Ravenswood

16 June 2016

Assessment 3/ HSC Assessment 2

Conics and Integration

4 Copies Year 12 Mrs Kim

Mathematics Extension 2

PART I: CONICS

General Instructions

- Working time 40 minutes
- Write using blue or black pen
- Draw diagrams in pencil
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks will be deducted for careless or badly arranged work.

Total marks (28)

- Use the Multiple Choice answer sheet provided for Section I
- Answer the questions in answer booklets marked with your student number and the Question Number for Section II
- If you have not attempted a question or part of a question, write the question number with "NO ATTEMPT" beside it.

Section I Multiple Choice

There are 4 questions in this section. Use the multiple choice sheet provided to record your answers.

1. What are the coordinates of the foci of the ellipse with equation $\frac{x^{2}}{64}+\frac{y^{2}}{36}=1$?
(A) $(-10,0)$ and $(10,0)$
(B) $\quad(-2 \sqrt{7}, 0)$ and $(2 \sqrt{7}, 0)$
(C) $\quad(0,-2 \sqrt{7})$ and $(0,2 \sqrt{7})$
(D) $(-28,0)$ and $(28,0)$
2. What is the equation of the directrices of the hyperbola with parametric coordinates $(10 \sec \theta, 5 \tan \theta)$?
(A) $x= \pm 5 \sqrt{3}$
(B) $x= \pm 5 \sqrt{5}$
(C) $x= \pm 4 \sqrt{3}$
(D) $x= \pm 4 \sqrt{5}$
3. The ellipse with a focus at $(4,0)$ and directrix $x=8$ has equation:
(A) $\frac{x^{2}}{16}+\frac{y^{2}}{32}=1$
(B) $\frac{x^{2}}{32}+\frac{y^{2}}{16}=1$
(C) $\frac{x^{2}}{16}-\frac{y^{2}}{32}=1$
(D) $\frac{x^{2}}{32}-\frac{y^{2}}{16}=1$
4. What is the equation of the chord of contact from the point $\left(x_{0}, y_{0}\right)$ to the hyperbola

$$
\frac{x^{2}}{10}-\frac{y^{2}}{5}=1 ?
$$

(A) $\frac{x x_{0}}{10}-\frac{y y_{0}}{5}=1$
(B) $\frac{x x_{0}}{5}-\frac{2 y y_{0}}{5}=1$
(C) $\frac{x_{0}^{2}}{10}-\frac{y_{0}^{2}}{5}=1$
(D) $\frac{x_{0} \sec \theta}{10}-\frac{y_{0} \tan \theta}{5}=1$

End of Section I

Section II.

There are 2 questions in this section.
Complete your solutions in the booklets provided. Please start each question in a new booklet.

Question 5 (12 Marks)

(a) Draw a neat sketch of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.

On your diagram show the coordinates of the foci, the equations of the directrices and asymptotes.
(b) A hyperbola has the equation: $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$.
(i) Find the coordinates of the foci.
(ii) The equation of the tangent to the hyperbola at $P(\sqrt{3} \sec \theta, \sqrt{2} \tan \theta)$ is:

$$
\sqrt{2} x \sec \theta-\sqrt{3} y \tan \theta=\sqrt{6} .
$$

(Do not prove this equation)

Show that the equation of the normal at P is:

$$
\sqrt{3} x \tan \theta+\sqrt{2} y \sec \theta=5 \sec \theta \tan \theta .
$$

(iii) The tangent and normal to the hyperbola at P cut the y axis at T and N respectively.

Show that the circle with $T N$ as diameter passes through the foci of the hyperbola.

Question 6 (12 Marks)

Lines drawn from the foci S and S^{\prime} of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, are perpendicular to the tangent drawn at $P(a \cos \theta, b \sin \theta)$. They meet this tangent at L and L^{\prime} respectively.

The line parallel to the x-axis passing though P intersects the directrices at M and M^{\prime} and the normal at P meets the x-axis at N.

(i) Show that $P S=a(1-e \cos \theta)$
(ii) Write down a similar expression for $P S^{\prime}$
(iii) Show that the equation of the tangent at P is $b x \cos \theta+a y \sin \theta-a b=0$.
(iv) Find the distances $S L$ and $S^{\prime} L^{\prime}$ from the foci S and S^{\prime} to the tangent at P.
(v) Hence, or otherwise, show that $P N$ bisects $\angle S P S^{\prime}$.
(vi) Show that $\frac{P S}{N S}=\frac{P S \prime}{N S \prime}$

End of Section II

MULTIPLE CHOICE ANSWER SHEET

Section I-Questions 1-4

Sample

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
$2+4=(\mathrm{A}) 2$
(B) 6
(C) 8
(D) 9
A
B
C
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
$\mathrm{B} /$
C
D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:
A

D

SECTION 1: Colour in the appropriate circle.
1.

B \bigcirc C \bigcirc D

2.
ABC \bigcirc D \bigcirc
3.

B
D \bigcirc
4.

ABC D \bigcirc

Mathematics Extension 2

PART II: Integration

General Instructions

- Working time 40 minutes
- Write using blue or black pen
- Draw diagrams in pencil
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks will be deducted for careless or badly arranged work.

Total marks (24)

- Use the Multiple Choice answer sheet provided for Section I
- Answer the questions in answer booklets marked with your student number and the Question Number for Section II
- If you have not attempted a question or part of a question, write the question number with "NO ATTEMPT" beside it.

Section I Multiple Choice

There are 4 questions in this section. Use the multiple choice sheet provided to record your answers.

1. To solve $\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}}$, which of the following methods would you apply?
(A) Integration by parts
(B) Partial fractions
(C) Substitution with $x=\cos \theta$
(D) Substitution with $x=2 \sin \theta$
2. The integral of $x^{2} e^{x}+2 x e^{x}$ is:
(A) $x^{2}+e^{x}+c$
(B) $x^{2} e^{x}+c$
(C) $x e^{x}+c$
(D) $2 x e^{x}+c$
3. Which of the following is an expression for $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$?
(A) $\sin ^{-1}\left(\frac{x-3}{2}\right)+c$
(B) $\sin ^{-1}\left(\frac{x+3}{2}\right)+c$
(C) $\sin ^{-1}\left(\frac{x-3}{4}\right)+c$
(D) $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
4. If $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ where n is a positive integer, and $I_{n}=(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x d x$ for $n \geq 2$, then $I_{n}=\frac{n-1}{n} I_{n-2}$, for $n \geq 2$. What is the value of I_{4} ?
(A) $\frac{\pi}{16}$
(B) $\frac{3 \pi}{16}$
(C) $\frac{3}{8}$
(D) $\frac{3 \pi}{8}$

End of Section I

Section II.

There are 2 questions in this section.
Complete your solutions in the booklets provided. Please start each question in a new booklet.

Question 5 (10 Marks)

(a) Find $\int \frac{x^{2}}{\sqrt{x^{3}-1}} d x$
(b) Evaluate $\int_{0}^{\frac{1}{2}} \sin ^{-1} x d x$
(c) (i) Find A, B and C if $\frac{x^{2}-4 x+2}{(2 x+1)\left(x^{2}+4\right)}=\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+4}$
(ii) Hence, evaluate $\int_{0}^{2} \frac{x^{2}-4 x+2}{(2 x+1)\left(x^{2}+4\right)} d x$.

Leave your answer in simplest exact form.

Question 6 (10 Marks)

(a) Let $t=\tan \frac{\theta}{2}$
(i) Show that $d \theta=\frac{2}{1+t^{2}} d t$
(ii) Use the substitution $t=\tan \frac{\theta}{2}$ to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 2 \operatorname{cosec}^{2} \theta \tan \frac{\theta}{2} d \theta$

Question 6 (continued)

(b) (i) Given that $I_{2 n+1}=\int_{0}^{1} x^{2 n+1} e^{x^{2}} d x$ where n is a positive integer, $\quad 2$ show that $I_{2 n+1}=\frac{1}{2} e-n I_{2 n-1}$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{1} x^{5} e^{x^{2}} d x$.

End of Section II

MULTIPLE CHOICE ANSWER SHEET

Section I-Questions 1 - 4

Sample

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
$2+4=(\mathrm{A}) 2$
(B) 6
(C) 8
(D) 9
A
B
C
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
C
D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:
A
B - correct
D 0

SECTION 1: Colour in the appropriate circle.

1
2.

B$\mathrm{C} \bigcirc$ $D \bigcirc$
3.
AB$\mathrm{C} \bigcirc$ D

4.

A
BCD \bigcirc

2016 AT3-CONICS/28

Conics - Please Learn!

Ellipse

- $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
- $a^{2}=b^{2}\left(1-e^{2}\right)$
b $e=\sqrt{1-\frac{b^{2}}{a^{2}}}$
- Focus: (nae, 0)

Equation of

- Directrix: $x= \pm \frac{a}{e}$
- Tangent Equation:

$$
\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1
$$

- Normal equation:

$$
\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}
$$

- chord of contact:

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

Hyperbola

- $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
- asymptotes: $y= \pm \frac{b x}{a}$
- $b^{2}=a^{2}\left(e^{2}-1\right)$
- $e=\sqrt{1+\frac{b^{2}}{a^{2}}}$
- focus: $(\pm a e, 0)$
- directrix: $x= \pm \frac{a}{e}$
- Tangent equation.

$$
\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1
$$

- Normal equation

$$
\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}
$$

- chord of contact:

$$
\frac{x_{0} x}{a^{2}}-\frac{y_{0} y}{b^{2}}=1
$$

2016 AT3-CONICS
section 1 (MC)

Q1.

$$
\begin{aligned}
& S=(\pm a e, 0) \\
& a=8, b=6 \\
& \therefore S(\pm 8 e, 0) \\
& e=\sqrt{1-\frac{36}{64}} \\
& =\frac{2 \sqrt{7}}{8} \\
& \therefore S(\pm 2 \sqrt{7}, 0) \Rightarrow \text { Ans }
\end{aligned}
$$

Q2. $a=10, b=5$.

$$
\begin{aligned}
x & = \pm \frac{a}{e} \\
& = \pm \frac{10}{e} .
\end{aligned}
$$

$$
e=\sqrt{1+\frac{25}{100}}
$$

$$
=\frac{\sqrt{5}}{2}
$$

$$
\therefore x= \pm \frac{20}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}
$$

$$
= \pm 4 \sqrt{5} \quad \Rightarrow D
$$

Q3. Focuse $(4,0)$.
dinectix $\quad x=8$.

$$
\begin{aligned}
& \therefore 4=a e \\
& x \pm 8=\frac{a}{e} \\
& e=\sqrt{1-\frac{16}{32}} \\
& =\sqrt{\frac{1}{2}} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{align*}
\therefore a & =\frac{4}{e} \\
& =\frac{4}{\frac{1}{\sqrt{2}}} \\
& =4 \sqrt{2}
\end{align*}
$$

since ellepse
chord of contact:

$$
\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1 .
$$

$$
a^{2}=10, b^{2}=5
$$

\therefore A.
5. (a) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1, y=\frac{3 x}{4}$

$s(\pm 4,0)$

$$
e=\frac{5}{4}
$$

(1) Shape with vertex $\&$ frecus.
(2) as above t divectrices
(3) as above + asymptotes

5(b)

$$
\begin{aligned}
& \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 \\
& a=\sqrt{3}, b=\sqrt{2} \\
& e=\sqrt{1+\frac{2}{3}} \\
& =\sqrt{\frac{5}{3}}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\Omega & =(\pm a e, 0) \\
& =\left(\pm \sqrt{3} \times \frac{\sqrt{5}}{\sqrt{3}}, 0\right) \\
& =(\pm \sqrt{5}, 0)
\end{aligned}
$$

(D) comet answer
(1) Fours ($\pm \sqrt{3} e, 0$)

Tangent:
(ii) $\sqrt{2} x \sec \theta-\sqrt{3} y \tan \theta=\sqrt{6}$

Normal:

$$
\sqrt{3} x \tan \theta+\sqrt{2} y \sec \theta=k .
$$

sub (Point P)

$$
\begin{aligned}
\therefore k & =3 \tan \theta \sec \theta+2 \tan \theta \sec \theta \\
k & =5 \tan \theta \sec \theta
\end{aligned}
$$

Normal is:

$$
\begin{aligned}
& \sqrt{3} x \tan \theta+\sqrt{2} y \sec \theta \\
& =5 \tan \theta \sec \theta
\end{aligned}
$$

(2) Full correct equation
(1) only finds k.
(iii)

Know $\angle N P T=90^{\circ}$ thing to prove $\angle N S T=90^{\circ}$

$$
T\left(0, \frac{-\sqrt{2}}{\tan \theta}\right)
$$

$N\left(0, \frac{5 \tan \theta}{\sqrt{2}}\right)$

$$
\begin{aligned}
m_{T S} & =-\frac{\sqrt{2}}{\tan \theta} \div \sqrt{5} \\
& =\frac{-\sqrt{2}}{\sqrt{5} \tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
m_{S N} & =\frac{5 \tan \theta}{\sqrt{2}} \div \sqrt{5} \\
& =\frac{5 \tan \theta}{\sqrt{10}} \\
& =\frac{\sqrt{5} \tan \theta}{\sqrt{2}}
\end{aligned}
$$

$M_{T S X} m_{\text {sN }}$

$$
\begin{aligned}
& =\frac{-\sqrt{2}}{\sqrt{5} \tan \theta} \times \frac{\sqrt{5} \tan \theta}{\sqrt{2}} \\
& =-1 \\
& \therefore \angle N S T=90^{\circ}
\end{aligned}
$$

similarly $\angle N S^{\prime} T=90^{\circ}$
\therefore circle passes through focii

Q6(1) By definition:
$P S=e P M$.

$$
\begin{aligned}
P M & =\frac{a}{e}-a \cos \theta \\
& =\frac{a}{e}(1-e \cos \theta) \\
P S & =e \times \frac{a}{e}(1-e \cos \theta) \\
& =a(1-e \cos \theta)
\end{aligned}
$$

(ii) $P_{5}{ }^{\prime}=a(1+e \cos \theta)$
(iii) $P(a \cos \theta, b \sin \theta)$
eqn of tangent:

$$
\begin{aligned}
& \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1 \\
& \therefore \frac{a x \cos \theta}{a^{2}}+\frac{b y \sin \theta}{b^{2}}=1 \\
& \therefore \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \\
& b x \cos \theta+a y \sin \theta=a b \\
& \therefore b x \cos \theta+y a \sin \theta-a b=0
\end{aligned}
$$

as repurieor
(iv) $S(a e, \theta)$

$$
\begin{aligned}
& \text { Tangent: } \begin{array}{r}
b \cos \theta x+a y \sin \theta \\
-a b=0
\end{array} \\
& \begin{aligned}
& d_{S L}= \mid b \cos \theta(a e)+a \sin \theta(\theta) \\
& \sqrt{(b \cos \theta)^{2}+(a \sin \theta)^{2}}
\end{aligned} \\
& =\frac{|a b e \cos \theta-a b|}{\sqrt{a^{2} \sin ^{2} \theta+b^{2} a \sin ^{2} \theta}}
\end{aligned}
$$

similarly

$$
d s_{L^{\prime}} L^{\prime}=\frac{|-a b e \cos \theta-a b|}{\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}}
$$

$$
\begin{aligned}
(v) \frac{s L}{s^{\prime} L} & =\frac{|a b e \cos \theta-a b|}{|-a b e \cos \theta-a b|} \\
& =\frac{a b|e \cos \theta-1|}{-a b|e \cos \theta+1|} \\
& =-\frac{e \cos \theta-1}{e \cos \theta+1 .}
\end{aligned}
$$

$$
\begin{aligned}
\frac{P S}{P S^{\prime}} & =\frac{a(1-e \cos \theta)}{a(1+e \cos \theta)} \\
& =\frac{1-e \cos \theta}{1+e \cos \theta} \\
\therefore & \frac{S^{L}}{S^{\prime} L^{\prime}}=\frac{P S}{P S^{\prime}}
\end{aligned}
$$

Hence $\frac{P L}{P L^{\prime}}=\frac{P S}{P S^{\prime}}$
CBy Pytheegoras' theorem

$$
\therefore \begin{aligned}
& \triangle P S L\left\|\| \triangle P S^{\prime} L^{\prime}\right. \\
& \angle L P S=\angle L^{\prime} P S^{\prime} \\
& \angle N P L=90^{\circ} \\
& \angle N P S=90^{\circ}-\angle L P S
\end{aligned}
$$

similarly $\angle N P S^{\prime}=90^{\circ}-\angle L^{\prime} P S^{\prime}$

$$
\therefore \quad \angle N P S=\angle N P S^{\prime}
$$

$\therefore P N$ bisects $\angle S^{\prime} P S$
I the tangent at p on the ellipse is equally inclined to the focal chords through ψ.]
(vi) Since $\triangle P S N / / \mid \triangle P S^{\prime} N$ C2 sides in proportion about an equal angle).

$$
\therefore \frac{P S}{A S^{\prime}}=\frac{P S^{\prime}}{N S^{\prime}}
$$

Integration /28

$$
\begin{aligned}
& 1 \cdot \frac{D}{\int_{\sqrt{3}}^{2}} \sqrt{4-x^{2}} d x \\
& x=2 \sin \theta \\
& d x=-2 \cos \theta d \theta
\end{aligned}
$$

$$
\text { when } x=2, \quad \theta=\frac{\pi}{2}
$$

$$
x=\sqrt{3}, \quad \theta=\frac{\pi}{3}
$$

$$
\therefore \int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x
$$

$$
=2 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sqrt{4\left(1-\sin ^{2} \theta\right)} \cdot \cos \theta d \theta
$$

$$
=4 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta
$$

etc.
2. B

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2} e^{x}+c\right) \\
= & x^{2}\left(e^{x}\right)+e^{x}(2 x) \\
= & e^{x} x^{2}+2 x e^{x}
\end{aligned}
$$

3. C

$$
\int \frac{d x}{\sqrt{7-6 x-x^{2}}}
$$

$=\int \frac{d x}{\sqrt{16-(x+3)^{2}}}$

* use $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+c$

4. B. $\quad I_{4}=\frac{4-1}{4} I_{2}$

$$
\begin{aligned}
I_{2} & =\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x \\
& =\frac{\pi}{4} \\
\therefore I_{4} & =\frac{3}{4} \times \frac{\pi}{4} \\
& =\frac{3 \pi}{16}
\end{aligned}
$$

(a) $\int \frac{x^{2}}{\sqrt{x^{3}+1}} d x$

$$
\begin{aligned}
& u=x^{3}+1 \\
& d u=3 x^{2} d x \\
& =\frac{1}{3} \int \frac{1}{\sqrt{u}} d u \\
& =\frac{1}{3}\left[2 u^{\frac{1}{2}}\right]+c \\
& =\frac{2}{3} \sqrt{x^{3}+1}+c
\end{aligned}
$$

b) $\int_{0}^{\frac{1}{2}} \sin ^{-1} x d x$

$$
\begin{aligned}
& u=\sin ^{-1} x \quad v=x \\
& d u=\frac{1}{\sqrt{1-x^{2}}} d x \quad d v=d x . \\
& \therefore \int_{0}^{\frac{1}{2}} \sin ^{-1} x d x \\
& =\left[x \sin ^{-1} x\right]_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{x}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

$=\frac{1}{2} \times \sin ^{-1}\left(\frac{1}{2}\right)-\int_{0}^{\frac{1}{2}} \frac{x d x}{\sqrt{1-x^{2}}}$
let $w=1-x^{2}$

$$
\begin{aligned}
& \quad d w=-2 x d x \\
& =\frac{1}{2} \times \frac{\pi}{6}-\int_{0}^{\frac{3}{4}} \frac{x}{\sqrt{w}} \times \frac{-1}{2 x} d w \\
& =\frac{\pi}{12}+\frac{1}{2} \int_{0}^{\frac{3}{4}} w^{-\frac{1}{2}} d w \\
& =\frac{\pi}{12}+[\sqrt{w}]_{0}^{\frac{3}{4}} \\
& =\frac{\pi}{12}+\frac{\sqrt{3}}{2}
\end{aligned}
$$

(c) $\frac{x^{2}-4 x+2}{(2 x+1)\left(x^{2}+4\right)}=\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+4}$
(i)

$$
x^{2}-4 x+2=A\left(x^{2}+4\right)+(B x+c)(2 x+1)
$$

when $x=0$.

$$
2=4 A+C
$$

$$
\begin{aligned}
& x=1:-1=5 A+3 B+3 C \\
& x=-\frac{1}{2}: A=1
\end{aligned}
$$

$$
B=0, C=-2
$$

(ii) $\int_{0}^{2} \frac{x^{2}-4 x+2}{(2 x+1)\left(x^{2}+4\right)} d x$

$$
\begin{aligned}
& =\int_{0}^{2} \frac{1}{2 x+1}-\frac{2}{x^{2}+4} d x \\
& \left.=\frac{1}{2} \ln (2 x+1)\right]_{0}^{2}-2\left[\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2} \\
& =\frac{1}{2} \ln 5-\tan ^{-1}(1) \\
& =\frac{1}{2} \ln 5-\frac{\pi}{4} . \\
& \text { or } \ln \sqrt{5}-\frac{\pi}{4}
\end{aligned}
$$

$6(x)$

$$
\begin{aligned}
t & =\tan \left(\frac{\theta}{2}\right) \\
\frac{\theta}{2} & =\tan ^{-1} t \\
\frac{d \theta}{2} & =\frac{1 d t}{1+t^{2}} \\
d \theta & =\frac{2 d t}{1+t^{2}}
\end{aligned}
$$

Now $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 2 \operatorname{cosec}^{2} \theta \tan \left(\frac{\theta}{2}\right) d \theta$

$$
\begin{aligned}
& t_{1}=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}} \\
& t_{2}=\tan \left(\frac{\pi}{4}\right)=1 \\
& \operatorname{cosec}^{2} \theta=\frac{1}{\sin ^{2} \theta} \\
& =\frac{\left(1+t^{2}\right)^{2}}{4 t^{2}} \\
& 2 \int_{\frac{1}{\sqrt{3}}}^{1} \cdot \frac{\left(1+t^{2}\right)^{2}}{4 t^{2}} \cdot t \cdot \frac{2 d t}{1+t^{2}} \\
& =\int_{\frac{1}{3}}^{1} \frac{1+t^{2}}{t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\frac{1}{\sqrt{3}}}^{1} \frac{1}{t}+t d t \\
& =\left[\ln (t)+\frac{t^{2}}{2}\right]_{\frac{1}{\sqrt{3}}}^{1} \\
& =\ln 1-\frac{1}{2}-\left(\ln \left(\frac{1}{\sqrt{3}}\right)+\frac{1}{\frac{3}{2}}\right) \\
& =-\frac{1}{2}+\ln \sqrt{3}+\frac{2}{3} . \\
& =\frac{1}{6}+\ln \sqrt{3} .
\end{aligned}
$$

$$
\begin{aligned}
& I_{2 n+1}=\int_{0}^{1} x^{2 n+1} \cdot e^{x^{2}} d x \\
& u=x^{2 n} \quad v^{\prime}=x e^{x^{2}} \\
& d u=2 n x^{2 n-1} \quad v=\frac{e^{x^{2}}}{2}
\end{aligned}
$$

IBP:

$$
\begin{equation*}
\int_{0}^{1} x^{2 n} \cdot x \cdot e^{x^{2}} d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\left[x^{2 n} \cdot \frac{e^{x^{2}}}{2}\right]_{0}^{1}-\int_{0}^{1} \frac{e^{x^{2}}}{2} \cdot 2 n x x^{2 n-1} d x \tag{1}
\end{equation*}
$$

$$
=\frac{e}{2}-n \int_{0}^{1} x^{2 n-1} \cdot e^{x^{2}} d x .
$$

$$
=\frac{e}{2}-n I_{2 n-1}
$$

(ii)

$$
\text { (i) } \begin{align*}
I_{5} & =\frac{e}{2}-2 I_{3} \\
& =\frac{e}{2}-2\left[\frac{e}{2}-I_{1}\right] . \\
& =-\frac{e}{2}+2 I_{1} .(1) \tag{1}\\
I_{1} & =\int_{0}^{1} x e^{x^{2}} d x \\
& =\frac{1}{2} \int_{0}^{1} 2 x e^{x^{2}} d x \\
& \left.=\frac{e^{x^{2}}}{2}\right]_{0}^{1} \\
& =\frac{1}{2}(e-1) \\
\therefore I_{5} & =-\frac{e}{2}+2\left(\frac{1}{2}(e-1)\right) \\
& =-\frac{e}{2}+e-1 \\
& =\frac{e}{2}-1
\end{align*}
$$

