QUESTION 1 (15 Marks)

(a) A solid shape has as its base an ellipse in the *XY* plane as shown below. Sections taken perpendicular to the *X*-axis are equilateral triangles. The major and minor axes of the ellipse are 4 metres and 2 metres respectively.

(i) Write down the equation of the ellipse. 1

(ii) Show that the area of the cross-section at x = k is given by

$$A=\frac{\sqrt{3}}{4}\left(4-k^2\right).$$

(iii) By using the technique of slicing, find the volume of the solid.

(b)

The solid shown has a base which is a trapezium. The parallel sides are 12cm and 8cm. The perpendicular height is 10cm. Each slice taken parallel to the base is a trapezium with one of the parallel sides 4cm shorter than the other side. The top of the figure (which is parallel to the base) is a triangle with a height of 5cm. The height of the solid is 20cm. 5 cm 6 h 10 12

(i) Show that the perpendicular height (w) of the slice shown is given by $w = \frac{h}{t} + 5$.

2

2

(ii) Find an expression for the volume of the slice shown in the diagram in terms of h.

2

2

(iii) Find the volume of the solid to 1 decimal place.

QUESTION 1 (cont)

c) (i) Prove that the hyperbola with equation $x^2 - y^2 = a^2$ is the hyperbola 2 XY = $\frac{1}{2}a^2$ referred to different axes.

(ii) Find the coordinates of the vertices, foci and the equations of the directrices of XY = 4 2

QUESTION 2 Start a NEW PAGE (15 Marks)

(a) The normal at the point $P\left(cp, \frac{c}{p}\right)$ on the hyperbola $xy=c^2$, meets the x-axis at Q. M is the midpoint of PQ

(i) Show that the normal at P has the equation
$$p^3x - py = c(p^4 - 1)$$
.

(ii) Show that M has the coordinates
$$\left(\frac{c(2p^4-1)}{2p^3}, \frac{c}{2p}\right)$$
 2

(iii) Hence or otherwise, find the equation of the locus of M.
(b) Using the hyperbola from part a) but where p ≠ ±1.
(i) Write down the equation for the tangent at P.

- (ii) If the tangent to the hyperbola at P meets the coordinate axes at A and B. 2 Show that PA=PB.
- (iii) Let the normal to the hyperbola at P meet the axes of symmetry of the hyperbola at C 4 and D. Show that PC=PD=PA.
- (iv) Sketch a graph of the hyperbola showing the results for parts so far. 1
- (v) Explain why ACBD is a cyclic quadrilateral and deduce that $BD \perp BC$ 1

1

(vi) Describe the geometry if p = 1

QUESTION 3 Start a NEW PAGE (15 Marks)

a) A solid S is formed by rotating the region bounded by the parabola $y^2 = 4(1 - x)$ and the y axis 360 ° about the line x = 2.

Find the volume of the solid S.

(b) The region bounded by $y = \frac{1}{x}$, $y = \frac{x^2}{8}$ and x=1 is rotated about the line x=1.

Use the method of cylindrical shells to find an integral which gives the volume of the (i) 3 resulting solid of revolution Find the volume of this solid of revolution 2 (ii) (c) A solid of mass 2kg is attached to an inextensible string of length 1.5 metres, the other end of the string being fixed. The mass rotates in a horizontal circle with an angular velocity of π rad s^{-1} , forming a conical pendulum. (Take $g = 10 \text{ ms}^{-2}$) 3 Calculate the tension in the string. (i) 1 (ii) Determine the angle between the string and the vertical axis. Find the radius of the rotation. (iii) 1 What is the effect on the motion of the particle if the mass is doubled? (iv) 1

4

QUESTION 4 Start a NEW PAGE (15 Marks)

(a) A particle of mass 2kg is projected vertically upwards from a point A with velocity u m/s. It experiences a resistive force, in Newtons, of 10% of the square of its velocity v metres per second. The highest point reached is B directly above A. Assume g =10ms⁻², and take upwards as the positive direction

(i) Show that the acceleration of the particle as it rises is given by $x = -(\frac{v^2 + 200}{20})$

(ii) Show that the distance x metres of the particle from A as it rises is given by

$$x = 10 \ln \left(\frac{200 + u^2}{200 + v^2} \right)$$

(iii) Show that the time t seconds that the particle takes to reach a velocity of v metres per

second is given by
$$t = \sqrt{2} \left(\tan^{-1} \frac{u}{10\sqrt{2}} - \tan^{-1} \frac{v}{10\sqrt{2}} \right)$$

(iv) Now suppose we take two of the 2 kg particles described above. One of the particles

is projected upwards from A with an initial velocity $10\sqrt{2}$ ms⁻¹ then, $\frac{3\sqrt{2}}{5}$ seconds

later the other particle is projected upwards from A with initial velocity $20\sqrt{2}$ ms⁻¹. Will the second particle catch up to the first particle before the first particle reaches its maximum height? You must explain your reasoning and show working.

- (b) A particle is allowed to fall under gravity from rest in a medium which exerts a resistance proportional to the speed (v) of the particle.
- (i) Show that the particle reaches a terminal velocity T given by

$$T = \frac{g}{k}$$
 (where k is a positive constant)

(ii) Show that the distance fallen to reach half its terminal velocity

$$\frac{T}{2}$$
 is given by $x = \frac{T^2}{g} \ln 2 - \frac{T^2}{2g}$.

END OF EXAMINATION

3

2

4

2

1

3

Fx+ 2 201+ T2

(i) :)
$$\frac{y_{+}}{4} + y_{-}^{2} = 1$$

(i) Area = $\frac{1}{2} \cdot 2iyi$. $2iyi$ is bi
 $= 2y^{2} \cdot \frac{3}{2}$
 $= J_{3}y^{2}$
 $when x = k$ $y_{-}^{2} = 1 - \frac{k^{2}}{4}$
Area = $J_{3}(1 - \frac{k^{2}}{4})$
 $= \frac{J_{3}}{4}(4 - k^{2})$
(ii) $\Delta V = \sqrt{\frac{3}{4}}(4 - k^{2})\Delta k$
 $V = \lim_{\Delta k^{\infty} k^{2/2}} \frac{J_{3}}{4}(4 - k^{2})\Delta k$
 $V = \lim_{\Delta k^{\infty} k^{2/2}} \frac{J_{3}}{4}(4 - k^{2})\Delta k$
 $= 2\int_{0}^{2} \frac{J_{3}}{4}(4 - k^{2})\Delta k$
 $= 2\int_{0}^{2} \frac{J_{3}}{4}(4 - k^{2})\Delta k$
 $= \int_{0}^{2} (8 - \frac{8}{3})$
 $= \frac{8}{3} \int_{3}^{3} \approx \frac{9}{\sqrt{3}} un^{2} + \frac{1}{3}$
b i) $\frac{u}{k}$
 $w(h)$ in $\Delta \lim_{\Delta u} in t_{3}$
 $h^{2} Lo u = 2in \frac{4}{3} + \frac{5}{3}$

I m well done
I m Some tryof
$$x=k$$

 $-\frac{1}{2}m$
Im
If use
 $V=2\int_{-\frac{1}{2}}^{\frac{1}{2}}(4-k')dk$
must mention even trution
must mention even trution
 m symmetrical
I m
 $\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{1}{2}(4-k')dk$
 $\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{1}{2}(4-k')dk$
 $\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{1}{2}\frac$

P. 1

Similarly

$$a(h) = mh + b$$
where $h \ge 0$ $a \ge 0$ $i = b \ge 0$
 $h \ge 10$ $a \ge 8$
 $s \ge 20 \text{ m} \implies m \ge \frac{2}{5}$
 $b \ge \frac{2h}{5} + 4$

$$d = \sqrt{\frac{2}{5}} + 4$$

$$d = \sqrt{\frac{2}{5}} + 4$$

$$d = \sqrt{\frac{2}{5}} + 4$$

$$d = \sqrt{\frac{2}{5}} + \frac{2h}{5} + \frac{2h}{5} + \frac{2h}{5} + \frac{2}{5} + \frac{$$

C;)
$$X^{-}Y = h^{-}$$
 Rotate $X = \frac{h^{-1}}{2} = e^{x}$
 $y = x$ $\frac{f(x_{1},y_{1})}{y}$ $\frac{f(x_{1},y_{1})}{y}$ $\frac{f(x_{1},y_{1})}{y}$
 $\frac{f(x_{1},y_{1})}{y}$ $\frac{f(x_{1},y_{1})}{y}$ $\frac{f(x_{1},y_{1})}{y}$
 $d_{1} = \left(\frac{x_{1}-y_{1}}{\sqrt{2}}\right) \frac{d_{1} = |x_{1}+y_{1}|}{\sqrt{2}}$
Are of violary $k = \left(\frac{x_{1}^{-}-y_{1}^{-2}}{2}\right) \frac{d_{1}}{2} = \frac{d^{n}}{2}$
 $f(x_{1}-y_{1}) \frac{d_{1}}{\sqrt{2}} = \frac{1}{2}x_{1}+\frac{y_{1}}{\sqrt{2}}$
Are of violary $k = \left(\frac{x_{1}^{-}-y_{1}^{-2}}{2}\right)$
Are of violary $k = \left(\frac{x_{1}^{-}-y_{1}^{-2}}{2}\right)$
 $f(x_{1}-y_{1}) \frac{d_{1}}{\sqrt{2}} = \frac{1}{2}x_{1}+\frac{y_{1}}{\sqrt{2}}$
 $f(x_{1}-y_{1}) \frac{d_{1}}{\sqrt{2}} = \frac{1}{2}x_{1}+\frac{y_{1}}{\sqrt{2}} = \frac{1}{2}x_{1}+\frac{y_{1}}{\sqrt{2}}$
 $f(x_{1}-y_{1}) \frac{d_{1}}{\sqrt{2}} = \frac{1}{2}x_{1}+\frac{y_{1}}{\sqrt{2}} = \frac{1}{2}x_{1}+\frac{y_{1}$

1991 (M MATHEMATICS Extension 2: Question Marks Marker's Comments Suggested Solutions 2 2 2 = \underline{w} 125 í Ner: 40. SAN $^{\circ}$ ş (1)S 2 \geq 21 1 23 0 2 111 ate

^{\\}TITAN\StaffHome\$\woh08\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

2/4 MATHEMATICS Extension 2: Question ... 2. Marks **Marker's Comments** Suggested Solutions you had to Ċ x =substitute into x, Z۰ and do at least 7 -Runther lines £ oorking get (Z) a lat of students wasted time prolog this for needed to both wirest cpt the I mark 20/25 did it by simp the distance -l.p. formula. Some shdats Hidn't simplify the algebra, and that made it K = - 193hade for H in sipplying it. モロ - py=<(pt-) PX APX Ed $p^3+p)=c(p^3+p)$ \times - 2(-p4--+)-\\TITAN\StaffHome\$\woh08\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

3/4-MATHEMATICS Extension 2: Question Marks Marker's Comments Suggested Solutions Midpoint 210+1 < (p²-1) 5 24 1/2 ~ the - - - (P2+1) a lat at Ċ 2 2cte CD needed to see A, B, C, D, P and y= ± x to get the 1 \\TITAN\StaffHomes\woh08\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc y=-x

Suggested Solutions	Marks	Marker's Comments
The diagonals AB and CD bisect		* some student
The diagonals AB and CV Disect	_	1
each other at right ingles, HIS = C	2	forget to prove
So ARBO is 6) Square		102-00
It is a curlic avadrilateral as the	20	Why 15=70
opposite angles are evolencitary		-
1 0		
BD_BC langle B in a Bayers is	-90%)	
We we lake the second second	2	
The second secon		-
) If p=1 the normal becomes th	Ne-	you needed
axis at superior is y= x.	- A	-
0 10 0	-(1)	on 3 pieces 2
So a has intrate values and	0	0 11 1
Dapes to the origin.		of no tomation
		set the mark
	<	3
		2007 5 3=1
	-	A 80, 51 0
	}	
	mer -	
und op med an proving and an and an and an an and and and and	Automa (
	_	
	-	
	_	
	_	
	-	

4/4

1 15 25 1

\\TITAN\StaffHome\$\woh08URAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

C:\Documents and Settings\Woodhouse\My Documents\Ian Woodhouse\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

^{\\}CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

EXTENSION 2 MATHEMATICS: Question 3 Marks **Marker's** Comments **Suggested Solutions** 3 DICLACOM Ô Tass 2 TSIND ma.C Horizontall ○ Homzontal
Equation
○ (=1.55100 SINO mw $\omega = TT$ 1.55in0 SWAG = 1) Answer 0 Correctansuer. Vena (exact form accepted) _ C050 10 COSO 20 311 20,2 3 11 O correct ginsur 1 1111 \bigcirc 5 SIVIO (Exact form accepted) 1.5 Sin a 191 raduus = 111 Alternatively 9114-400 (18).... nico" 31120 = O cóso = mg no change to motion = 199 OS O (no justification) needed. mwik Coso is independent of m. no change to mation W=TT

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk soins template_V4.doc

TERM 2 2014 X2 MATHEMATICS: Question 4		pl 874
Suggested Solutions	Marks	Marker's Comments
Forces (i) $\int x_{,v} \int \int x_{,v} \int \int x_{,v} \int \int x_{,v} = 20 + 0.1v^{2}$ (i) $\int x_{,v} \int x_{,v} \int x_{,v} = 20 + 0.1v^{2}$ (i) $\int x_{,v} = -(20 + 0.1v^{2})$ (i) $\int x_{,v} = -(20 + 0.1v^{2})$		Givin result Show needed either a clear d'agram or L'ords "Neuton's Que Law" to explain the equation of motion.
$\begin{aligned} \vec{x} &= \sqrt{dx} = -\left(\frac{\sqrt{2}+200}{20}\right) \\ \sqrt{\frac{\sqrt{dx}}{\sqrt{2}+200}} &= -\left[\frac{dx}{20}\right] \\ \frac{\sqrt{dx}}{\sqrt{2}+200} &= -\left[\frac{x}{20}\right]_{0}^{2} \\ \left[\frac{1}{2}\ln\left(\sqrt{2}+200\right)\right]_{u}^{v} &= -\left[\frac{x}{20}\right]_{0}^{2} \\ \ln\left(\sqrt{2}+200\right) - \ln\left(u^{2}+200\right) &= -\frac{x}{10} \\ \ln\left(\sqrt{2}+200\right) - \ln\left(u^{2}+200\right) = -\frac{x}{10} \\ 2t &= 10 \left(\ln\left(u^{2}+200\right) - \ln\left(\sqrt{2}+200\right)\right) \\ &= 10 \ln\left(\frac{200+u^{2}}{200+v^{2}}\right) \end{aligned}$		Most people scored full marks here, and got into trouble with limits. There was a temptation to jump to the given result.
(iii) $\dot{x} = \frac{dv}{dt} = -\left(\frac{v^{2}+200}{20}\right)$ $\int \frac{dv}{v^{2}+200} = -\int \frac{dt}{20}$		

cury\staffhomeS\WOH\Admin_M Fac\Assessment info\Suggested Mk solns template_V2.doc

TERM 2 2014 X 2 MATHEMATICS: Question 4	e20)4
Suggested Solutions Man	ks Marker's Comments
$\left[\frac{1}{\sqrt{200}} + an^{-1}\frac{v}{\sqrt{200}}\right] = -\left[\frac{1}{20}\right]_{c}^{c}$	Nearly all were rule to
$\frac{1}{10\sqrt{2}}\left(\frac{\tan^2 x}{10\sqrt{2}} - \frac{\tan^2 u}{10\sqrt{2}}\right) = -\frac{t}{20}$	were rith to complete this
$t = \frac{20}{1052} \left(\frac{\tan^2 u}{1052} - \frac{\tan^2 v}{1052} \right)$	
$E = \sqrt{2} \left(\tan^{-1} \frac{u}{1052} - \tan^{-1} \frac{v}{1052} \right) $ 1	
iv) The first particle reaches a	
max ht. of	First mark for
$\chi_{max} = 10 \ln \left(\frac{200 + (1052)^2}{-200} \right) = \frac{10 \ln 2}{(m)}$	of these values
after a time given by	
$t = \sqrt{2} (tan' 1052 - tan'o)$	
$E = \int_{2} (\tan \frac{1002}{10\sqrt{2}} - \tan 0)$ = $\sqrt{2} \tan^{-1}(1) = \sqrt{2}\pi (\text{sees})$ 1 = $\sqrt{2} \tan^{-1}(1) = \sqrt{2}\pi (\text{sees})$ 1	
For second particle there are	
two approaches:	
A Find where 2nd particle is	
When $t = \frac{T_1\sqrt{2}}{4} - \frac{352}{5}$ $t \rightarrow v \rightarrow x$ Compare heights at this time	
@ Find time taken to reach	
B Find time taken to reach x=10/n2 x -> v -> t	
Compare times taken (include offset)	

'oury\staffhomeS\WOH\Admin_M Fac\Assessment info\Suggested Mk solns template_V2.doc

TERM 2 2014 X2 MATHEMATICS: Question 4.		p3 9 4-
Suggested Solutions	Marks	Marker's Comments
A) Find v when t= TT JZ - 3JZ 4 5		
$\frac{7172}{4} - \frac{352}{5} = 52(\tan^{-1}\frac{2052}{1052} - \tan^{-1}\frac{v}{1052})$		
$+a_{1}\left(\frac{v}{1052}\right) = +a_{1}\left(2\right) + \frac{3}{5} - \frac{7}{5}$		
= 0,92175		
· V = 1052 tom (0.92175.)		Rather too
= 18.63996	t	many people
Thence $x = 10 \ln \left(\frac{200 + (2052)^2}{200 + (18.6399)^2}\right)$		used their acalantar in
= 6.025 (30P)		Regnees mode
< 10 ln2 (= 6.931)		-not a good
· · Particle does not pars first	1	idea.
(B) Find V when $x = 10 \ln 2$ $10 \ln 2 = 10 \ln \left(\frac{200 + (20.72)^2}{200 + V^2}\right)$		
2 = 1000		
$v^2 = 300, v = 1053 (up)$	1 • •	
Time since takeoff, T, given by	F	
$T = \sqrt{2} \left(\tan^{-1} \left(\frac{2052}{10.52} \right) - \tan^{-1} \left(\frac{10.53}{10.52} \right) \right)$		
= 0.31264		
Trime prince t=0 is T+353/5		
= 1.16117		
· farticle 2 does not catch find	· 	
lister ton some		
ury\staffhomeS\WOH\Admin_M Fac\Assessment info\Suggested Mk solas tempete_12.doc		

TERM 2 2014 X2 MATHEMATICS: Question 4		P404
Suggested Solutions	Marks	Marker's Comments
b) x=0. i) x=0. x,vv vincy vince opposes x,vv vincy motion.		Should be an easy 2 marks but there was
$m\ddot{x} = mg - cv$ $\vdots \dot{x} = g - kv$ $where k = 9/m > 0$	1	much fudging of m.
$a_{3} \neq 0, \forall \Rightarrow T$ $g - kT = 0$ $T = g/k$		
$\frac{ii)}{d\kappa} = \frac{g}{d\kappa} = \frac{g}{\kappa}$		
$T_{k} = \int_{0}^{x} dx$ $\int \frac{\sqrt{dv}}{g - kv} = \int_{0}^{x} dx$ $\int \frac{kv - g + g}{g - kv} dv = \int_{0}^{x} dx$		L L L L L L L L L L L L L L L L L L L
$\frac{1}{k} \left(\frac{g}{g} - 1 \right) dv = x$	ł	Cone mark for
$\frac{\left[-\frac{1}{k^{2}}\right]_{k}}{C < V < \frac{3}{k}} > 0$	 	dealing adequating
$-\frac{i}{k^2}\ln\left(\frac{g-kT}{g}\right) - \frac{1}{2k} = \chi$		Value signs. Total omission of them, without
But $k = \frac{9}{T} \frac{1}{1000} \frac{(1)}{(1)}$ $x = -\frac{T^2}{g^2} \ln \left(\frac{g - \frac{g}{2}}{4} \right) - \frac{T^2}{2g}$		explanation, Lost one mark.
$= \frac{J_{g1}^2 \ln 2 - J_{2g}^2}{g_1 \ln 2 - J_{2g}^2}$		Given result, 9 need an extra line infore end for laz

^{\\}mercury\staffhomeS\WOH\Admin_M Fac\Assessment info\Suggested Mk solns template_V2.doc