JRAHS Year 12 Extension 2 Term 2 Assessment 2011

QUESTION 1 (15 Marks)

(a) A rectangular hyperbola has equation $x y=a^{2}$
(i) Find the equation of the tangent at the point $P\left(a t, \frac{a}{t}\right)$ on the hyperbola.
(ii) The tangent at P meets the x and y axes at L and M respectively. O is the origin and POQ is a diameter. The line MQ meets the x-axis at T. Prove that the area of $\Delta \mathrm{QOT}=\frac{a^{2}}{3}$ units 2
(b) (i) If a particle moving with velocity v experiences air resistance equal to $k v^{2}$ per unit mass (k being constant), prove that, in falling from rest in a vertical line through a distance s, it will acquire a velocity of v given by $\quad v=V \sqrt{1-e^{-2 k s}}$
where $V=\sqrt{\frac{g}{k}}$ (the terminal velocity) and g is the acceleration due to gravity (assumed constant).
(ii) With the same air resistance as in (i) acting on a particle, show that if projected upwards with velocity U, it will reach a height x, given by

$$
x=\frac{1}{2 k} \ln \left(\frac{g+k U^{2}}{g}\right)
$$

(iii) Hence prove that under the same conditions, a particle projected upwards with velocity U will return to the point of projection with velocity W given by

$$
W^{-2}=U^{-2}+V^{-2}
$$

(a) A particle of unit mass is projected vertically upwards against a constant gravitational force g and a resistance $\frac{v}{c}$, where v is the velocity of the particle and c is a constant and s is the distance travelled in time t; at $t=0$, $s=0$, and $v=c(h-g)$ where h is a constant.
(i) Write down the equation of motion of the particle.
(ii) Find the time taken by the particle to reach its highest point, and find the height of that point.
(iii) The particle falls to its original position under gravity and under the same law of resistance. Will the time of descent be greater or less than the time of ascent? Give reasons for your answer.
(b) A region R is bounded by the curves $y=12-x^{3}$ and $y=12-4 x$.
(i) Find the co-ordinates of the points of intersection of these curves and hence draw a neat sketch showing the resultant regions.
(ii) By taking cylindrical shells of width Δx and radius x, show that the volume generated by revolving R about the y-axis is $\frac{256 \pi}{15}$ units 3.
(a) The section of a solid cut by any plane perpendicular to the x-axis is a square with the ends of a diagonal lying on the parabolas $y^{2}=9 x$ and $x^{2}=9 y$.
(i) Find the points of intersection of the two parabolas.
(ii) Show that the area $A(x)$ is given by:

$$
A(x)=\frac{1}{162}\left[(27)^{2} x-54 x^{\frac{5}{2}}+x^{4}\right]
$$

(iii) Find the volume of the solid.
(b) The base of a solid is the circle $x^{2}+y^{2}=16 x$, and every planar section perpendicular to the x-axis is a rectangle whose height is twice the distance of the plane of the section from the origin as shown in the diagram:

(i) Show that the area $A(x)$ is given by:

$$
A(x)=4 x \sqrt{64-(x-8)^{2}}
$$

(ii) Find the volume of the solid.

QUESTION 4 (START A NEW PAGE) (15 Marks)

(a) The tangent at $P(\tan \theta, \sec \theta)$ on the hyperbola $y^{2}-x^{2}=1$ cuts the x and y axes at X and Y respectively.
(i) Show this hyperbola is rectangular.
(ii) Find the coordinates of X and Y.
(iii) Through X and Y lines are drawn parallel to the co-ordinate axes to intersect at Q. Find the coordinates of Q.
(iv) Hence, find the cartesian equation of the locus Q as P varies.
(v) Sketch the graph of the locus.
(b) The tetrahedron formed by three mutually perpendicular edges of lengths a, b, c is shown in the diagram below:

Let the origin be the intersection of the edges, and let the x-axis lie along the edge of the length c as shown in the diagram. A typical cross section is a right triangle with legs of length d and e, parallel respectively to the edges of lengths a and b.
(i) Using similar triangles, show that the area of the cross-section $A(x)$ is given by:

$$
A(x)=\frac{a b}{2 c^{2}}(c-x)^{2}
$$

(ii) Find the volume of the solid generated.
question (i)

$$
\begin{aligned}
(i) x y & =a^{2}, y=a^{2} / x \\
\therefore \frac{d y}{d x} & =-a^{2} / x^{2} \\
\frac{d y}{d x} \int_{x}=a t & =\frac{-a^{2}}{a^{2} t^{2}} \\
& =-\frac{1}{t^{2}}
\end{aligned}
$$

Gradient cf tot

$$
=-1 / t^{2}
$$

$[1]$
$a+p$
$y-\frac{a}{t}=-\frac{1}{t^{2}}(x-a t)$

$$
\begin{gathered}
x+t^{2} y-2 a t=0 \\
\left(\frac{1}{t^{2}}\right) x+y=\frac{2 a}{t} \\
y=\left(-\frac{1}{t^{2}}\right) x+\frac{2 a}{t}
\end{gathered}
$$

Correct
[1]
(ii) $Q(-a t,-a / k) b y$ symmetry of hyperbola.

When $x=0, y=\frac{2 a}{t}$

$$
\therefore \quad M\left(0, \frac{2 a}{t}\right)
$$

Coordinates
of M
$\left(0, \frac{2 a}{t}\right)$
$[1]$

$$
\begin{aligned}
m_{M Q} & =\frac{2 a / t+a / t}{0+a t}=\frac{3 a}{t^{2}} \\
& =\frac{3}{t^{2}}
\end{aligned}
$$

\therefore Equation of MQ is:

$$
\begin{aligned}
& y-\frac{2 a}{t}=\frac{3}{t^{2}}(x-0) \\
& 3 x-t^{2} y+2 a t=0 \\
& y=\left(\frac{3}{t^{2}}\right) x+\frac{2 a}{t}
\end{aligned}
$$

$$
W h e n y=0, M Q
$$

in eats x-axis at T

$$
\begin{aligned}
& \therefore-\frac{2 a}{t}=\frac{3 k}{k^{2}} \\
& \Rightarrow \pi=\frac{-2 a t}{3} \\
& \therefore T\left(-\frac{2 a t}{3}, 0\right)
\end{aligned}
$$

1.2

$$
|0 T|=\frac{2 a t}{3} \text { unit }
$$

Area of $\triangle Q O T$

$$
\begin{aligned}
& =\frac{1}{2}|0 T| \cdot\left|y \operatorname{coord}_{Q}\right| \\
& =\frac{1}{2} \times \frac{2 a t}{3} \times \frac{a}{t} \\
& =\frac{a^{2}}{3}
\end{aligned}
$$

Correct equation of MQ

$$
[1]
$$

Coordinates
co T

$$
\left(-\frac{24 t}{3}, 0\right)
$$

$[1]$

$$
\frac{a^{2}}{3} \quad[1]
$$

Incorrect expression $\frac{\text { for }|c T|,|y|}{\left[\frac{1}{2}\right]}$
(b)

Taking positirse to be 'down'

$$
\begin{aligned}
& \ddot{x}=g-k v^{2} \\
& V \frac{d r}{d x}=g-k r^{2} \\
& \frac{d v}{d x}=\frac{g-k v^{2}}{v} \\
& \int d x=\int \frac{v e t v}{g-k v^{2}}, \int d x=\frac{-1}{2 k} \int \frac{-2 k v d v}{g-k v^{2}} \\
& x=-\frac{1}{2 k} \ln \left|g-k v^{2}\right|+c . \\
& W h \operatorname{lem})=c, \quad r=c \\
& \Rightarrow C=\frac{1}{2 k} \ln g \\
& \text { 1.e } x=\frac{1}{2 k} \ln \left|g \frac{g}{-k r^{2}}\right|
\end{aligned}
$$

When $x=s$

$$
\begin{aligned}
& s=\frac{1}{2 k} \ln \left|\frac{g}{g-k r^{2}}\right| \\
& e^{2 k s}=\frac{g}{g-k r^{2}} \\
& g-k r^{2}=g e^{2 k s} \\
& v^{2}=\frac{g}{k}\left(1-\bar{e}^{2 k s}\right)
\end{aligned}
$$

ie

$$
\begin{gathered}
V=V\left(1-e^{-2 k s}\right) \\
(V>0)
\end{gathered}
$$

correct form of D.E $[1]$

Correct expression for s with approp. inithal coudition. [1]

Corroct expression for V

$$
[1]
$$

Taking Positive to bee 'up'

$$
\ddot{x}=-g-k v^{2}
$$

$$
v \frac{d r}{d x}=-\left(g+k v^{2}\right)
$$

$$
\int d x=-\int \frac{2}{g+k v^{2}} d v
$$

$$
=-\frac{1}{2 k} \int \frac{2 k v d 2}{g+k v^{2}}
$$

$$
\begin{array}{r}
\therefore \quad x=-\frac{1}{2 k} \ln \left(g+k r^{2}\right) \\
+c
\end{array}
$$

When $x=0, V=\mu$

$$
\therefore x=\frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g+k v^{2}}\right)
$$

$$
\begin{gathered}
\text { Curse }-D E \\
\text { and integral } \\
\int d x=-\int \frac{r d r}{j+k^{2}} \\
{[1]}
\end{gathered}
$$

[1]
Correct expression fort before reaching maximum height [1]

Mox-herght $k=0$

$$
\begin{aligned}
& V=0 \\
& x=\frac{1}{2 k} \ln \left(\frac{9+k v^{2}}{9}\right)
\end{aligned}
$$

From equation (1) in (1)

$$
v^{2}=\frac{g}{k}\left(1-e^{-2 k s}\right)
$$

Rearing,

$$
\bar{e}^{2 k s}=1-\frac{k v^{2}}{g}
$$

From equation (2) un (ii)

$$
s=\frac{1}{2 k} \ln \left(\frac{g+k V^{2}}{g}\right)
$$

Substitute s into (3) and $v=w$, we haw

$$
\begin{aligned}
& e^{-\ln \left(\frac{g+k u^{2}}{g}\right)=\frac{g-k w^{2}}{g}} \\
& \therefore \frac{g}{g+k u^{2}}=\frac{g-k w^{2}}{g}
\end{aligned}
$$

$$
g^{2}=\left(q+k v^{2}\right)\left(g-k w^{2}\right)
$$

$$
g k U^{2}=g k W^{2}+k^{2} U^{2} W^{2}
$$

$$
u^{2}=w^{2}+\frac{k}{g} u^{2} w^{2}
$$

$$
u^{2}=w^{2}+\frac{u^{2} w^{2}}{v^{2}}
$$

$$
V^{2} u^{2}=v^{2} W^{2}+u^{2} w^{2}
$$

$$
w^{2}=\frac{v^{2} u^{2}}{v^{2}+v^{2}}
$$

$$
w^{-2}=\frac{u^{2}+v^{2}}{v^{2} u^{2}}
$$

$$
\therefore w^{-2}=v^{-2}+v^{-2}
$$

- Correct expression to start off
- or equivalent merit
[1]

Equivalent expression for $e^{-2 k s}$ 1.e

$$
\frac{\frac{1 \cdot e_{g}}{g+k v^{2}}}{\frac{g-k w^{2}}{g}} \begin{gathered}
\text { or equivalent } \\
\text { merit }
\end{gathered}
$$

$$
[1]
$$

Algebraic manipulation to get to

$$
W^{-2}=v^{-2}+v^{-2}
$$

[1]

2 rif $y_{r} / 2 T_{2}$ MATHEMATICS Extension 2: Question ...2.

$$
\begin{aligned}
& t=0, \quad s=0, \quad k_{2}=c^{2} h \\
& s=-c^{2} h e^{-t / c}-c g t+c^{2} h
\end{aligned}
$$

at max hit $T=c \ln \frac{h}{g}$

$$
\max S=c^{2}(h-g)+c^{2} g \ln (g / h)
$$

iii) Tine to reach max $h t=c \ln \frac{h}{g}$

$$
\text { Since } V=c(h-g)>0 \quad \therefore \quad E>g
$$

Try to find the downward velocity
at $t=c \ln \frac{h}{g}$

$$
\begin{aligned}
& \ddot{x}=g-\frac{v}{c} \\
& \int_{0}^{v} \frac{d v}{g-\frac{v}{c}}=\int_{0}^{c \ln \frac{h}{g}} d t \\
& {\left[-\phi \ln (c g-v)=q \ln \frac{h}{g}\right.} \\
& \ln \left(\frac{c g}{\operatorname{cg}-v}\right)=\frac{h}{g} \quad \therefore \frac{c g}{c g-v}=\frac{h}{g} \\
& v=\frac{c g(h-g)}{h}=\operatorname{cg}\left(1-\frac{g}{h}\right)
\end{aligned}
$$

Try to find distance travelled from $t=0$ to $t=c \ln \frac{h}{g}$

$$
\operatorname{cg}(1-3 / n)
$$

$$
\frac{d v}{d x}=\frac{c g-v}{c} \quad \therefore \int_{0}^{c g\left(1-\frac{y}{b}\right)} \frac{v d v}{c g}=\int_{0}^{x} \frac{d x}{c}
$$

$$
\int_{0}^{9 / n}\left(-1+\frac{c g}{\operatorname{cg}-v}\right) a r=\frac{x}{c}
$$

common mistakes.

$$
-\int \frac{c v}{c g-v} d v=\int_{0}^{5} d x
$$

$\max 2 \mathrm{~m}$.

$$
\ddot{x}=g-\frac{r}{c}
$$

most students gat this $\frac{1}{2} m$ on dy when they do not successfully integrate any of the $\frac{x}{(5)}$, wort.

Ert 2 \%/2 201 Tr Q2 cath

$$
\begin{aligned}
& \operatorname{cg}(1-9) \\
& -\operatorname{cg}\left(1-\frac{g}{h}\right)-[\operatorname{cg} \ln (\operatorname{cg}-v)]^{h}=\frac{x}{c} \\
& -\operatorname{cg}\left(1-\frac{g}{h}\right)-\operatorname{cg} \ln \left(\frac{\operatorname{cg}-\operatorname{cg}+\operatorname{cg} / h}{\operatorname{cg}}\right)=\frac{x}{c} \\
& \operatorname{cg}\left(\frac{g}{h}-1\right)-\operatorname{cg} \ln \left(\frac{y}{h}\right)=\frac{x}{c} \\
& x=c^{2} g\left(\frac{g}{h}-1\right)-c^{2} g \ln \left(\frac{g}{h}\right) \\
& 1 \mathrm{~m} \\
& \text { h) }=\text { MAX ht }-x=c^{2}(h-g)-c^{2} 9 \operatorname{la} \frac{h}{g}-c^{2}\left(\frac{g}{h}-y\right)+c^{2} g \ln \frac{g}{h} \\
& \begin{array}{l}
f(h)=c^{2} h-c^{2} g^{2}-2 c^{2} g \ln \frac{h}{g} \\
f(h)=c^{2}+\frac{c^{2} g}{h}-2 c^{2} g\left(\frac{g}{h} \times \frac{1}{g}\right)=c^{2}\left(1-\frac{2 g}{h}+\frac{g^{2}}{h^{2}}\right)=c^{2}\left(\frac{g}{h}-1\right)^{2}>0
\end{array}
\end{aligned}
$$

Since $h>g, \quad f(x)>0 \quad \therefore \max h+>x$
At $t=\ln \frac{h}{g}, k_{0}$ not reached pion projection. invest have conclusion $\frac{1}{2} m$
\therefore Time descent is granter than ascend
many students thy to find the time to reach the pt of projection $\quad \frac{d v}{d t}=\frac{c g^{-v}}{c}$
or fry r ford the veluity weachiy pt of projection.

$$
\frac{c}{c}=\ln +\frac{c g}{c g-v}
$$

$$
v=\operatorname{cog}\left(1-e^{-t / c}\right)
$$

to relate to the distance $\frac{r d v}{d x}=\frac{c g-v}{c}$

$$
\begin{align*}
\int_{v}^{r} \frac{r d r}{c q} & \left.=\int_{0}^{s} \frac{d x}{c} \quad\right)^{r}\left(1+\frac{c g}{c q-v}\right)^{r} d r=\frac{s}{c} \\
S & =-\left[c v+c^{2} g \ln \frac{c g-r}{c g}\right]
\end{align*}
$$

MATHEMATICS Extension 2: Question. $2 . .$. Suggested Solutions

Marker's Comments
($2(b)(1) \begin{aligned} y & =12-x^{3}-c i \\ y & =12-42\end{aligned}$

$$
\therefore \quad 12-4 x=12-x^{3}
$$

$$
x\left(x^{2}-4\right)=0
$$

$$
\therefore x=001 \pm 2
$$

(II) \because the corta ke-mede f-t $-2 \leq x \leq 0$ te the certo bounder for $0 \leq x \leq 2$. votzted cobout the gy-cuxts

J:MathsiSuggested Mk solns template_V3.doc

$$
\frac{\delta V=2+x S x<4}{\delta V=2+x\left(4 x-x^{3}\right) \delta x}
$$

$$
V=44\left[\frac{32}{3}-\frac{32}{5}\right]=2 \frac{26 \pi}{45} \text { ifor } \frac{256 \pi}{15}
$$

$$
\begin{aligned}
& \therefore \text { Vocure is } 25 \frac{54}{15}-\int_{0}^{3} x\left(y_{L}+y_{L}\right) d x+2 \pi \int_{0}^{2} x\left(y_{0}-y_{L}\right) d x
\end{aligned}
$$

MATHEXT 2, ASSESSMENT TEST 3
TERM2, 2011
$x^{2}=19 y \quad$ MATHEMATICS Extension 2: Question. 3

"TITAN'StuffHoneshwoh08'JRAH M Fac Adm in'Assessment in foiSuggested Mk solns template_V_ half Ls.doc

MATHEMATICS Extension 2: Question 3

(ii) Volume of slice $\delta V=A(x) \delta x$
\qquad
\qquad
METHAP I Let $u=x-8$

$$
x=u+B
$$

$$
d x=\text { de }
$$

3	4
6	8
0	-8

\qquad

$$
V=\operatorname{coz4} r^{\prime} \quad v
$$

METtwi II (harder way)

$$
(x-\infty)^{2}+y^{2}=64
$$

* For a feting / comes form
OR:
Curate centre ($B, 8$) ondivs 8 is

$M E T H O B \quad y=4 \int x \sqrt{64-(x-8)^{2}-2 x}=4 \sqrt{x} \sqrt{15 x-x^{2}}-0 x-$
unless rat (iii)

MEtHOD IV IBIS i

$$
\begin{aligned}
& v=4 \int(x-8+8) \sqrt{64-6 x-8)^{2}} d x \quad 4 \iint(16-2 x-6) \sqrt{16 x-x^{2} d x} \\
& =4 \int(x-8) \sqrt{-2}+8 \sqrt{2} d x=-2 \int_{0}^{16}(16-2 x) \sqrt{16 x-x^{2}} d x+32 \int_{0}^{16} \sqrt{16 x-x^{2}} d x \\
& \left.\begin{array}{rl}
=4\left[-1\left(64-(x-8)^{3 / 2}\right]+32 x \frac{1}{2} \times \pi \times 8\right) \\
=0+102^{4} \pi
\end{array}=-\frac{1}{3}\left(16 x-x^{2}\right)^{\frac{3}{2}}\right]_{0}^{16}+32 x \frac{1}{2} \times 4 \times 8^{2} \\
& \therefore V=1024 \pi
\end{aligned}
$$

$$
\begin{aligned}
& Y=2040\left\{=0 t^{2} \theta+\sin \begin{array}{r}
\cos 8^{2} \\
0
\end{array}\right. \\
& V=2045 \int \frac{1+\cos 52}{2}+s c^{2} d E
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{2}=2-43 \times \frac{\pi}{7}=
\end{aligned}
$$

MATHEMATICS Extension2; Question.

