

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Extension 2

Assessment Task 2

Term 2 2008

Name:_____

Mathematics Class:

Time Allowed: 70 minutes + 2 minutes reading time

Available Marks: 53

Instructions:

- Questions are *not* of equal value.
- Start each question on a new page.
- Put your name on the top of each page.
- Attempt all three questions.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Write on one side of the page only. Do not work in columns.
- Each question will be collected separately.
- If you do not attempt a question, submit a blank page with your name and the question number clearly displayed.

Question	1	2	3	Total
E3		/20		/20
E4	/19			/19
E9			/14	/14
				/53

Question 1: (19 marks)

Marks

a)	i)	Prove that if α is a double root of the polynomial equation $P(x) = 0$, then $P(\alpha) = P'(\alpha) = 0$.	2
	ii)	$P(x) = 12x^3 - 8x^2 - x + 1$ has a double root. Factorise $P(x)$ into irreducible factors over the real numbers.	3
b)	i)	If $1 + i$ is a zero of the polynomial $f(x) = 4x^3 - 7x^2 + 6x + 2$ explain why $1 - i$ is also a zero.	1
	ii)	Hence factorise $f(x)$ over the complex numbers.	2
c)	The e	equation $x^3 + 2x - 1 = 0$ has roots α , β and γ .	
	i)	Find an equation with roots α^2 , β^2 , γ^2 .	3
	ii)	Hence evaluate $\alpha^2 \beta^2 + \alpha^2 \gamma^2 + \beta^2 \gamma^2$.	1
	iii)	Find an equation with roots α , $-\alpha$, β , $-\beta$, γ , $-\gamma$.	2

d) i) Decompose
$$\frac{x^2 + x + 2}{(x+2)(x^2+4)}$$
 into partial fractions over the real field. 3

ii) Hence show that
$$\int_{0}^{2} \frac{x^{2} + x + 2}{(x+2)(x^{2}+4)} dx = \frac{3}{4} \log 2$$
.

Question 2: (20 marks) Start a new page

Marks

a) Consider the hyperbola $x^2 - 4y^2 = 4$.

Find	α)	the eccentricity;	1
	β)	the co-ordinates of the foci;	1

γ) the equations of the directrices; 1

ii) Hence sketch the curve indicating the asymptotes and these details. **1**

i)

Question 2 continued:

b) In the diagram, $P(a\cos\theta, b\sin\theta)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where *P* is in the first quadrant.

A straight line through the origin, parallel to the tangent at P meets the ellipse at the point Q, where both P and Q lie on the same side of the y-axis.

i) Prove that the equation of the line OQ is bx cos θ + ay sin θ = 0.
ii) Show that the coordinates of Q are (a sin θ, -b cos θ).
iii) By considering the distance of P from OQ or otherwise, prove that the area of the triangle ΔOPQ is independent of the position of P.

b) $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$ where p > 0 and q > 0, are points on the rectangular hyperbola $xy = c^2$. The tangents to the rectangular hyperbola at P and Q intersect at the point R. You are given that the tangent to the rectangular hyperbola at the point $P\left(cp, \frac{c}{p}\right)$

has the equation $x + p^2 y = 2cp$. Do not prove this result.

i) Show that the coordinates of *R* are
$$\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$$
. 2

- ii) *P* and *Q* are variable points on the rectangular hyperbola which move so that *PQ* always passes through (2c, c). Show that p + q = 2 + pq.
- iii) Find the equation of the locus of *R*.

2

3

Question 3: (14 marks)

b)

i)	Use de Moivre's theorem to write down the roots of $P(z) = 0$ and illustrate their relationship on an Argand diagram.	2
ii)	Hence write $P(z)$ as a product of real linear and quadratic factors.	2
iii)	Write down the quotient when $P(z)$ is divided by $z - 1$ in two different forms.	2
iv)	Hence show that $(1 - \cos \frac{2\pi}{7})(1 - \cos \frac{4\pi}{7})(1 - \cos \frac{6\pi}{7}) = \frac{7}{8}$.	2
In orde letters	er to recognise anagrams quickly, Miss V always arranges the available in a circle.	
She is	currently considering the letters of the word 'SURRENDER'.	
i)	In how many different ways can all of the letters be arranged in a circle?	1
ii)	If she forms one such circular arrangement at random, what is the probability that the word 'NERDS' occurs without a break in a clockwise direction within the arrangement?	3
iii)	Now she selects 5 letters at random. What is the probability that the letters selected are the letters of the word 'NERDS'?	2

End of Paper

Marks

Start a new page

Ques	tion 1	:
a)	i)	Let α be a double root of $P(x) = 0$, then $P(\alpha) = 0$. Also $P(x) = (x - \alpha)^2 Q(x)$ for some polynomial $Q(x)$ Now $P'(\alpha) = (x - \alpha)^2 Q'(x) + 2(x - \alpha)Q(x)$ $\therefore P'(\alpha) = (\alpha - \alpha)^2 Q'(\alpha) + 2(\alpha - \alpha)Q(\alpha)$ = 0 $\therefore P(\alpha) = P'(\alpha) = 0$ as required
	ii)	$P(x) = 12x^{3} - 8x^{2} - x + 1$ $P'(x) = 36x^{2} - 16x - 1$ = (18x + 1)(2x - 1) ∴ possible double roots are $-\frac{1}{18}$ or $\frac{1}{2}$ But 18 is not a factor of 12 so the double root must be $\frac{1}{2}$ ∴ $P(x) = (2x - 1)^{2}(3x + 1)$
b)	i)	$f(x) = 4x^3 - 7x^2 + 6x + 2$ has real coefficients and so complex roots will occur in conjugate pairs ∴ as $1 + i$ is a root $1 - i$ is also a root.
	ii)	Now $(x-1-i)(x-1+i) = (x-1)^2 - i^2$ = $x^2 - 2x + 2$ $\therefore f(x) = 4x^3 - 7x^2 + 6x + 2$ = $(x^2 - 2x + 2)(4x + 1)$ = $(x - 1 - i)(x - 1 + i)(4x + 1)$
c)	Let	$P(x) = x^3 + 2x - 1 = 0$ have roots $x = \alpha$, β and γ .
	i)	For an equation with roots $y = \alpha^2$, β^2 , γ^2 the relationship is $y = x^2$ Then $x = \sqrt{y}$ $\therefore P(x) = 0$ becomes $P(\sqrt{y}) = 0$ $(\sqrt{y})^3 + 2(\sqrt{y}) - 1 = 0$ $y\sqrt{y} + 2\sqrt{y} + 1 = 0$ $\sqrt{y}(y+2) = -1$ $\sqrt{y} = \frac{-1}{y+2}$ $y = \frac{1}{y^2 + 4y + 4}$
		$\therefore y^3 + 4y^2 + 4y - 1 = 0$

ii) $\alpha^2 \beta^2 + \alpha^2 \gamma^2 + \beta^2 \gamma^2$ is the sum of the roots in pairs from i) above $\therefore \alpha^2 \beta^2 + \alpha^2 \gamma^2 + \beta^2 \gamma^2 = \frac{c}{a}$ = 4

$$\begin{array}{ll} \text{iii)} & \text{If } ax^3 + bx^2 + cx + d = 0 \text{ has roots } \alpha, \beta \text{ and } \gamma, \text{ an equation with roots } -\alpha, -\beta, -\gamma \\ & \text{ is } ax^3 - bx^2 + cx - d = 0, \\ & \ddots, x^3 + 2x + 1 = 0 \text{ has roots } -\alpha, -\beta, -\gamma \\ & \text{ and } (x^3 + 2x - 1)(x^3 + 2x + 1) = 0 \\ & (x^3 + 2x)^2 - 1 = 0 \\ & x^5 + 8x^4 + 4x^2 - 1 = 0 \end{array}$$

$$\begin{array}{ll} \text{b)} & \text{i)} & \frac{x^2 + x + 2}{(x + 2)(x^2 + 4)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 4} \\ & x^2 + x + 2 = A(x^2 + 4) + (Bx + C)(x + 2) \\ & \text{If } x = 2: \quad 4 - 2 + 2 = 8A \\ & A = \frac{1}{2} \\ & \text{If } x = 0: \quad 2 = 4A + 2C \\ & 2 = 2 + 2C \\ & C = 0 \\ & \text{If } x = 1: \quad 1 + 1 + 2 = 5A + (B + C)3 \\ & 4 = \frac{5}{2} + 3B \\ & 3B = \frac{3}{2} \\ & B = \frac{1}{2} \end{array}$$

$$\begin{array}{l} \text{ii} & \int_{0}^{2} \frac{x^2 + x + 2}{(x + 2)(x^2 + 4)} dx = \int_{0}^{2} \frac{1}{2(x + 2)} + \frac{x}{2(x^2 + 4)} \\ & \text{ii} & \int_{0}^{2} \frac{x^2 + x + 2}{(x + 2)(x^2 + 4)} dx = \int_{0}^{2} \frac{1}{2(x + 2)} dx + \int_{0}^{2} \frac{2x}{2(x^2 + 4)} dx \\ & = \frac{1}{2} \int_{0}^{2} \frac{1}{(x + 2)(x^2 + 4)} dx = \int_{0}^{2} \frac{1}{2(x + 2)} dx + \int_{0}^{2} \frac{2x}{2(x^2 + 4)} dx \\ & = \frac{1}{2} \int_{0}^{2} \frac{1}{(x + 2)(x^2 + 4)} dx = \int_{0}^{2} \frac{1}{2(x + 2)} dx + \int_{0}^{2} \frac{1}{2(x + 4)} dx \\ & = \frac{1}{2} \ln 4 + \frac{1}{4} \ln 8 - (\frac{1}{2} \ln 2 + \frac{1}{4} \ln 4) \\ & = \frac{1}{2} \ln 4 + \frac{1}{4} \ln 8 - \frac{1}{2} \ln 2 - \frac{1}{4} \ln 2^2 \end{array}$$

$$= \ln 2 + \frac{3}{4} \ln 2 - \frac{1}{2} \ln 2 - \frac{1}{2} \ln 2$$

= $\frac{3}{4} \ln 2$ as required

Question 2:

a) $x^2 - 4y^2 = 4$ becomes $\frac{x^2}{4} - y^2 = 1$.

i)
$$\alpha$$
) $a = 2$ and $b = 1$
 $b^2 = a^2 (e^2 - 1)$
 $1 = 2^2 (e^2 - 1)$
 $\frac{1}{4} = e^2 - 1$
 $e^2 = \frac{5}{4}$
 $e = \frac{\sqrt{5}}{2}$ as $e > 0$

$$\beta) \qquad ae = \sqrt{5} \therefore \text{ foci are at } \left(\pm\sqrt{5}, 0\right)$$

γ)

$$\frac{a}{e} = \frac{2}{\frac{\sqrt{5}}{2}}$$
$$= \frac{4}{\sqrt{5}}$$
$$= \frac{4\sqrt{5}}{5}$$

 \therefore the equations of the directrices are $x = \pm \frac{4\sqrt{5}}{5}$

b) i)
At P:
$$x = a \cos \theta$$
 and $y = b \sin \theta$
 $\therefore \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$
 $= b \cos \theta \times \frac{1}{-a \sin \theta}$
 $= -\frac{b \cos \theta}{a \sin \theta}$
 \therefore equation of the line *OQ* is
 $y = -\frac{b \cos \theta}{a \sin \theta}(x)$
 $ay \sin \theta = -bx \cos \theta$
 $\therefore bx \cos \theta + ay \sin \theta = 0$ as required
ii) For *Q* substitute $y = -\frac{b \cos \theta}{a \sin \theta}(x)$ into $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Then $\frac{x^2}{a^2} + \frac{b^2 x^2 \cos^2 \theta}{b^2 a^2 \sin^2 \theta} = 1$
 $x^2 \left(1 + \frac{\cos^2 \theta}{\sin^2 \theta}\right) = a^2$
 $x^2 \left(\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}\right) = a^2$
 $x^2 \left(\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}\right) = a^2$
 $x^2 = a^2 \sin^2 \theta$
 $x = \pm a \sin \theta$ but $x > 0$
 $x = a \sin \theta$
Substituting into *OQ* gives $y = -b \cos \theta$
 \therefore the coordinates of *Q* are $(a \sin \theta, -b \cos \theta)$

iii) The distance of
$$P(a\cos\theta, b\sin\theta)$$
 from OQ : $bx\cos\theta + ay\sin\theta = 0$ is

$$h = \frac{|b(a\cos\theta)\cos\theta + a(b\sin\theta)\sin\theta|}{\sqrt{b^2\cos^2\theta + a^2\sin^2\theta}}$$

$$= \frac{ab(\cos^2\theta + \sin^2\theta)}{\sqrt{b^2\cos^2\theta + a^2\sin^2\theta}}$$
as $a, b > 0$

$$= \frac{ab}{\sqrt{b^2\cos^2\theta + a^2\sin^2\theta}}$$

Extension 2 Task 2 2008

The distance
$$OQ$$
 is $b = \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$
 $\therefore A = \frac{1}{2}bh$
 $A = \frac{1}{2} \cdot \frac{ab}{\sqrt{b^2 \cos^2 \theta + a^2 \sin^2 \theta}} \cdot \sqrt{b^2 \cos^2 \theta + a^2 \sin^2 \theta}$
 $= \frac{ab}{2}$ which is independent of θ and consequently the position of P

,

c)

i)

ii)

i) At P:
$$x + p^2 y = 2cp$$
 (1)
At Q: $x + q^2 y = 2cq$ (2)
(1)-(2): $(p^2 - q^2)y = 2c(p-q)$ but $p \neq q$
 $\therefore y = \frac{2c}{p+q}$
Substitute into (1): $x + p^2 \left(\frac{2c}{p+q}\right) = 2cp$
 $x = \frac{2cp(p+q)-2cp^2}{p+q}$
 $= \frac{2cpq}{p+q}$
 $\therefore R = \left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$ as required
ii) $m_{pQ} = \frac{\frac{e}{p} - \frac{e}{q}}{cp - cq}$
 $= \frac{q-p}{pq(p-q)}$
 $= -\frac{1}{pq}$
 \therefore equation PQ: $y - \frac{c}{p} = -\frac{1}{pq}(x-cp)$
 $pqy - cq = -x + cp$
 $x + pqy = c(p+q)$
This passes through $(2c, c)$
 $\therefore 2c + pqc = c(p+q)$
ie: $2 + pq = p + q$ as required
iii) At R: $x = \frac{2cpq}{p+q}$ (1)
 $2c$

$$y = \frac{2c}{p+q}$$
(2)
$$2 + pq = p+q$$
(3)

Also

From (1) and (2): x = pqy $pq = \frac{x}{y}$:. From (2): $p + q = \frac{2c}{v}$ $2 + \frac{x}{y} = \frac{2c}{y}$ Substituting both these into (3):

$$y y y$$
$$2y + x = 2c$$

: the locus of R is: x + 2y - 2c = 0

Question 3:

a)

 $P(z) = z^7 - 1 = 0$ i) $z^7 = 1$ $z = \cos\left(\frac{2n\pi}{7}\right) + i\sin\left(\frac{2n\pi}{7}\right)$ for n = 0, 1, 2, 3, 4, 5, 6Im z Z_3 $\frac{2\pi}{7}$ Z0 →Re z Z_6 Z_5

ii) By symmetry,
$$z_1 = \overline{z_6}$$
; $z_2 = \overline{z_5}$; $z_3 = \overline{z_4}$
 $\therefore (z - z_1)(z - z_6) = z^2 - 2z \operatorname{Re} z_1 + 1$
 $(z - z_2)(z - z_5) = z^2 - 2z \operatorname{Re} z_2 + 1$
 $(z - z_3)(z - z_4) = z^2 - 2z \operatorname{Re} z_3 + 1$
Also, $z_0 = 1$
 $\therefore z^7 - 1 = (z - z_0)(z - z_1)(z - z_2)(z - z_3)(z - z_4)(z - z_5)(z - z_6)$
 $= (z - 1)(z^2 - 2z \operatorname{Re} z_1 + 1)(z^2 - 2z \operatorname{Re} z_2 + 1)(z^2 - 2z \operatorname{Re} z_3 + 1)$
 $= (z - 1)(z^2 - 2z \cos \frac{2\pi}{7} + 1)(z^2 - 2z \cos \frac{4\pi}{7} + 1)(z^2 - 2z \cos \frac{6\pi}{7} + 1)$

iii)
$$\frac{z'-1}{z-1} = z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 \text{ and}$$
$$\frac{z^7-1}{z-1} = \left(z^2 - 2z\cos\frac{2\pi}{7} + 1\right)\left(z^2 - 2z\cos\frac{4\pi}{7} + 1\right)\left(z^2 - 2z\cos\frac{6\pi}{7} + 1\right)$$

iii) Now $z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1 = \left(z^{2} - 2z\cos\frac{2\pi}{7} + 1\right)\left(z^{2} - 2z\cos\frac{4\pi}{7} + 1\right)\left(z^{2} - 2z\cos\frac{6\pi}{7} + 1\right)$ Substituting z = 1: $7 = (1^2 - 2\cos\frac{2\pi}{7} + 1)(1^2 - 2\cos\frac{4\pi}{7} + 1)(1^2 - 2\cos\frac{6\pi}{7} + 1)$

$$7 = (1^2 - 2\cos\frac{2\pi}{7} + 1)(1^2 - 2\cos\frac{4\pi}{7} + 1)(1^2 - 2\cos\frac{6\pi}{7} + 1)$$
$$= (2 - 2\cos\frac{2\pi}{7})(2 - 2\cos\frac{4\pi}{7})(2 - 2\cos\frac{6\pi}{7})$$
$$= 8(1 - \cos\frac{2\pi}{7})(1 - \cos\frac{4\pi}{7})(1 - \cos\frac{6\pi}{7})$$
i.e. $(1 - \cos\frac{2\pi}{7})(1 - \cos\frac{4\pi}{7}) = \frac{7}{8}$ as required

b)

S

i) Place one letter down as a marker. Then there are 8 remaining letters, 3 of one kind and 2 of another.

Number of arrangements $=\frac{8!}{3!2!}=3360$

ii) Tie 'NERDS' together as one group and place this group as the marker. Then there are 4 remaining letters including a pair of R's

Number of arrangements
$$=\frac{4!}{2!}=12$$

 $\therefore P(\text{seeing NERDS}) = \frac{12}{3360} = \frac{1}{280}$

iii)
$$P(\text{NERDS in order}) = \frac{1}{9} \times \frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times \frac{1}{5}$$

But there are 5! Ways of ordering the letters of NERDS

$$\therefore P(\text{NERDS in any order}) = \frac{1}{9} \times \frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times \frac{1}{5} \times 5!$$
$$= \frac{2 \times 3 \times 5!}{9 \times 8 \times 7 \times 6 \times 5}$$
$$= \frac{1}{21}$$

End of Solutions