NEWINGTON COLLEGE

5

Assessment 3 2008

HSC Extension 2 MATHEMATICS

	Time allowed - 2 Hours	20
DI	RECTIONS TO CANDIDATES:	18
	• All questions are <u>NOT</u> of equal value.	25
	All questions may be attempted.	
	 In every question, show all necessary working. 	J 5^
	 Marks may not be awarded for careless or badly arranged work. 	1

- Approved non-programmable calculators may be used.
 A table of standard integrals is provided for your convenience.
- The answers to the five questions in this paper are to be returned in separate bundles clearly marked Question 1, Question 2, etc.
- Each bundle must show the candidate's computer number.
- The questions are not necessarily arranged in order of difficulty. Candidates are advised to read the whole paper carefully at the start of the examination.
- Unless otherwise stated candidates should leave their answers in simplest exact form.

Outcomes to be Assessed:

- Uses the relationship between algebraic and geometric representations of complex numbers and of conic sections.
- **E4** Uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials.
- E6 Combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions.
- E7 Uses the techniques of slicing and cylindrical shells to determine volumes.
- E8 Applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems.

Question 1 (20 marks)

Marks

a) For the polynomial y = P(x)

10

On separate diagrams, sketch the graphs of, showing the intercepts on the coordinate axes and the equations of any asymptotes.

(i)
$$y = |P(x)|$$

(ii)
$$y = P(|x|)$$

(iii)
$$y = \frac{1}{P(x)}$$

(iv)
$$y = \sqrt{P(x)}$$

$$(v) y^2 = P(x)$$

(b)

Sketch $y = \frac{x^2 - 1}{(x + 2)(x - 3)}$, showing clearly the points of intersections

10

with the coordinate axes, coordinates of any turning points and equations of any asymptotes

100

Question 2 (18 marks) Start this question on a new page.

a) Find: $\int \csc x \, dx$ by using the substitution $t = \tan \frac{x}{2}$.

3

Question 2 continued.

Marks

If $I_n = \int x^n e^x dx$, where *n* is a positive integer, show that

4

 $I_{n+1} = e - (n+1)I_n$.

Hence evaluate $\int_0^t t^3 e^t dt$, leaving your answer in terms of e.

- Use partial fractions to find the $\int \frac{x^2}{(x+1)(x+2)} dx$. c)
- Use integration by parts to evaluate $\int_{0}^{x} \frac{\sin^{-1} x}{\sqrt{1+x}} dx$. d) 3
- Using the substitution $x = 4\sin^2\theta$ or otherwise show that e) 4 $\int \sqrt{x(4-x)}dx = \pi .$

Question 3 (25 marks) Start this question on a new page.

For the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ a)

5

Find:

- The eccentricity
- The coordinates of the foci
- (iii) The equations of the directrices.
- b) For the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, (where a > b > 0). Show that the tangent at the point $P(a \sec \theta, b \tan \theta)$ has equation $bx \sec \theta ay \tan \theta = ab$. 3

Question 3 continued.

Marks 3

5

- c) Let S and S' be the foci of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and P be an arbitrary point on the hyperbola. Prove that |PS' PS| = 2a.
- d) The point $P(cp, \frac{c}{p})$, where $p \neq \pm 1$, is a point on the hyperbola $xy = c^2$, and the normal to the hyperbola at P intersects the second branch at Q. The line through P and the origin O intersects the second branch at R.

(i) Show that the equation of the normal at P is $py - c = p^3(x - cp)$.

(iii)

Show that $x^2 - c(p - \frac{1}{p^3})x - \frac{c^2}{p^2} = 0$ is the equation to be used to find the x coordinates of the points P and Q.

Find the coordinates of Q and R, and deduce that the $\angle QRP$ is a right angle.

\e)\c)

The line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- (i) Show that $c^2 = a^2 m^2 + b^2$.
- (ii) Show that the pair of tangents drawn from the point (3, 4) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are at right angles to one another.

Question 4 (15 marks) Start this question on a new page.

Marks

3

(a)

A solid is formed by rotating the region bounded by the curve $y = -x^2 + 2x$ and the line y = 0 about the y - axis. Use the method of cylindrical shells to find the volume of this solid.

*J*b)

A solid has a base in the form of an ellipse with major axis 10 units and minor axis 8 units. Every section perpendicular to the major axis is an isosceles triangle with altitude 6 units.

(i)

Show that the area of a perpendicular section is $A = \frac{24}{5}\sqrt{25-x^2}$, where x is the distance from the centre of the ellipse along the major axis.

(ii)

Show that the volume of the solid is 60π cubic units.

(i)

(ii)

c)

stion 4 continued.

Marks

Let ABO be an isosceles triangle, AO = BO = r, AB = b. Let PABO be a triangular pyramid with height OP = h and OP perpendicular to the plane of ABO as in the diagram. Consider a slice S of the pyramid of width δa as in the diagram. The slice S is perpendicular to the plane of S at S with S and S

- \fr (\fr \fr \)

Show that the volume of S is $\left(\frac{r-a}{r}\right)b\left(\frac{ah}{r}\right)\delta a$, when δa is small. (You may assume that the slice is approximately a rectangular prism of base XYZT and height δa .)

Hence show that the pyramid *PABO* has volume $\frac{hbr}{6}$ units³.

- (i) Show that the area of the annulus is given by: $\pi(y^4 + \mathbf{R}y^2)$ square units.
- (ii) Hence, find the volume of the solid.

Question 5 (17 marks) Start this question on a new page.

Marks

a) (i) Show that z = i is a root of the equation $(2-i)z^2 - (1+i)z + 1 = 0.$

- 1/3
- (ii) Find the other root of the equation in the form z = a + ib, where a and b are real numbers.
- b) (i) Use De Moivre's Theorem to show that $\cos 3\theta = 4 \cos^3 \theta 3 \cos \theta.$

- (ii) Deduce $8x^3 6x I = \theta$ has solution $x = \cos \theta$ where $\cos 3\theta = \frac{1}{2}$.
- Find the roots of $8x^3 6x 1 = 0$ in the form $\cos \theta$.
 - (iv) Hence evaluate $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9}$.

The hyperbola $xy = c^2$ touches the circle $(x - I)^2 + y^2 = I$ at the point Q.

- (i) Show this information on a sketch.
 - Show that if β is a repeated root of any polynomial equation P(x) = 0 then β is also a root of P'(x) = 0.

(ii)

Show that the point of intersection of the circle and the hyperbola is found by using the polynomial, $P(x) = x^2(x-1)^2 - x^2 + c^4$.

Explain why $P(x) = x^2(x-1)^2 - x^2 + c^4$ has a repeated real root $\beta > 0$, and two non-real complex roots.

Find the value of β , c^2 and the remaining roots of the polynomial $P(x) = x^2(x-1)^2 - x^2 + c^4$.

End of Paper.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \cot ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

NOTE: $\ln x = \log_e x$, x > 0