2} \frac{x}{(x+1)(x+2)}$
(ii) Let $\frac{x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}$

$$
\left.\begin{array}{l}
x=A(x+2)+B(x+1) \\
\text { Let } x=-1: \quad-1=A \\
\text { Let } x=-2: \quad-2=-B \\
\underline{B}=2 \tag{t}
\end{array}\right\}(1)
$$

(b)

(i) $m \ddot{x}=-\frac{m g}{7}-\frac{m v}{14}$

$$
\begin{align*}
& \ddot{x}=-\left(\frac{v}{14}+\frac{g}{7}\right) \tag{i}\\
& \ddot{x}=-\left(\frac{v+2 q}{14}\right)
\end{align*}
$$

(ii) Take $y=10$.

$$
\begin{align*}
\ddot{x} & \left.=-\frac{(v+20}{14}\right) \\
\frac{d v}{d t} & =-\left(\frac{v+20}{14}\right) \\
\frac{d t}{d v} & =-\frac{14}{1+20} \\
t & =-14 \int_{42}^{v} \frac{1}{v+20} d v \\
& =-14[\ln (v+20)]_{42}^{v} \\
& =-14[\ln (v+20)-\ln 62] \\
t & =14 \ln \frac{62}{v+20} \tag{1}
\end{align*}
$$

Tine taken for purtire to cone to rest $(v=0)$

$$
\begin{aligned}
t & =14 \ln \frac{62}{20} \\
\text { or } t & =14 \ln 3.1(\doteqdot 15.84 \mathrm{sec})
\end{aligned}
$$

From(A): $\quad \frac{t}{14}=\ln \frac{62}{v+20}$

$$
\begin{align*}
\frac{02}{v T 20} & =e^{t / 4} \\
62 e^{-t / 4,4} & =v+20 \\
v & =62 e^{-t / 4,4}-20 \tag{1}\\
\frac{d x}{d t} & =62 e^{-t / 4 /}-20 \\
x & =\int_{0}^{14 \ln 3,1}\left(62 e^{-t / 4,4}-20\right) d t \\
& =\left[-14 \times 62 e^{-t / 4 / 4}-20 t\right]_{0}^{1+\ln 3.1}
\end{align*}
$$

$$
t=14 \ln \frac{62}{20}
$$

$$
\begin{align*}
\therefore x & =-868 e^{-\ln 31}-20 \times 14 \ln 3.1+14 \times 62 \\
& =-868 \times \frac{10}{31}-280 \ln 3.1+868 \\
& =271.2074008 \\
x & =271 \mathrm{~m} \text { (reanot methe) } \tag{1}
\end{align*}
$$

\therefore It takes 14 hn 3.1 sec and 271 n for the car to completely wive to rest.
(c)

(i) $A \in C$, resolving formes:

Ventically:

$$
\begin{aligned}
O & =m g-T_{2} \cos \beta \\
T_{2} & =\frac{m g}{\cos \beta} \\
& =\frac{m g}{\frac{3}{5}} \\
T_{2} & =\frac{5 m g}{3}
\end{aligned}
$$

(I)

$$
\begin{aligned}
1 & \\
B D & =\sqrt{\left(\frac{5 a}{4}\right)^{2}-a^{2}} \\
& =\sqrt{\frac{25 a^{2}}{10}-a^{2}} \\
B D & =\frac{3 a}{4} \\
\therefore \quad \cos B & =\frac{3 a}{4} \div \frac{5 a}{4} \\
\cos B & =\frac{3}{5}(C)
\end{aligned}
$$

(ii) Resolving forres at \underline{B} :

Vextically;

$$
\begin{aligned}
O & =7 m g-T_{1} \cos \theta+T_{2} \cos \beta \\
-7 m g & =T_{2} \cos \beta-T_{1} \cos \theta \\
-7 m g & =\frac{5 m g \times \frac{3}{5}-T_{1} \times \frac{4}{5}}{3} \\
T_{1} & =10 m g
\end{aligned}
$$

(1)

$$
\left.\begin{array}{rl}
A O & =\sqrt{\left(\frac{5 a}{3}\right)^{2}-a^{2}} \\
& =\sqrt{\frac{25 a^{2}}{4}-a^{2}} \\
& =\sqrt{\frac{10 a^{2}}{4}} \\
A O & =\frac{4 a}{3}
\end{array}\right] \begin{gathered}
\therefore \cos \theta=\frac{4 \alpha}{3} \div \frac{5 \alpha}{3} \\
\therefore \cos \theta=\frac{4}{5}
\end{gathered}
$$

(iii) Need to find ω :

$$
\text { At } \begin{align*}
C: T_{2} \cos \beta & =m g \\
T_{2} \sin \beta & =2 a m \omega^{2} \quad\left(\begin{array}{l}
\text { Vertizally }) \\
\frac{T_{2} \sin \beta}{T_{2} \cos \beta^{3}}
\end{array}=\frac{2 a m \omega^{2}}{1 / g}\right. \\
\tan \beta & =\frac{2 a \omega^{2}}{g} \\
\omega^{2} & =\frac{\tan \beta \times g}{2 a} \\
& =\frac{4 / 3 g}{2 a} \\
\omega & =\sqrt{\frac{2 g}{3 a}} \tag{1}
\end{align*}
$$

$A+B, \quad v=r \omega=a \sqrt{\frac{2 a}{3 a}}=\sqrt{\frac{2 a g}{3}}$

Qu 4
(a) $x^{2}-y^{2}=8 \Rightarrow \frac{x^{2}}{8}-\frac{y^{2}}{8}=1 \quad \therefore a=\sqrt{8}, b=\sqrt{8}$

Using $b^{2}=a^{2}\left(e^{2}-1\right)$ gives $\quad 8=8\left(e^{2}-1\right)$

$$
1=e^{2}-1
$$

$$
\begin{equation*}
e=\sqrt{2} \tag{1}
\end{equation*}
$$

Foci are $S \& S^{\prime}$,using $(\pm$ ae, 0$)=(\pm 4,0)$.
$\varepsilon_{q} n$ s of directives are $x= \pm \frac{a}{e} \Rightarrow x= \pm \frac{\sqrt{p}}{\sqrt{2}}$ ie $x= \pm 2$

Asymptotes ($\frac{1}{2}$
$x-$ inturush ($\frac{1}{2}$
directrices
Foch
\square
(b)
(i)

$$
\begin{align*}
& x y=4 \Rightarrow y=4 x^{-1} \\
& \quad \frac{d y}{d y}=-4 x^{-2} \\
& \text { at } P\left(2 p, \frac{2}{p}\right), \frac{d y}{a_{y}}=\frac{-4}{(2 p)^{2}}=\frac{-4}{4 p^{2}}=\frac{-1}{\rho^{2}} \tag{1}
\end{align*}
$$

$\binom{$ Allerratiné: $x \frac{d y}{d x}+y .1=0 \Rightarrow \frac{d y}{d y}=-\frac{y}{x}}{$ at $p\left(2 p, \frac{2}{p}\right), \frac{d y}{d x}=-\frac{4 p p}{2 p}=\frac{-1}{p^{2}}}$
\therefore Gradient of nomad $=p^{2}$.
E_{9} nofnornal :

$$
\begin{align*}
& y-\frac{2}{p}=p^{2}(x-2 p) \tag{1}\\
& p y-2=p^{3}(x-2 p) \\
& p y-p^{3} x=2\left(1-p^{4}\right) \tag{2}
\end{align*}
$$

(ii) If normal passes through $Q\left(2 q, \frac{2}{q}\right)$, then it satishes equabiui:

$$
\begin{align*}
p \times \frac{2}{q}-p^{3} \times 2 q & =2\left(1-p^{4}\right) \\
2^{2}-2^{1} p^{3} q^{2} & =2 q-2 p^{4} q \tag{1}\\
p-q & =p^{3} q^{2}-p^{4} q \\
p-q & =p^{3} q(q-p) \tag{1}\\
-1 & =p^{3} q \\
\therefore q & =\frac{-1}{p^{3}}
\end{align*}
$$

From above, if $P Q$ is a normal at P then $q=\frac{-1}{p^{3}}$.es $p^{3} q=-1$.
also, $P Q$ is a normal at Q then

$$
p=-\frac{1}{q^{3}} \text { i } p q^{3}=-1
$$

If $P Q$ is a normal at brink P and Q then $p^{3} q=p q^{3}$ ie $p^{3} q-p q^{3}=0$ ie $p q\left(p^{2}-q^{2}\right)=0$ e. $p q(p-q)(p+q)=0$.

Since $p \neq 0, q \neq 0$ and $p \neq q$ then $\begin{aligned} p+q & =0 \text { only. } \\ \text { se } q & =-p\end{aligned}$
Since $p^{3} q=-1$, then $p^{3} x-p=-1$

$$
p^{4}=1
$$

$$
p= \pm 1
$$

If $p=1, \varepsilon_{q^{n}}$ of normal is. $1 y-1^{3} x=2\left(1-1^{4}\right)$

$$
\text { ie } y=x
$$

If $p=-1, \varepsilon_{q}{ }^{n}$ of normal is. $-y+x=2(1-1)$

$$
y=x
$$

Thus, there is only one chore of the hyperbola where where the gradients of the normal, at both ends are equal. Its equation is $y=x$
(iv) Muppount of $P Q=R$

$$
\begin{aligned}
\therefore R & =\left(\frac{2 p+2 q}{2}, \frac{2 / p+2 / q}{2}\right) \\
& R=\left(p+q, \frac{p+q}{p q}\right)
\end{aligned}
$$

(1)

$$
\begin{align*}
& \therefore x=p+q \\
& \xrightarrow{\text { Ont }} \\
& y=\frac{p+q}{p q} \quad p q=\frac{-1}{p^{2}} \\
& q=\frac{-1}{p^{3}} \\
& \frac{x}{y}=\frac{p+q}{\frac{p+q}{p q}} \\
& =p q \tag{I}
\end{align*}
$$

Since R lies onthe normal, it satuties eq".
ie $p y-p^{3} x=2\left(1-p^{4}\right)$

$$
\left.\begin{array}{rl}
y-p^{2} x & =\frac{2}{p}\left(1-p^{4}\right) \\
-p^{2} x-p^{2} x & =\frac{2}{p}\left(1-p^{4}\right) \\
-2 p^{2} x & =\frac{2}{p}\left(1-p^{4}\right) \\
-2 x\left(\frac{-y}{x}\right) & =\frac{2}{p}\left(1-\frac{y^{2}}{x^{2}}\right) \\
2 y & =\frac{2}{p}\left(\frac{x^{2}-y^{2}}{x^{2}}\right) \\
4 y^{2} & =\frac{4}{p^{2}}\left(\frac{x^{2}-y^{2}}{x^{2}}\right)^{2} \\
4 y^{2} & =4 x-\frac{x}{y}\left(\frac{x^{2}-y^{2}}{x^{2}}\right)^{2} \\
y^{3} & =-\frac{\left(x^{2}-y^{2}\right)^{2}}{x^{3}} \\
x^{3} y^{3} & +\left(x^{2}-y^{2}\right)^{2}=0
\end{array}\right\} \text { (1) }
$$

$$
3
$$

