JRAHS Year 12 Extension 2 Term 2 Assessment 2010

QUESTION 1 (15 Marks) Marks (a) (i) Prove that the equation of the tangent to the rectangular hyperbola xy = 16 at the 3 point $A\left(4p, \frac{4}{p}\right)$ is $x + p^2 y = 8p$. 2 If point *B* has co-ordinates $\left(4q, \frac{4}{q}\right)$, show that the equation of the chord *AB* is (ii) x + pqy = 4(p+q).The tangent at A and the tangent at B intersect at T. Find the co-ordinates of T. 2 (iii) If the chord AB passes through the point R(8,8), show that the locus of T lies on the 2 (iv) line x + y = 4. A small object of 1 kg mass is fired vertically upwards from the ground with an initial speed (b) of 50 ms⁻¹. At any instant the object is acted upon by gravity and a resistance of magnitude $\frac{1}{5}v$ where v ms⁻¹ is the speed of the object at that instant. Taking the acceleration due to gravity as 10 ms⁻², prove that: (i) 3 the time for the object to reach its maximum height is $5\log_e 2$ seconds. 3 (ii) the maximum height reached above the ground is $250(1 - \log_e 2)$ metres. Marks **QUESTION 2** (START A NEW PAGE) (16 Marks) (a) (i) A right-angled isosceles triangle has hypotenuse of length h units, show that its area 1 equals $\frac{1}{4}h^2$ square units. 3 (ii) A solid has for its base the area bounded by the parabola $y = 0.5x^2$ and the line y = 3x. Cross-sections of the solid are perpendicular to the base and parallel to the

y – axis. Each cross-section is a right-angled isosceles triangle with its hypotenuse on the base. Find the volume of the solid.

<u>QUESTION 2(b)(c)</u> (Continued on next page)

<u>QUESTION 2</u> (Continued)

(b) A solid sphere of radius R has a cylindrical hole of radius r drilled right through it such that the axis of the hole passes through the centre of the sphere.

- (i) By taking cylindrical shells of width Δx and radius x, show that the volume of such a shell is approximately equal to $4\pi x \sqrt{R^2 x^2} \Delta x$.
- (ii) Show that the volume of the remaining solid is $\frac{4}{3}\pi (R^2 r^2)^{\frac{3}{2}}$. 3
- (c) A 1 kg mass moves in a straight line under the action of a constant driving force F Newtons. During this motion the mass encounters a resistive force of magnitude kv Newtons per unit mass where $v \text{ ms}^{-1}$ is its speed and k is a positive constant.
 - (i) Explain why the acceleration, $\ddot{x} \text{ ms}^{-2}$, is given by $\ddot{x} = F kv$ for some constant k > 0.
 - (ii) Given that the mass is initially at the origin with a velocity of $u \text{ ms}^{-1}$, find a formula for its velocity, $v \text{ ms}^{-1}$, at time *t* seconds.

(iii) If after T seconds the velocity of the mass is $2u \text{ ms}^{-1}$, show that $F = ku \left[\frac{2e^{kT} - 1}{e^{kT} - 1} \right]$. 2

(iv) Prove that the distance, d metres, moved in this time is given by $d = \frac{FT - u}{k}$.

<u>QUESTION 3</u> (START A NEW PAGE) (16 Marks)

(a) (i) Prove that the equation the normal to the rectangular hyperbola $xy = c^2$ at the point $P\left(cp, \frac{c}{p}\right)$ is $p^2x - y = \frac{c}{p}\left(p^4 - 1\right)$. (You may assume that the equation of the tangent is $x + p^2y = 2cp$) (ii) The tangent at $P\left(cp, \frac{c}{p}\right)$ meets the *x* – axis at *A* and the *y* – axis at *B*. Find the **3**

coordinates of A and B and show that P is the midpoint of AB.

- (iii) The normal at $P\left(cp, \frac{c}{p}\right)$ meets the line y = x at *C* and the line y = -x at *D*. Find the coordinates of points *C* and *D*.
- (iv) What type of quadrilateral is *ACBD* for all $p \neq 1$? (Give reasons).
- (b) A small rocket is projected vertically upwards from the Earth's surface with an initial speed of \sqrt{gR} ms⁻¹. You may assume that the acceleration of an object at a distance *x* metres from the centre of the Earth is of magnitude $\frac{gR^2}{x^2}$, and directed towards the Earth's Centre, where *R* metres is the radius of the Earth.

- (i) Neglecting air resistance, show that the speed $v \text{ ms}^{-1}$ of the rocket at distance x metres 3 from the Earth's centre is given by $v = \sqrt{gR} \sqrt{\frac{2R - x}{x}}$.
- (ii) Find the maximum height that the rocket will reach above the Earth's surface. 1
- (iii) Find the time required to reach a height of R metres above the Earth's surface.

4

2

<u>QUESTION 4</u> (START A NEW PAGE) (15 Marks)

- (a) A plane of mass *M* kg lands with velocity $u \text{ ms}^{-1}$ on a level airstrip. Upon landing it experiences a resistive force of magnitude αv^2 Newtons due to air resistance and braking, and a constant resistive force of magnitude β Newtons due to the friction between the tyres and the ground where α and β are constants.
 - (i) Show that the distance required to bring the plane to rest is $\frac{M}{2\alpha} \ln\left(1 + \frac{\alpha}{\beta}u^2\right)$ metres. 3
 - (ii) Show that the time required for the plane to come to rest is $\frac{M}{\sqrt{\alpha\beta}} \tan^{-1} \left(u \sqrt{\frac{\alpha}{\beta}} \right)$ seconds.
- (b) *OAB* is an isosceles triangle with OA = OB = r and $\angle AOB = \frac{2\pi}{n}$. *OABC* is a triangular pyramid with OC = h and OC is perpendicular to the plane AOB.

Consider a slice with cross-section *EFGH* perpendicular to the plane *AOB* with *EF* \parallel *AB*, thickness Δx and at a perpendicular distance *x* units along *OQ* from the point *O*.

- (i) Show that the volume of the slice is given by $\left(2h\tan\frac{\pi}{n}\right)\left(x-\frac{x^2}{r\cos\frac{\pi}{n}}\right)\Delta x$ 3
- (ii) Hence show that the volume of the pyramid is $\frac{hr^2}{6}\sin\frac{2\pi}{n}$.
- (iii) Suppose that *n* identical pyramids *OABC* are arranged about a common vertical axis *OC* to form a solid. Find the limit value of the volume as *n* becomes very large.

(You may assume that $\lim_{x\to 0} \frac{\sin x}{x} = 1$)

3

4

A part mediu the sp particl point a due to	ticle <i>P</i> is thrown vertically downwards in a un where the resistive force is proportional to eed $v ms^{-1}$ of the particle. The initial speed of le <i>P</i> is $U ms^{-1}$ and the particle is thrown from a <i>d</i> metres above the origin and the acceleration o gravity is $g ms^{-2}$.	$\begin{array}{c} Particle P \\ t = 0, x = -d, v = U \\ Particle Q \\ t = 0, x = 0, v = 0 \\ V_{\chi} \end{array}$	Marks
(i) Explain why the acceleration, $\ddot{x} ms^{-2}$, is given by $\ddot{x} = g - kv$ for some constant $k > 0$.		1	
(ii) Show that $v = \frac{g}{k} - \left(\frac{g - kU}{k}\right)e^{-kt}$.			2
(iii)	(iii) Show that $x = \frac{gt - kd}{k} - \left(\frac{g - kU}{k^2}\right)\left(e^{-kt} - 1\right).$		
(iv) A second identical particle Q is dropped from the origin at the same instant that P is thrown down. Using the above results to write down similar expressions for the velocity and displacement of particle Q .		2	
(v)	v) Find when particles P and Q collide and the speed with which they collide.		

		Marks
(i)	By considering areas or using integration techniques show that $\int_{0}^{\frac{a}{\sqrt{2}}} \sqrt{a^{2} - x^{2}} dx = \frac{a^{2}(\pi + 2)}{8}.$	2
(ii)	(ii) The area of the minor segment bounded by the chord $x = \frac{a}{\sqrt{2}}$ and the circle $x^2 + y^2 = a^2$ is rotated one revolution about the chord. By considering circular cross-sections perpendicular to the chord, find the volume of the solid formed.	

The normal at a variable point $P\left(2p, \frac{2}{p}\right)$ on the hyperbola $xy = 4$ meets the $x - axis$ at Q.		Marks
(i)	Prove that the normal at <i>P</i> is $p^2 x - y = \frac{2}{p} (p^4 - 1)$.	2
(ii)	Find the co-ordinates of <i>P</i> .	1
(iii)	Find the co-ordinates of <i>M</i> , the midpoint of <i>PQ</i> .	1
(iv)	Hence show that the locus of <i>M</i> lies on the curve $y^4 + xy = 2$.	2

TERT 2 EXT 2 MATHEMATICS: Question		(1)
Suggested Solutions	Marks	Marker's Comments
(a) i) $y = \frac{16}{x} (x \neq 0)$ $\frac{dy}{dx} = \frac{-16}{x^2}$		
= -16 = -1 at A	1	
Tangent at A is $y - \frac{1}{p} = -\frac{1}{p}(x - 4p)$	1	
py-4p=-x++p $x+py=8p$	1	
i) Two point form:		
$\frac{y - 4p}{42 - 4p} = \frac{x - 4p}{4q - 4p}$		
pq.y-4q = x-4p 4p-4q, 4q-4p		
$pq_{y}-4q = -(x-4p)$ $(p \neq q)$ $x + pq_{y} = 4(p+q)$	2	
iii) Tangent at B is x+q2y= 8q () Solve at T x+p2y=8p (2)		
$ (1-2) (q^2-p^2)y = 8(q-p) (q+p)y = 8 (p+q) $		1/2 off 4 p=q
$y = \frac{8}{p+q}$	1	at all.
Substitute into (1) x= 89- 892		
= 8 pg, +892-892		& off of I not
$= \frac{8pq}{p+q}$	1	at the end.
T is $\left(\frac{8 pq}{p+q}, \frac{8}{p+q}\right)$		
	-	

J:\Maths\Suggested Mk soins template_V2.doc

MATHEMATICS: Question (2)			
Suggested Solutions	Marks	Marker's Comments	
iv) The chord in (ii) goes through (8,8) $-\frac{3}{2} + \frac{8}{pq} = 4(p+q)$ $\frac{2(1+pq) = (p+q)}{(p+q)}$ Substitute T into $x+y=4$ $LHS = x+y = \frac{8}{pq} + \frac{8}{p+q}$ $= \frac{8(pq+1)}{p+q}$	1/2		
$= \frac{8(p+q)/2}{p+q}$ $= 4 \qquad (p=-q)$ $= RHS$ $\therefore T \ lies \ on \ the \ line \ x+y=4$	12		
b) + FORCES ACCNS. x Jmgl × 1 [×] m [×] = -mg - × (Newton's 2nd hav)	1	Diagrams were pooly done. For a given result, something was expected.	
But $m = 1$, $q = 10$ $\therefore \dot{x} = dv = -10 - \frac{v}{5}$ $\frac{dv}{dt} = \frac{50 + v}{5}$ $\frac{dv}{dt} = \frac{50 + v}{5}$ $\frac{dv}{50 + v} = \int \frac{-dt}{5}$ (where T is the required time)	I		

J:\Maths\Suggested Mk solns template_V2.doc

(3)MATHEMATICS Extension 2: Question Marks Marker's Comments **Suggested Solutions** In 50 - In 100 In 50 = -100 m 150 = T 50 = 5lm 2 5ln2 secs v velocity i) (Different form of is v dw = -10-4 I dre where His H de 5 maximum height (50+V) - 50 dv = l × -50 ln (50+v) = - H - 50 lm 50 - 50 + 50 lm 100 = - ++/5 50 ln (100) - 50 = -H $= \frac{1}{250(1-\ln 2)}$. Particle reaches maximum height & 250 (1-ln 2) metres

I'm ercury/staffhomeS\WOH\Admin_M Fac\Assessment in fo\Suggested Mk solns template_V3.doc

2 **MATHEMATICS Extension 2: Question... Suggested Solutions** Marks Marker's Comments amki Can Ruson ave 2011 r KV > mki 20= F.mkr 1 m× 5 E-mki n"≤ E-kv. MEL dv = F-kv Ìų Dit ficulty stua иt with ati Q n qualifiedia 1/2 57 Ļ W Ku 2 iV F-1 Au C 1/2 tis Mmi Inste 1/2 $F_{1}T$ sturn D A k

\\mercury\staffhome\$\WOH\Admin_M Fac\Assessment in fo\Suggested Mk solns template_V3.doc

MATHEMATICS Extension 2: Question Marks **Suggested Solutions** Marker's Comments (a)Ĵ 200 ZΩN. AM aln BOMP Working must be Shewn З CF

 $\label{eq:lim} we reury staffhome \WOH \Admin_M Fac \Assessment in fo \Suggested Mk \ solns \ template \V3. doc$

I

MATHEMATICS Extension 2: Question **Suggested Solutions** Marks **Marker's** Comments noo C n Own K 7 + m oun 2 ÐГ 3 F marks na 00 \sim 01 20 ٦Î (..... Ļ

 $\label{eq:lim} where we have the theorem of the t$

3 **MATHEMATICS Extension 2: Question**. **Suggested Solutions** Marks Marker's Comments $\overline{\mathbf{M}}$ C. nount 13 MUD 1 adri PAC OC 9Aam MOC is remen NE I nino laces NGA ma and AC DP FOD Ides rallelogram ombus 1 EAMAI 1 C 15 perpendicular \mathcal{M} 1AC CBD ĩŜ a 3

 $\label{eq:lim} where used the mession of the set of t$

MATHEMATICS Extension 2: Question **Suggested Solutions** Marks **Marker's Comments** 3 V 5 c. $\mathcal{D}C$ 291 ŋ ϵ Sin R <u>کر</u> (RS 1720. OCCLI 76=2 ¢

(4

3 **MATHEMATICS Extension 2: Question.** Marks Suggested Solutions Marker's Comments 4 ZR-X WE 919 26 $\boldsymbol{\chi}$ 2 X MP ne 2R \mathfrak{Q} 0 2Rx Q 2R 2 2R2 zR 2 Integ R Ħ I amsur a, JC Q

 $\label{eq:limercury} staffhome \WOH \Admin_M Fac \Assessment in fo \Suggested Mk \ solns \ template \V3. doc$

(5

3 **MATHEMATICS Extension 2: Question...** Marks Marker's Comments **Suggested Solutions** 4 Altern bilui 1ntegra 2RSIN²D еE L =/R r RSINDLESO $\alpha \alpha$ convet substitution 40 2RS/12 × 1 Sinner and limits 2 R - 2 R / n b 11 SIM2R Sin Ces Eano Ę 00 2 inr Sin R 44 4 S В INTEGNA SINA Ti AMSU 11 1 MÊ R G Z d

(6

MERT 2 TERM 2 ASSESSMENT, 2010

MARKIN & SCHEME

\+CALL15TO\SwffHome\$\WOH\JRAH MFee-Admin\Assessmentinfe}Suggested Mk solns template_V4_half Ls.doc