SAINT IGNATIUS’ COLLEGE RIVERVIEW YEAR 12

EXTENSION 2

ASSESSMENT TASK

2004

MATHEMATICS

Time allowed - 50 minutes
(plus 5 minutes reading time)

Directions to Candidates

1. Attempt ALL questions.
2. All questions are of equal value.
3. All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
4. Board-approved calculators may be used.
5. Each question attempted is to be returned on a SEPARATE SHEET clearly marked Question 1, Question 2, \qquad .etc.
6. Each answer sheet must show your NAME and your TEACHER'S NAME.

QUESTION 1 - INTEGRATION (15 marks)

(a) Find $\int \sin ^{3} x . d x$
(b) Find $\int \frac{d x}{x^{2}-4 x+13}$
(c) Find $\int \frac{3 x}{\sqrt{16+x^{2}}} d x$
(d) Use Integration by parts to find $\int 2 x e^{-2 x} d x$
(e) Using the substitution $t=\tan \frac{X}{2}$, show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+4 \cos x}=\frac{2}{3} \tan ^{-1} \frac{1}{3}
$$

(f) Given that $I_{n}=\int_{0}^{1} \frac{x^{n}}{x^{2}+1} d x$, for $n=0,1,2,3, \ldots \ldots \ldots$
(i) Show that $I_{n}+I_{n-2}=\frac{1}{n-1}$, for $n \geq 2$
(ii) Hence evaluate I_{4}

QUESTION 2 - POLYNOMIALS (15 marks)

(a) Find the polynomial in x with degree 3, such that two zeros are $x=1$ and $x=-2$, also given that $P(-1)=4$ and $P(2)=28$
(b) Consider the polynomial $P(x)=(x-\alpha)^{3} \cdot Q(x)$, where $Q(x)$ is also a polynomial and α is a real zero of $P(x)$.
(i) Show that $P(\alpha)=P^{\prime}(\alpha)=P^{\prime \prime}(\alpha)=0$
(ii) Hence or otherwise, solve the equation $8 x^{4}-25 x^{3}+27 x^{2}-11 x+1=0$
given that it has a triple root.
(c) If $3-i$ is a root of the polynomial $P(z)=z^{3}+r z^{2}+s z+20$, and r and s are real numbers,
(i) state why $3+i$ is also a root of $P(z)$.
(ii) hence factorise $P(z)$ over the complex field.
(d) The equation $x^{3}+2 x^{2}+b x-16=0$ has roots α, β and γ such that $\alpha \beta=4$.
(i) Show that $b=-20$.
(ii) Find the equation with roots given by α^{2}, β^{2} and γ^{2}
(iii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.

