QUESTION 1 (15 Marks)
(a) A solid shape has as its base an ellipse in the $X Y$ plane as shown below. Sections taken perpendicular to the X-axis are equilateral triangles. The major and minor axes of the ellipse are 4 metres and 2 metres respectively.

(i) Write down the equation of the ellipse.
(ii) Show that the area of the cross-section at $x=k$ is given by

$$
A=\frac{\sqrt{3}}{4}\left(4-k^{2}\right) .
$$

(iii) By using the technique of slicing, find the volume of the solid.
(b)

The solid shown has a base which is a trapezium. The parallel sides are 12 cm and 8 cm . The perpendicular height is 10 cm . Each slice taken parallel to the base is a trapezium with one of the parallel sides 4 cm shorter than the other side. The top of the figure (which is parallel to the base) is a triangle with a height of 5 cm . The height of the solid is 20 cm .

(i) Show that the perpendicular height (w) of the slice shown is given by $w=\frac{h}{4}+5$.
(ii) Find an expression for the volume of the slice shown in the diagram in terms of h.
(iii) Find the volume of the solid to 1 decimal place.

QUESTION 1 (cont)

c) (i) Prove that the hyperbola with equation $x^{2}-y^{2}=a^{2}$ is the hyperbola
$X Y=\frac{1}{2} \quad \mathrm{a}^{2}$ referred to different axes.
(ii) Find the coordinates of the vertices, foci and the equations of the directrices of $\mathrm{XY}=4$

QUESTION 2 Start a NEW PAGE (15 Marks)
(a) The normal at the point $\mathrm{P}\left(\mathrm{cp}, \frac{\mathrm{c}}{\mathrm{p}}\right)$ on the hyperbola $\mathrm{xy}=\mathrm{c}^{2}$, meets the x -axis at Q . M is the midpoint of PQ
(i) Show that the normal at P has the equation $p^{3} x-p y=c\left(p^{4}-1\right)$.
(ii) Show that M has the coordinates $\left(\frac{\mathrm{c}\left(2 \mathrm{p}^{4}-1\right)}{2 \mathrm{p}^{3}}, \frac{\mathrm{c}}{2 \mathrm{p}}\right)$
(iii) Hence or otherwise, find the equation of the locus of M.
(b) Using the hyperbola from part a) but where $\mathrm{p} \neq \pm 1$.
(i) Write down the equation for the tangent at P .
(ii) If the tangent to the hyperbola at P meets the coordinate axes at A and B . Show that $\mathrm{PA}=\mathrm{PB}$.
(iii) Let the normal to the hyperbola at P meet the axes of symmetry of the hyperbola at C and D. Show that $P C=P D=P A$.
(iv) Sketch a graph of the hyperbola showing the results for parts so far.
(v) Explain why ACBD is a cyclic quadrilateral and deduce that $\mathrm{BD} \perp \mathrm{BC}$
(vi) Describe the geometry if $\mathrm{p}=1$
a) A solid S is formed by rotating the region bounded by the parabola $y^{2}=4(1-x)$ and the y axis 360° about the line $\mathrm{x}=2$.

Find the volume of the solid S.
(b) The region bounded by $\mathrm{y}=\frac{1}{x}, \mathrm{y}=\frac{x^{2}}{8}$ and $\mathrm{x}=1$ is rotated about the line $\mathrm{x}=1$.

(i) Use the method of cylindrical shells to find an integral which gives the volume of the resulting solid of revolution
(ii) Find the volume of this solid of revolution
(c) A solid of mass 2 kg is attached to an inextensible string of length $1 \cdot 5$ metres, the other end of the string being fixed. The mass rotates in a horizontal circle with an angular velocity of $\pi \mathrm{rad} \mathrm{s}^{-1}$, forming a conical pendulum. (Take $g=10 \mathrm{~ms}^{-2}$)
(i) Calculate the tension in the string.
(ii) Determine the angle between the string and the vertical axis.
(iii) Find the radius of the rotation.
(iv) What is the effect on the motion of the particle if the mass is doubled?

QUESTION 4 Start a NEW PAGE (15 Marks)

(a) A particle of mass 2 kg is projected vertically upwards from a point A with velocity u m / s. It experiences a resistive force, in Newtons, of 10% of the square of its velocity v metres per second. The highest point reached is B directly above A. Assume $g=10 \mathrm{~ms}^{-2}$, and take upwards as the positive direction
(i) Show that the acceleration of the particle as it rises is given by $\ddot{x}=-\left(\frac{v^{2}+200}{20}\right)$
(ii) Show that the distance x metres of the particle from A as it rises is given by

$$
x=10 \ln \left(\frac{200+u^{2}}{200+v^{2}}\right)
$$

(iii) Show that the time t seconds that the particle takes to reach a velocity of v metres per
second is given by $\mathrm{t}=\sqrt{2}\left(\tan ^{-1} \frac{\mathrm{u}}{10 \sqrt{2}}-\tan ^{-1} \frac{\mathrm{v}}{10 \sqrt{2}}\right)$
(iv) Now suppose we take two of the 2 kg particles described above. One of the particles is projected upwards from A with an initial velocity $10 \sqrt{2} \mathrm{~ms}^{-1}$ then, $\frac{3 \sqrt{2}}{5}$ seconds later the other particle is projected upwards from A with initial velocity $20 \sqrt{2} \mathrm{~ms}^{-1}$. Will the second particle catch up to the first particle before the first particle reaches its maximum height? You must explain your reasoning and show working.
(b) A particle is allowed to fall under gravity from rest in a medium which exerts a resistance proportional to the speed (v) of the particle.
(i) Show that the particle reaches a terminal velocity T given by

$$
\mathrm{T}=\frac{\mathrm{g}}{\mathrm{k}} \quad \text { (where } k \text { is a positive constant). }
$$

(ii) Show that the distance fallen to reach half its terminal velocity

$$
\frac{\mathrm{T}}{2} \text { is given by } \mathrm{x}=\frac{\mathrm{T}^{2}}{\mathrm{~g}} \ln 2-\frac{\mathrm{T}^{2}}{2 \mathrm{~g}} .
$$

END OF EXAMINATION

Fit 2 201k T2 $Q 1$
i):) $\frac{x^{2}}{4}+y^{2}=1$
ii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot 2|y| \cdot 2|y| \sin 60^{\circ} \\
& =2 y^{2} \cdot \frac{\sqrt{3}}{2} \\
& =\sqrt{3} y^{2}
\end{aligned}
$$

when $x=k \quad y^{2}=1-\frac{k^{2}}{4}$

$$
\begin{aligned}
\text { Area } & =\sqrt{3}\left(1-\frac{k^{2}}{4}\right) \\
& =\frac{\sqrt{3}}{4}\left(4-k^{2}\right)
\end{aligned}
$$

$i . i) \quad \Delta V=\frac{\sqrt{3}}{4}\left(4-k^{2}\right) \Delta k$

$$
\begin{aligned}
V & =\lim _{\Delta k \rightarrow 0} \sum_{k=-2}^{2} \frac{\sqrt{3}}{4}\left(4-k^{2}\right) \Delta k \\
& =\int_{-2}^{2} \frac{\sqrt{3}}{4}\left(4-k^{2}\right) d k
\end{aligned}
$$

$$
=2 \int_{0}^{2} \frac{\sqrt{3}}{4}\left(4-k^{2}\right) d k
$$

$$
\left.=\frac{\sqrt{3}}{2}\left(4 k-\frac{k^{3}}{3}\right)\right]_{0}
$$

$$
=\frac{\sqrt{3}}{2}\left(8-\frac{3}{3}\right)
$$

$$
=\frac{8 \sqrt{3}}{3} \text { or } \frac{8}{\sqrt{3}} \text { unit }^{3}
$$

bi)

$\omega(h)$ is a linear function

$$
\begin{aligned}
& w(h)=m h+c \\
& \text { when } h=0 \quad i s=5 ; 1>5
\end{aligned}
$$

$$
\begin{aligned}
& h=20 \quad w=10 \\
& 10=20 m+5 \quad m=\frac{1}{4} \\
& \therefore \quad w=\frac{h}{4}+5
\end{aligned}
$$

1 m well dine $1 m$

Some fresof $x=k$ $-\frac{i}{2} m$
$1 m$

If use

$$
V=2 \int_{0}^{2} \frac{\sqrt{3}}{4}\left(4-k^{2}\right) d x
$$

must mention ever function ar symmetricai

$$
1 \mathrm{~m}
$$

$1 m$
Some students

1 m assume syrutich or right. angus trapezium -1 m must mention
1 m similar. triarcie

Similarly

$$
a(h)=m h+b
$$

when $h=0 \quad a=0 \quad \therefore b=0$

$$
\begin{aligned}
& h=20 \quad a=8 \\
& 8=20 m \quad \therefore m=\frac{2}{5} \\
& \therefore a=\frac{2 h}{5} \\
& b=\frac{2 h}{5}+4 \\
& \Delta V=\frac{1}{2}\left(\frac{h}{4}+5\right)\left[\frac{2 h}{5}+\frac{2 h}{5}+4\right] \Delta h \\
& V=\lim _{\Delta h \rightarrow 0} \sum_{h=0}^{\infty} \frac{i}{2}\left(\frac{h}{4}+5\right)(4+4 h) \Delta h \\
& =\frac{1}{2} \int_{0}^{\pi}\left(\frac{h}{4}+5\right)\left(4+\frac{4 h}{5}\right) d h \\
& =\int_{0}^{20} \frac{h^{2}}{10}+\frac{h}{i}+2 h+10 d h \\
& \left.=\left(\frac{h^{3}}{30}+\frac{5 h^{2}}{4}+10 h\right)\right]_{0}^{\infty} \\
& =\frac{2900}{3} \mathrm{~cm}^{3} \mathrm{ir} 966.7^{\mathrm{cm}} \mathrm{~B}
\end{aligned}
$$

$P(x, y)$ represents $z=x_{i}+y, \quad P^{\prime}(u, v)$ represents $\left(\right.$ cis $\left.45^{\circ}\right) \cdot z$

$$
\begin{aligned}
& u+i v=\frac{1}{\sqrt{2}}(1+i)(x+i y)=\left(\frac{x-y}{\sqrt{2}}\right)+i\left(\frac{x+y}{\sqrt{2}}\right) \\
& u=\frac{x-y}{\sqrt{2}}, \quad v=\frac{x+y}{\sqrt{2}} \\
& u v=\frac{x^{2}-y^{2}}{2}=\frac{u^{2}}{2} \quad\left(\sin u \text { P hes in } x^{2}-y^{2}=y_{i}^{2}\right)
\end{aligned}
$$

Similarly

The front. rear sides may no be symmetrical $1 m$ $1 m$
$/ b$
$1 m$
(7) $\quad x^{2}-y^{2}=a^{2} \quad$ Rotate $\quad x y=\frac{a^{2}}{2}\left(=c^{2}\right)$

$$
d_{1}=\frac{\left|x_{1}-y_{1}\right|}{\sqrt{2}}
$$

$$
d_{2}=\frac{\left|x_{1}+y_{1}\right|}{\sqrt{2}}
$$

$$
\text { Area of rectangle }=\frac{\left|x_{1}^{2}-y_{1}^{2}\right|}{2}=\frac{a^{2}}{2}
$$

$$
\binom{\text { sine } P\left(x_{1}, y_{1}\right) \text { hes }}{\text { in } x^{2}-y^{2}=a^{2}}
$$

After un anticlockivik rotation of 45°, area of rectangle is still $\frac{a^{2}}{2}$ (Nim the x, y a xes become the now asymptote)

$$
\therefore x y_{1}=\frac{a^{2}}{2}
$$

\therefore the thyperDula with iquation $x^{2}-y^{2}=a^{2}$ is the fy ye bola $x y=\frac{4^{2}}{2}$ y ferried it different axis
$(i i)$ Vertices $(2,2),(-2,-2)$ Foci $\quad(2 \sqrt{2}, 2 \sqrt{2}),(-2 \sqrt{2},-2 \sqrt{2})$
Disetrixces $\quad x+y= \pm 2 \sqrt{2}$

Using this mathoo must mention equation of asymptotes otherwise -1 m .

$$
\mathrm{Im}
$$

1 m for 1 correct 2 m for all 3 cor no kaif mark.

MATHEMATICS Extension 2: Question. 1

UTITAN゙StaffHomeSiwyoh08URAH M Fac AdminiAssessment infolSuggested Mk solns template_V4_half Ls.doc
$2 / 4$
MATHEMATICS Extension 2: Question...) $^{\prime}$.

Marker's Comments youe had to sustinte ito x, and do at kenst A Mrither lines f workino to ost 2 a lot of siturcits wristect trme by moing this for onk (I) veedec to ft both wirect it cy the lmork
six x stutets did $\frac{-1}{n} b y$ sing the distince frmula.
some sidats didint singitu the alagbra, ance that made" $\frac{1}{1}$ harder for then in emplying 1 .

UTITANHStaffHome\$woh08URAH M Fac AdminiAssessment infolSuggesfed Mk solns template_V4_half Ls.doc

$$
0^{0}>\left(\frac{C\left(\sum^{+}-1\right)}{?}\right)
$$

MATHEMATICS Extension 2: Question 2

 fudging gin
a lot of

 $=\frac{L}{\rho} \sqrt{\rho^{4}+1}$
$=\rho C$
$\rho A=\rho C \equiv \rho \Omega \quad$ (as P fader
(iv)

needed to see A, B, C, D, P $\operatorname{Land} y= \pm x$ to cot the UTITANStaftHones \&woh08URAH M Fac AdminuAssessment info Suggested Mk soles template_Vf_hall Ls. doc $y=-x$
$4 / 4$

\qquad _-_
\qquad

EXTENSMR~2.
MATHEMATICS: Question...3...

Marks
Marker's Comments

(4) 4 forco
amswer.

No marks deducted for missing explanatan or working
(1) AV statements
(1) Sub yinto ΔV
(1) simplify
 in invtegial
(1) integiate and ansumer.

WCALLISTOSLafiHome $\$$ WOHURAH M Fac AdminhAssessment infotSuggested Mk solns template V4.doc

WCALLISTO\StafiHom SWOHURAH M Fac Admin Assessment infolSuggested Mk solns template V4.doc

EXTENSICN 2
MATHEMATICS: Question... 3

MCALLISTO ScalfHome\$WOH\}RAHM Fac Adm in Assessment infolSuggested Mk solns template_V4.doc

TERM 2.2014
$\times 2$ MATHEMATICS: Question 4
a. Forces
i) $\sum_{x=0}^{x, v}$ \square

$$
m y+0.1 v^{2}=20+0.1 v^{2}
$$

with grien vai.e.
$m \dot{x}=\sum F_{\text {mp }}$ (Newton's 2nd Law)
$2{ }^{\prime \prime} x=-\left(20+0.1 v^{2}\right)$

$$
\ddot{x}=-\left(\frac{200+v^{2}}{20}\right)
$$

i1)

$$
\ddot{x}=v \frac{d v}{d x}=-\left(\frac{v^{2}+200}{20}\right)
$$

$$
\int_{u}^{v} \frac{v i v}{v^{2}+200}=-\int_{0}^{i} \frac{d x}{20}
$$

$$
\left[\frac{1}{2} \ln \left(v^{2}+200\right)\right]_{u}^{v}=-\left[\frac{x}{20}\right]_{0}^{x}
$$

$$
\ln \left(v^{2}+200\right)-\ln \left(u^{2}+200\right)=-x / 10
$$

$$
x=10\left(\ln \left(u^{2}+200\right)-\ln \left(v^{2}+200\right)\right)
$$

$$
=10 \ln \left(\frac{2 \sigma c+u^{2}}{2 \sigma c+v^{2}}\right)
$$

iii) $\ddot{x}=\frac{d v}{d t}=-\left(\frac{v^{2}+200}{20}\right)$

$$
\int_{u}^{v} \frac{d v}{v^{2}+200}=-\int_{0}^{t} \frac{d t}{20}
$$

Ljivin result
Shon nexded either a diar| dingrarn or liorel, "Nusten', 2ui Law" to explain the equation of

Most peiple sconted full maslas hore.
a few usad $\frac{\alpha}{d x}\left(v^{2}\right)$
aud git inte treuble wath limits. There was a timptation to jimup to the giver result.

TERM 22014
$\times 2$ MATHEMATICS: Question. $\angle 4$

$$
\begin{aligned}
& {\left[\frac{1}{\sqrt{200}} \tan ^{-1} \frac{v}{\sqrt{20 \pi}}\right]_{n}^{2}=-\left[\frac{t}{20}\right]_{0}^{2}} \\
& \frac{1}{10 \sqrt{2}}\left(\tan ^{-1} \frac{v}{10 \sqrt{2}}-\tan ^{-1} \frac{u}{10 \sqrt{2}}\right)=-\frac{t}{20} \\
& \therefore t=\frac{20}{10 \sqrt{2}}\left(\tan ^{-1} \frac{u}{10 \sqrt{2}}-\tan ^{-1} \frac{v}{10 \sqrt{2}}\right) \\
& t=\sqrt{2}\left(\tan ^{-1} \frac{u}{10 \sqrt{2}}-\tan ^{-1} \frac{v}{10 \sqrt{2}}\right)
\end{aligned}
$$

iv) The first particle reaches a max lat. of

$$
x_{\text {max }}=10 \ln \left(\frac{200+(10 \sqrt{2})^{2}}{200}\right)=\frac{10 \ln 2}{(\mathrm{~m})}
$$

Nearly all were coli to complete thin

First mark for getting both of these values

For second particle there are two approatiou:
(A) Find where Ind particle is Chen $t=\frac{\pi \sqrt{2}}{4}-\frac{3 \sqrt{2}}{5} \quad t \rightarrow v \rightarrow x$ Compare height is at the time
(B) Find time taken to reach $x \rightarrow v \rightarrow t$ $x=10 \ln 2$

$$
x \rightarrow v \rightarrow t
$$

(Compare traumas taken (muluote otter)

TERM 22014

X2 MATHEMATICS: Question ...4.... Marks
Suggested Solutions

Suggested Solutions
(A) Find v when $t=\frac{\pi \sqrt{2}}{4}-\frac{3 \sqrt{2}}{5}$

$$
\begin{aligned}
\therefore \frac{\pi \sqrt{2}}{4}-\frac{3 \sqrt{2}}{5} & =\sqrt{2}\left(\tan ^{-1} \frac{20 \sqrt{2}}{10 \sqrt{2}}-\tan ^{-1} \frac{v}{16 \sqrt{2}}\right) \\
\tan ^{-1}\left(\frac{v}{10 \sqrt{2}}\right) & =\tan ^{-1}(2)+\frac{3}{5}-\pi / 4 \\
& =0.92175 \ldots \\
\therefore & =10 \sqrt{2} \tan (0.92175) \\
& =18.6399 \ldots
\end{aligned}
$$

Therace

$$
\begin{aligned}
x & =10 \ln \left(\frac{200+(20 \sqrt{2})^{2}}{200+(18.6394)}\right) \\
& =6.025 \quad(308) \\
& <10 \ln 2(=6.931)
\end{aligned}
$$

- Particle does nit pass fist un this time ranee.
(B) Find v when $x=10 \ln 2$

$$
\begin{aligned}
10 \ln 2 & =10 \ln \left(\frac{200 \cdot(20, i 2}{200+v^{2}}\right) \\
2 & =\frac{1000}{200+v^{2}} \\
v^{2} & =300, v=10 \sqrt{3}(\mathrm{up})
\end{aligned}
$$

Tame shive takectt, T, given by

$$
\begin{aligned}
T & =\sqrt{2}\left(\tan ^{-1}\left(\frac{20 \sqrt{2}}{10 \cdot \sqrt{2}}\right)-\tan ^{-1}\left(\frac{10 \sqrt{3}}{10 \sqrt{2}}\right)\right) \\
& =0.31264 \ldots
\end{aligned}
$$

Time service $t=0$ is $T+3 \sqrt{2} / 5$

$$
=\frac{1.16117}{\frac{\pi \sqrt{2}}{4}(=1.1107)}
$$

\therefore Patine $2^{4} d i c o n i t$ catch find 1

ii).

$$
\therefore \frac{v d v}{d x}=g-L v
$$

$$
\int_{c}^{T / 2} \frac{v d v}{g-k v}=\int_{0}^{x} d x
$$

$$
\frac{1}{k} \int_{0}^{c} \frac{k v-g+g}{g-k v} d v=\int_{0}^{x} d x
$$

$$
\frac{1}{k} \int_{0}^{0}\left(\frac{g / 2}{g-k v}-1\right) d v=x
$$

$\left[-\frac{1}{k^{2}}|g-k v|-\frac{V}{k}\right]_{0}^{T / 2}=x$
Cons mark for deoding votiguatty wht ciloitite value signs. Totce omission c) them, witliont izxplanatum, lest one mark. Given result, g mased an extro line rupere ind for $l, 2$

