Question 1 (20 marks)

a) Find i) $\int \frac{x+4}{x^{3}+4 x} d x$

4
ii) $\int \sec ^{2} x \sin x d x$

3
iii) $\int_{0}^{\sqrt{2}-1} \frac{d x}{\sqrt{3-x^{2}-2 x}}$

3
b) Given that $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} \vartheta d \vartheta$, show that $I_{n}=\frac{n-1}{n} I_{n-2}$. Hence, evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \vartheta d \vartheta$.
c) Using the method of cylindrical shells, find the volume of the solid of revolution formed when the region bounded by $y=3 x-x^{2}$ and $y=x$ is rotated around the y-axis.
d) The base of a certain solid is the circle $x^{2}+y^{2}=9$. Cross-sections cut perpendicular 3 to the y-axis are squares with one side in the base. Find the volume of the solid.

Question 2 (20 marks) Start this question on a new page.
a) A particle is thrown vertically upward at a velocity of $60 \mathrm{~m} / \mathrm{s}$. The retardation due to air resistance is proportional to the square of the velocity with the constant of proportionality being 0.01 (i.e. total resistance, $\mathrm{R}=0.01 \mathrm{mv}^{2}$).

Show that
i) the time taken for the particle to reach its maximum height is

$$
\begin{equation*}
\text { given by } \quad t=\frac{10}{\sqrt{g}} \tan ^{-1}\left(\frac{6}{\sqrt{g}}\right) \tag{3}
\end{equation*}
$$

ii) the maximum height reached is given by

$$
\begin{equation*}
h=200 \ln \left(\frac{g+36}{g}\right) \tag{3}
\end{equation*}
$$

b) A model plane of mass 5 kg attached to the end of an inelastic wire, of length 2 m , whose other end is fixed, flies in a horizontal circle of elevation 30°. (Take $\mathrm{g}=9.8 \mathrm{~ms}^{2}$)

If the lift force, L , acts at right angles to the wire and L is twice the weight of the plane,
i) Draw a diagram clearly showing the forces acting on the plane.
ii) Find the tension in the wire in Newtons, correct to 2 decimal places.
iii) Find the speed of the plane in m / s, correct to 1 decimal place.
c) A car of mass 1 tonne travels in a level curve of radius 160 m at a constant speed of $70 \mathrm{~km} / \mathrm{h}$.
i) Calculate the friction between the wheels and the road surface, correct to the nearest Newton.
ii) Assuming the road is banked at an angle of 10°, calculate the frictional force between the road surface and the wheels, correct to the nearest Newton (take $\mathrm{g}=9.8 \mathrm{~ms}^{2}$).
iii) If the road were banked at 10°, find the speed at which no frictional force is experienced, correct to the nearest m / s.

END OF PAPER

Ext 2 Assess term 3 Solutions
Question 1
a)

$$
\begin{aligned}
\int \frac{x+4}{x^{3}+4 x} d x & =\int \frac{x+4}{x\left(x^{2}+4\right)} d x \\
\frac{x+4}{x\left(x^{2}+4\right)} & =\frac{A}{x}+\frac{B x+C}{x^{2}+4} \\
x+4 & =A\left(x^{2}+4\right)+x(B x+C) \\
& =A x^{2}+B x^{2}+C x+4 A \\
\therefore A+B & =0 \\
C & =1 \\
4 A & =4 \\
A & =1 \therefore B=-1
\end{aligned}
$$

$$
\begin{align*}
\therefore \int \frac{x+4}{x^{3}+4 x} d x & =\int \frac{1}{x}-\frac{x-1}{x^{2}+4} d x \\
& =\ln x-\frac{1}{2} \int \frac{2 x}{x^{2}+4} d x+\int \frac{1}{x^{2}+4} d x \\
& =\ln x-\frac{1}{2} \ln \left(x^{2}+4\right)+\frac{1}{2} \tan ^{-1} \frac{x}{2}+c
\end{align*}
$$

ii $I=\int \sec ^{2} x \sin x d x$

$$
\text { Let } \begin{aligned}
u & =\sin x
\end{aligned} \quad v^{\prime}=\sec ^{2} x
$$

$$
\therefore I=\sin x \tan x-\int \cos x \tan x d x
$$

$$
=\sin x \tan x-\int \sin x d x
$$

OR

$$
=\sin x \tan x+\cos x+c
$$

$$
=\int \sec x \tan x d x
$$

Q
iii) $\int_{0}^{\sqrt{2}-1} \frac{d x}{\sqrt{3-x^{2}-2 x}}=\int_{0}^{\sqrt{2}-1} \frac{d x}{\sqrt{4-(x+1)^{2}}}$

$$
\begin{aligned}
& =\left[\sin ^{-1}\left(\frac{x+1}{2}\right)\right]_{0}^{\sqrt{2}-1} \\
& =\left(\sin ^{-1} \frac{\sqrt{2}}{2}-\sin ^{-1} \frac{1}{2}\right) \\
& =\left(\frac{\pi}{4}-\frac{\pi}{6}\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

b) $I_{n}=\int_{0}^{\pi / 2} \sin x \sin ^{n-1} x d x$

Let $u=\sin ^{n-1} x \quad v^{\prime}=\sin x$

$$
u^{\prime}=(n-1) \sin ^{n-2} x \cos x \quad v=-\cos x
$$

$$
\begin{aligned}
I_{n} & =\left[-\cos x \sin ^{n-1} x\right]_{0}^{\pi / 2}+(n-1) \int_{0}^{\pi / 2} \cos ^{2} x \sin ^{n-2} x d x \\
& =0(n-1) \int_{0}^{\pi / 2}\left(1-\sin ^{2} x\right) \sin ^{n-2} x d x \\
& =(n-1) I_{n-2}-(n-1) I_{n} \\
\therefore n I_{n} & =(n-1) I_{n-2} \\
\therefore I_{n} & =\frac{n-1}{n} I_{n-2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\pi / 2} s_{x} d x & =I_{5} \\
& =\frac{4}{5} I_{3} \\
& =\frac{4}{5} \cdot \frac{2}{3} I_{1} \\
& =\frac{8}{15} \int_{0}^{\pi / 2} \sin x d x \\
& =\frac{8}{15}[\cos x]_{0}^{\pi / 2} \\
& =\frac{8}{15}
\end{aligned}
$$

Intersection

$$
\begin{aligned}
& x=3 x-x^{2} \\
& 0=2 x-x^{2} \\
& 0=x(2-x) \\
& \therefore x=0, x=2
\end{aligned}
$$

one cylinder

$$
\begin{aligned}
& \text { Cylinder } \underbrace{}_{\overrightarrow{\Delta x}} h=2 x-x^{2})-(x) \rightarrow \\
& \Delta V=2 \pi-x^{2} \\
& \therefore \quad V=2 \pi \int_{0}^{2} 2 x^{2}-x^{3} d x \\
& \\
& =\pi\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2} \\
& \\
& =\frac{8 \pi}{3} u^{3}
\end{aligned}
$$

1- Inter lon parts.

1- simplification to given form

1- user reduction formula

1-correct answer.

1- finds intersection
$1-\Delta v$

1- correct volume.
d)

$$
\Delta v=\left(2 \sqrt{9-y^{2}}\right)^{2} \Delta_{y}
$$

$$
v=4 \int_{-3}^{3} 9-y^{2} d y
$$

$$
=8\left[9 y-\frac{y^{3}}{3}\right]_{0}^{3}
$$

$$
=144 u^{3}
$$

1- side length

1- Δv w.r.t. y.

1- correct volume.
(2)

$$
\text { (a) } \begin{aligned}
\ddot{x} & =\frac{-v^{2}-100 g}{100} \\
\frac{d t}{d v} & =\frac{-100}{v^{2}+100 g} \\
\int_{0}^{T} d t & =\int_{60}^{0} \frac{-100 d v}{v^{2}+100 g} \\
T & =100 \int_{0}^{60} \frac{d v}{v^{2}+100 g} \\
& =\frac{100}{10 \sqrt{g}}\left[\tan ^{-1} \frac{v}{10 \sqrt{g}}\right]_{0}^{60} \\
& =\frac{10}{\sqrt{g}} \tan ^{-1} \frac{6}{\sqrt{g}}
\end{aligned}
$$

(1) a correct expression for \ddot{x}
(1) Time $=$ a correct definite integral
(1) Correct integration leading to the answer

Note: If done as an indefinite integral Ind mark is for evaluating the constant.
(b)

$$
\begin{align*}
v \frac{d v}{d x} & =\frac{-v^{2}-100 g}{100} \tag{1}\\
\frac{d x}{d v} & =\frac{-100 v}{v^{2}+100 g} \\
\int_{0}^{H} d x & =\int_{60}^{0} \frac{-100 v}{v^{2}+100 g} d v \tag{1}\\
H & =50 \int_{0}^{60} \frac{2 v}{v^{2}+100 g} d v \\
& =50\left[\log \left(v^{2}+100 g\right)\right]_{0}^{60} \tag{1}\\
& =50 \log \left(\frac{36+g}{g}\right)
\end{align*}
$$

b)

ii/ Vertically $=L \cos 30^{\circ}-m g-\operatorname{Tsin} 30^{\circ}=0$

$$
\begin{aligned}
& 2 m g \cdot \frac{\sqrt{3}}{2}-m g=\frac{1}{2} T \\
& T=2 m g(\sqrt{3}-1) \\
& =2 \times 5 \times 9.8(\sqrt{3}-1) \\
& =71.74 \mathrm{~N}
\end{aligned}
$$

iii) Horizantally: $\frac{m v^{2}}{r}=L \sin 30^{\circ}+T \cos 30^{\circ}$

$$
\begin{array}{ll}
\sqrt{5_{0}} / 2 & v^{2}
\end{array}=\frac{r}{m}\left(2 m g \cdot \frac{1}{2}+T \cdot \frac{\sqrt{3}}{2}\right) .
$$

ii)

$$
\begin{array}{rlrl}
m=1000 & F & =\frac{m v^{2}}{r} \\
v=\frac{70}{36} \mathrm{~m} / \mathrm{s} & & =\frac{1000 \times\left(\frac{7}{2}\right.}{160} \\
r=160 \mathrm{~m} & & =2363 \mathrm{~N}
\end{array}
$$

$1 / 2$
C) i

Horizontally: $\frac{M v^{2}}{r}=F \cos 10^{\circ}+N \sin 10^{\circ}$ (1)

$$
\text { Vertically: } N \cos 10^{\circ}-F \sin 10^{\circ}-m g=0
$$

$$
\therefore \quad N=\frac{F \sin 10^{\circ}+m g}{\cos 10^{\circ}}
$$

Into (1) $\frac{m r^{2}}{r}=F \cos 10^{\circ}+\tan 10^{\circ}\left(F \sin 10^{\circ}+m g\right)$

$$
\begin{aligned}
& F\left(\cos 10^{\circ}+\tan 10^{\circ} \sin 10^{\circ}\right)=\frac{m v^{2}}{r}-m g \tan 10^{\circ} \\
& F=\frac{m v^{2}}{\cos 10^{\circ}+\tan 10^{\circ} \sin 10^{\circ}} \\
& =625 \mathrm{~N}
\end{aligned}
$$

1-all farces labelled.

1-vertical component,

1-anower

1- horizontal componento

1- onsuas

1- formula
1-avisue
hariz.
1- components of force
1-vent. comporent.

1-correct rearangement

1-anowe
iii) $F=0$

Vertically: : $N \cos 10^{\circ}-M g=0$

$$
N=\frac{m g}{\cos 10^{\circ}}
$$

$$
\begin{aligned}
\text { Horizontally: } & \frac{m v^{2}}{r}=N \sin 10^{\circ} \\
& \therefore \frac{m v^{2}}{r}=m g \tan 10^{\circ}
\end{aligned}
$$

$$
\therefore v^{2}=r g \tan 10^{\circ}
$$

$$
v=32 \mathrm{~m} / \mathrm{s}
$$

1- state $F=0$

1- resolution of components.

1-answer.

Question 2
a)

$$
\begin{aligned}
\uparrow+\underset{m g}{\downarrow} \downarrow \quad F & =-m g-R \\
m a & =-m g-0.01 m v^{2} \\
a & =-g-0.01 v^{2}
\end{aligned}
$$

i) $a(t) \rightarrow v(t)(\max h t$ when $v=0)$

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
\frac{d v}{d t} & =-9-0.01 v^{2} \\
\frac{d t}{d v} & =\frac{-1}{g+0.01 v^{2}} \\
t & =-\int_{60}^{0} \frac{1}{9+0.01 v^{2}} d v \\
& =\left[\frac{1}{0.01} \cdot \frac{1}{\sqrt{9 / 0.01}} \tan ^{-1}(v / \sqrt{9 / 0.01})\right]_{0}^{60} \\
& =\frac{\sqrt{6.01}}{\sqrt{g}} \cdot \frac{1}{0.01} \tan ^{-1}\left(\frac{60 \times 0.1}{\sqrt{g}}\right) \\
& =\frac{10}{\sqrt{g}} \tan ^{-1}\left(\frac{6}{\sqrt{g}}\right)
\end{aligned}
$$

ii) $a(v) \rightarrow v(x)$

$$
\begin{aligned}
& a=v \frac{d v}{d x} \\
& v \frac{d v}{d x}=-9-0.01 v^{2} \\
& \frac{d v}{d x}=\frac{-9-0.01 v^{2}}{v} \\
& \frac{d x}{d v}=\frac{-v}{g+0.01 v^{2}} \\
& x=-200 \int_{60}^{0} \frac{0.02 v}{g+0.01 v^{2}} d v \\
&=200\left[\ln \left(g+0.01 v^{2}\right)\right]_{0}^{60} \\
&=200 \ln \left(\frac{9+36}{9}\right)
\end{aligned}
$$

$$
1-\text { use } a=\frac{d r}{d t}
$$

1- correct integral

1- rearrange

1 - use $a=v \frac{d v}{d x}$

1 -correct integral

1-rearrange
(l) (i)

$$
\begin{aligned}
r & =2 \cos 30^{\circ} \\
& =\sqrt{3}
\end{aligned}
$$

(1) forces
(ii) Vertical forces at p

$$
\begin{align*}
\log \cos 30^{\circ} & =T \sin 30^{\circ}+5 g \\
T & =10 g(\sqrt{3}-1) \\
& \approx 71.74 \mathrm{~N} \tag{1}
\end{align*}
$$

(1) 3 vertical forces
(iii) Horizontal ferces at P

$$
\begin{align*}
& 10 g \sin 30^{\circ}+T \cos 30^{\circ}=\frac{5 v^{2}}{r} \\
& 5 g\left(\frac{T \sqrt{3}}{2}=\frac{5 v^{2}}{\sqrt{3}}\right. \\
& v^{2}=\frac{\sqrt{3}}{5}\left(5 g+\frac{T \sqrt{3}}{2}\right) \\
& v \approx 6.2 \mathrm{~ms}^{-1} \tag{1}
\end{align*}
$$

(1) $\sum 2$ forces $=\frac{m v^{2}}{r}$
(c)

$$
\begin{aligned}
m & =1000 \mathrm{~kg} \\
r & =160 \mathrm{~m} \\
v & =\frac{70 \times 1000}{60 \times 60} \\
& =\frac{175}{9} \mathrm{~ms}^{-1}
\end{aligned}
$$

(i)

$$
\begin{align*}
F & =\frac{\frac{m v^{2}}{r}}{} \tag{1}\\
& =\frac{1000 \times\left(\frac{175}{9}\right)^{2}}{160} \\
& \approx 2363 \mathrm{~N} \tag{1}
\end{align*}
$$

(ii)

Horizontal

$$
\begin{equation*}
N \sin 10^{\circ}+F \cos 10^{\circ}=\frac{m v^{2}}{r}- \tag{1}
\end{equation*}
$$

Vertical

$$
\begin{equation*}
N \cos 10^{\circ}-F \sin 10^{\circ}=m g \tag{2}
\end{equation*}
$$

(1) $\times \cos 10^{\circ}-2 \times \sin 10^{\circ}$

$$
F\left(\cos ^{2} 10^{\circ}+\sin ^{2} 10^{\circ}\right)=\frac{m v}{r} \cos 10^{\circ}-m g \sin 10^{\circ}
$$

$$
\begin{equation*}
F \approx 625 \mathrm{~N} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { (iii) } F=0 \\
& \therefore N \sin 10^{\circ}=\frac{m v^{2}}{r}-(3) \\
& \quad N \cos 10^{\circ}=m g \\
& \text { (3) }-(\theta) \tan 10^{\circ}=\frac{v^{2}}{g r} \tag{1}\\
& v^{2}=g r \tan 10^{\circ}, v \approx 17 \mathrm{~ms}^{-1}
\end{align*}
$$

