

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Extension 2

Assessment Task 2

Name: \qquad
\qquad

Time Allowed: 60 minutes + 2 minutes reading time

Available Marks: 46

Instructions:

- Start each question on a new page.
- Put your name on the top of each page.
- Attempt all four questions.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Write on one side of the page only. Do not work in columns.
- Each question will be collected separately.
- If you do not attempt a question, submit a blank page with your name and the question number clearly displayed.

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Total
E3		112	$\mathrm{~b} / 6$		$/ 18$
E4		11		$\mathrm{a} / 5$	
E9				112	112

(a) It is given that $3+i$ is a zero of $P(x)=x^{3}+r x+60$ where r is real.
(i) State why $3-i$ is also a zero of $P(x)$.
(ii) Factorise $P(x)$ over the real numbers.
(iii) Find the value of r.
(b) Decompose $\frac{3 x^{2}-7 x+4}{(x-3)\left(x^{2}+1\right)}$ into partial fractions over the real field.
(c) The equation $x^{3}-3 x-1=0$ has roots α, β, γ.
(i) Show that none of α, β, γ are integers.
(ii) Form the polynomial equation with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$.

Question 2. (12 marks)
(a) $\quad P(x, y), Q(8,0)$ and $R(-8,0)$ are three points in the number plane such that $P Q+P R=24$ units.
(i) Explain why P lies on an ellipse.
(ii) Find the equation of the locus of P in standard form.
(b) (i) The hyperbola $x^{2}-y^{2}=8$ is rotated 45° anticlockwise until it coincides with $x y=c^{2}$. Write down the value of c. (No proof is required.)
(ii) Draw a neat sketch showing this information using the above value of c, showing clearly the coordinates of the foci and the equations of the directrices of $x y=c^{2}$.
(c) The point $P(a \cos \theta, b \sin \theta)$ lies on one end of the latus rectum drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. (The latus rectum is the focal chord perpendicular to the major axis)
(i) Show that $\cos \theta=e$ where e is the eccentricity.
(ii) Show that the length of the latus rectum is given by $\frac{2 b^{2}}{a}$.
(a) (i) $\quad P(x)=0$ is a polynomial with a root of multiplicity m. Show that $P^{\prime}(x)=0$ has a root of multiplicity ($m-1$).
(ii) The polynomial $\alpha x^{n+1}+\beta x^{n}+1$ is divisible by $(x-1)^{2}$. Show that $\alpha=n$ and $\beta=-(1+n)$.
(b) $\quad P\left(2 p, \frac{2}{p}\right)$ and $Q\left(2 q, \frac{2}{q}\right)$ are points on the hyperbola $x y=4 . M$ is the midpoint of the chord $P Q$. P and Q move on the hyperbola so that the chord $P Q$ always passes through the point $R(4,2)$.
(i) Show that the equation of the chord $P Q$ is given by $x+p q y=2(p+q)$
(ii) Show that $p q=p+q-2$
(iii) Show that the locus of M is given by $y=1+\frac{2}{x-2}$

Question 4. (12 marks)
(a) $\quad P\left(x_{1}, y_{1}\right)$ is a variable point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
(i) Show that the equation of the normal at P is given by $\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}$
(ii) The tangent and normal at P meet the y-axis at G and H respectively and S is a focus of the hyperbola. Show that $\angle G S H$ is a right angle.
(You may assume the equation of the tangent at P is given by $\frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1$)
(b) (i) Show the solutions to the equation $z^{9}-1=0$ on the Argand plane.
(ii) Show that the solutions to $z^{6}+z^{3}+1=0$ are contained in the solutions to $z^{9}-1=0$.
(iii) Hence factorise $z^{6}+z^{3}+1=0$ into real quadratic factors.
(iv) Show that $\left(1-\cos \frac{2 \pi}{9}\right)\left(1-\cos \frac{4 \pi}{9}\right)\left(1+\cos \frac{\pi}{9}\right)=\frac{3}{8}$.

ExTEnscon 2: 2009 TATk 2 Sdutions

Question:
(a) (i) cotficients real
\therefore rootsir concogate pairs
\therefore (3-i) a sero
(弚)

$$
\begin{aligned}
P(x)= & x^{3}+1 x+60 \\
= & {\left.\left[x^{2}-\left(3-i+3+i^{i}\right) x+0 \tau^{i}\right)\left(3+i^{\prime}\right)\right] } \\
& \quad \times(x-b) \\
= & (x-6 x+10)(x-b) \\
\therefore & -10 b=60 \\
& \therefore b=-6
\end{aligned}
$$

$\therefore P(1)=\left(x^{2}-6 x+10\right)(x+6)$
(iii) $x=-6$ a zero

$$
\begin{aligned}
\therefore P(-6) & =-6^{3}-6 r+60=0 \\
6 r & =-6^{3}+60 \\
r & =-6^{2}+10 \\
r & =-26
\end{aligned}
$$

(b) $\frac{3 x^{2}-7 x+4}{(x-3)\left(x^{2}+1\right)} \equiv \frac{a}{x-3}+\frac{b x+c}{x^{2}+1}$
$3 x^{2}-7 x+4=a\left(x^{2}+1\right)+(b x+c)(x-3)$
$x=3 \quad 27-21+4=10 a$
$a=1$
couthr: $3=a+b$

$$
\therefore b=2
$$

$\pi=0 \quad 4=a-3 c$
$3 c=1-4$
$c=-1$
$\therefore \frac{3 x^{2}-7 x+4}{(x-3)\left(x^{2}+1\right)}=\frac{1}{x-3}+\frac{2 x-1}{x^{2}+1}$
(c) $x^{3}-3 x-1=0$
(i) menis, integer creticents
\therefore aig integer zeros dude content bem (-1)
té enly possble integer zeros $x= \pm 1$

$$
\begin{aligned}
& P(1)=1-3-1=-3 \neq 0 \\
& P(-1)=-1-3-1=-5 \neq 0
\end{aligned}
$$

\therefore No integer zeras.
(ii)

$$
\begin{aligned}
& \alpha^{2}, \beta^{2}, \gamma^{2} \text { sctiry } p(\sqrt{x})=0 \\
& \sqrt{x^{3}}-3 \sqrt{x}-1=0 \\
& \sqrt{x}(x-3)=1 \\
& x(x-3)^{2}=1 \\
& x\left(x^{2}-6 x+9\right)=1 \\
& x^{3}-6 x^{2}+9 x-1=0
\end{aligned}
$$

Question 2
a) $P Q+P R=24$
(i) ellipse since sum ol distences to

2 fixed paints is a constont
(ii)

$$
\begin{aligned}
2 a & =24 \\
a & =12 \\
a e & =8 \quad \text { Sne } \quad S(18,0) \\
e & =\frac{2}{3} \\
\therefore b^{2} & =a^{2}\left(1-e^{2}\right) \\
b^{2} & =144\left(1-\frac{4}{4}\right) \\
b^{2} & =144 \times \frac{5}{9} \\
& =80
\end{aligned}
$$

\therefore Equation $\frac{x^{2}}{144}+\frac{y^{2}}{80}=1$

Ext. 2: 2009 Task 2 Sdetions

(c)
(i) $a \cos \theta=a c$

$$
\therefore \cos \theta=e
$$

(ii) lentin $L \cdot R=2 b \sin \theta$

$$
\begin{aligned}
& =2 b \sqrt{1-\cos ^{2} \theta} \\
& =2 b \sqrt{1-e^{2}}
\end{aligned}
$$

$b+\quad b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{aligned}
\therefore 1-e^{2} & =\frac{b^{2}}{a^{2}} \\
\therefore \text { length } & =2 b \cdot \frac{b}{a} \\
& =\frac{2 b^{2}}{a}
\end{aligned}
$$

Question 3
(a, (i, let $\rho(x)=(1-\alpha)^{m} Q(\alpha)$

$$
\begin{aligned}
P^{\prime}(\alpha) & =m(x-\alpha)^{m-1} \theta(x)+Q^{\prime}(x)(x-\alpha)^{m} \\
& =(x-\alpha)^{m-1}\left(m \theta(x)+Q^{\prime}(x)(x \alpha)\right. \\
& =(x-\alpha)^{m-1} \times p d y n \text { nial }
\end{aligned}
$$

$\therefore p^{\prime}(x)$ hos root multipluity $(m-1)$
(ii) $P(x)=\alpha x^{n+1}+\beta x^{n}+1$ $(a-1)^{2}$ afocter $\therefore p(1)=p^{\prime}(1)=0$

$$
\begin{aligned}
& \rho(1)= \alpha+\beta+1=0-(1) \\
& \rho^{\prime}(01)=\alpha(n+1) x^{n}+\beta n x^{n-1} \\
& \rho^{\prime}(1)=(n+1) \alpha+\beta n=0-(2) \\
& \times n: \alpha n+\beta n+n=0 \\
& \text { (3) }(2): \alpha n-\alpha n-\alpha+n=0 \\
& \therefore \alpha=n
\end{aligned}
$$

sub inte (1) $n+\beta+1=0$

$$
\beta=-(1+n)
$$

$$
\begin{aligned}
\left(b_{2}, m_{p q}\right. & =\left(\frac{2}{q}-\frac{2}{p}\right) \div(2 q-2 p) \\
& =\frac{p-q}{p q} \times \frac{1}{q-p} \\
& =-\frac{1}{p q}
\end{aligned}
$$

Equation

$$
\begin{aligned}
& y-p=-\frac{1}{p q}(x-2 p) \\
& p q y-2 q=-x+2 p \\
& x+p q y=2 p+2 q \\
& x+p q y=2(p+q)
\end{aligned}
$$

Ext 2: 2009: Tark 2sactioup
usten 3 ctp (ke throgh $(4,2)$
$\therefore 4+2 p g=2(p+g)$
$2+\rho g=\rho+q$
$\rho g=\rho+q-2$
(iii)

$$
\begin{aligned}
& M\left[\frac{2(p+q)}{2}, \frac{2\left(\frac{1}{p}+p\right)}{2}\right] \\
& x=p+q \\
& y=\frac{1}{p}+\frac{1}{2} \\
& y=\frac{q+p}{p q} \\
& =\frac{q+p}{p+q-2}
\end{aligned}
$$

but $2=p+q$

$$
\begin{aligned}
y & =\frac{o}{x-2} \\
& =\frac{x-2+2}{x-2} \\
& =1+\frac{2}{x-2}
\end{aligned}
$$

Qustion 4 (a, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
equation: $\quad y-y_{1}=\frac{-a^{2} y_{1}}{b^{2} x_{1}}\left(0,-x_{1}\right)$

$$
b^{2} a_{1} y-b^{2} x_{1} y_{1}=-a^{2} x y_{1}+a^{2} x_{1} y_{1},
$$

$$
a^{2} a y_{1}+b^{2} y x_{1}=x_{1} y_{1}\left(a^{2}+b^{2}\right)
$$

$$
\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}
$$

(ii) at $H: x=0$

$$
\therefore y=\frac{y_{1}\left(a^{2}+b^{2}\right)}{h^{2}}
$$

$$
\begin{aligned}
& \text { (i, } \frac{28 c}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=\varnothing \\
& \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y} \\
& m_{N}=\frac{-a^{2} y_{1}}{b^{2} x_{1}}
\end{aligned}
$$

at $G x=0 \quad \frac{x, x}{Q^{2}}-\frac{y, y}{b^{2}}=1$

$$
\begin{gathered}
y=\frac{-b^{2}}{y_{1}} \\
S(a e, 0) G\left(0, \frac{-b^{2}}{y_{1}}\right) \quad H\left(0, \frac{y_{1}\left(a_{1}+b^{2}\right)}{b^{2}}\right) \\
m_{S_{G}}=\frac{b^{2}}{y_{1} / a^{2}}=\frac{b^{2}}{a_{e} y_{1}} \\
m_{S H}=\frac{\frac{y_{1}\left(c_{1}+b^{2}\right)}{b_{2}}}{-a e}=\frac{y_{1}\left(c_{2}+b_{2}\right)}{-b^{2} a l}
\end{gathered}
$$

but $a+b^{2}=a^{2} e^{2}$

$$
\begin{aligned}
& m_{5 H}=\frac{y_{1}\left(a^{2} e^{2}\right)}{-b^{2} a l}=-\frac{a e g_{1}}{b^{2}} \\
& \therefore m_{56} \times m_{5 H}=-1 \therefore 56 \perp 5 H
\end{aligned}
$$

(b)

(ii) $\quad z^{9}-1=\left(z^{3}-1\right)\left(z^{6}+z^{3}+1\right)$
$\therefore z^{6}+z^{3}+1$ contanedin solutions to $z^{9}=1$
which do not satify $z^{3}=1100=0, \frac{2 \pi}{35}, 4$
(iim $z^{6}+z^{2}+1=0$
roots wh agg. $\frac{E^{2}+\frac{\pi}{9}}{9}+\frac{4 \pi}{9}, \pm \frac{8 \pi}{9}$

$$
\begin{aligned}
& \therefore z^{6}+z^{3}+1=\left[z^{2}-2 \cos ^{2 \pi} x+1\right]\left[z^{2}-2 \cos ^{\frac{4 \pi}{4}} z+1\right] \\
& {\left[z^{2}-2 \cos \frac{8 \pi}{5} z+1\right]} \\
& i v) l_{t}+z=1 \\
& 1+1+1=\left(2-2 \cos \frac{b \pi}{4}\right)\left(2-2 \cos \frac{4 \pi}{8}\right)\left(2-2 \cos \frac{8 \pi}{8}\right. \\
& \therefore\left(-\cos \frac{4 \pi}{9}\right)\left(1-\cos \frac{4 \pi}{8}\right)\left(1-\cos \frac{8 \pi}{9}\right)=\frac{3}{8}
\end{aligned}
$$ but $\cos \frac{8 \pi}{5}=-\cos \frac{\pi}{9}$

$$
\therefore\left(1-\cos \frac{\pi \pi}{9}\right)\left(1-\cos \frac{4 \pi}{9}\right)\left(1+\cos \frac{8 \pi}{9}\right)=\frac{3}{8}
$$

