

The Scots College

Year 12 Mathematics Extension 2

Task 3

10 June 2010

Name:

General Instructions

- Working time 45 minutes
 Write using blue or black pen
 Board approved calculators may be Used (Non Graphic)
 All necessary working should be
- All necessary working should be shown in every question
- Standard Integrals Table attached

TOTAL MARKS:	32
WEIGHTING:	20 %

Question 1 (Marks 17)

a) Evaluate

$$\int_3^4 \frac{dx}{\sqrt{x^2 - 9}}$$

$$\int \frac{1}{x^2 - 10x + 34} dx$$

c) i) Find the real numbers a, b and c such that [2]

$$\frac{3-x}{(1+2x^2)(1+6x)} \equiv \frac{ax+b}{1+2x^2} + \frac{c}{1+6x}$$

$$\int_0^2 \frac{3-x}{(1+2x^2)(1+6x)} \, dx \tag{3}$$

d) Find [3]
$$\int (x \log x)^2 dx$$

e) i) If
$$I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$
, show that $I_n = \frac{n-1}{n} I_{n-2}$ where [5] $n \in J$ and $n \ge 2$.

ii) Hence evaluate I_3 .

[2]

[2]

Question 2 (Marks 17)

a) A hollow glass container is to be formed by rotating the curve $y = \cos x$ [5] about the line y = -1 between x = 0 and $= \pi$. If one unit in the Cartesian plane represents 5 cm, find the volume of liquid it can hold to the nearest millilitre.

b) Copy the figure below into your worksheet and find the volume of the solid [5] generated by rotating the shaded region about the y-axis. Use the cylindrical shell method.

c) The base of a particular solid is $x^2 + y^2 = 9$. Find the volume of the [5] solid if every cross-section perpendicular to the x-axis is a semi-ellipse with minor axis in the base of the solid and semi-major axis equal to its minor axis.

Standard Integrals

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a\neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, \ a\neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, \ a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, \ a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln(x + \sqrt{x^2 - a^2}), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2+a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0

Schution Ext 2 Task 3 June 2010

Q.1. (a) $\int_{3}^{4} \frac{1}{\sqrt{z^{2}-9}} dx$ $= \int_{2}^{4} \sqrt{x^2 - 3^2} dx$ $= \ln \left(x + \sqrt{x^2 - 9} \right) \right]^{4}$ $= \ln \left(4 + \sqrt{16-9} \right) - \ln \left(3 + \sqrt{0} \right)$ $= l_{11} \left(\frac{4 + \sqrt{7}}{3} \right)$ (b) $\int \frac{1}{x^2 - 10x + 34} dx$ $= \int \frac{1}{x^2 - 10x + 25 + 9} dx$ $= \int \frac{1}{(x-5)^2+9} dx$ $= \frac{1}{3} \tan^{-1}\left(\frac{x-5}{3}\right) + C$ $\frac{(c)(n)}{(1+2x^2)(1+6x)} = \frac{ax+b}{1+2x^2} + \frac{c}{1+6x}$ $3-x \equiv (ax+b)(1+6x) + c(1+2x^2)$ $x = -\frac{1}{6} \implies C\left(1 + \frac{1}{26}\right) = 3 + \frac{1}{6}$ $\frac{19}{18}c = \frac{19}{6}$ c=3 #

 $coeff. q^{2} = 6a + 2c = 0$ 3a = -c 3a = -3 $a = -1 \neq -1$

 $(ii) \int_{0}^{2} \frac{3-x}{(1+2x^{2})(1+6x)} dx$ $=\int_{1+2\pi^2}^{2}\frac{2}{1+2\pi^2}dx_{p+1}\int_{1+6\pi}^{3}dx_{p}$ $= \left[-\frac{1}{4} \ln \left(1 + 2\chi^2 \right) \right]_{0}^{2} + \frac{1}{2} \left[\ln \left(1 + 6\chi \right) \right]_{0}^{2}$ $= -\frac{1}{4} \ln 9 + \frac{1}{4} \ln 1 + \frac{1}{2} \ln 13 - \frac{1}{2} \ln 1$ = { ln 13 - 1 ln 9 1/2 = 1/2 ln (13/3) (d) $\int (2 \log x)^2 dx$ $= \int \chi^2 (\log^2 \chi)^2 d\chi$ $= (\log^2)^2 \frac{\chi^3}{3} - \int_2^2 (\log^2 \chi) \cdot \frac{1}{\chi} \cdot \frac{\chi^3}{3} d\chi$ $= \frac{\chi^{3}}{3} \left(\log \chi \right)^{2} - \frac{2}{3} \int \chi^{2} \log \chi \, d\chi$ $= \frac{\chi^{3}}{3} \left(\log \chi \right)^{2} - \frac{2}{3} \left[\left(\log \chi \right) \frac{\chi^{3}}{3} - \int \frac{1}{\chi} \cdot \frac{\chi^{3}}{3} d\chi \right] V$ $=\frac{x^{3}(\log x)^{2}-\frac{2}{9}x^{3}\log x+\frac{2}{3}\int x^{2}dx$ $=\frac{\chi^{3}}{3}(\log x)^{2}-\frac{2}{9}\chi^{3}\log x+\frac{2}{9}\chi^{3}+c$

$$(f) \quad I_{n} = \int_{0}^{\overline{M}_{n}} \cos^{n} x \, dv \qquad u = \cos^{n-1} \int_{0}^{\overline{M}_{n}} dv = \cos x \, dv \qquad u = \cos^{n-1} \int_{0}^{\overline{M}_{n}} dv = \cos x \, dv \qquad u = \sin x \qquad dv =$$

•

$$\begin{split} \overline{I}_{3} &= \frac{2}{3} \overline{I}_{1} \\ &= \frac{2}{3} \int_{0}^{\pi/2} \cos x \, dy_{0} \\ &= \frac{2}{3} \left[\sin x \right]_{0}^{\pi/2} \\ &= \frac{2}{3} \left[1 - 0 \right] \\ &= \frac{2}{3} \left[1 - 0 \right] \\ &= \frac{2}{3} \int_{0}^{\pi/2} \left[1 - 0 \right] \end{split}$$

· · ·

$$\begin{split} \overline{\delta V} &= \mathcal{K} \left(\left(y + 1 \right)^2 \right)^2 \overline{\delta x} \\ \overline{\delta V} &= \overline{\pi} \left(\left(\cos x + 1 \right)^2 \right)^2 \overline{\delta x} \\ V &= \overline{\pi} \int_0^{\overline{\pi}} \left(\left(\cos^2 x + 2 \cos x + 1 \right) \right) dy \\ &= \overline{\pi} \int_0^{\overline{\pi}} \left(\frac{1}{2} \left(1 + \cos 2x \right) + 2 \cos x + 1 \right) dy \\ &= \overline{\pi} \int_0^{\overline{\pi}} \left(\frac{1}{2} \left(1 + \cos 2x \right) + 2 \cos x + 1 \right) dy \\ &= \overline{\pi} \left[\int_{\overline{2}}^{3\pi} \overline{x} + \sin^2 x + 2 \sin^2 x \right]_0^{\overline{\pi}} \\ &= \overline{\pi} \left\{ \int_{\overline{2}}^{3\pi} \overline{x} + 0 + 0 \right] - \left[\overline{0} \right] \right\} \\ &= \overline{\pi} \left\{ \int_{\overline{2}}^{3\pi} \overline{x}^2 - u \sin^2 x^3 \right\}. \end{split}$$

Now I cubic unit = 5x5x5 = 125 cm³

$$V = \frac{3\pi^2}{2} \times 125$$

$$\Rightarrow 589 \text{ cm}^3$$

$$\Rightarrow 589 \text{ mE}.$$

(b)

$$A = \pi (outer \ rackup)^{2} - \pi (inner \ rackup)^{2}$$

$$= \pi (1 + \sqrt{y})^{2} - \pi (1 + y)^{2}$$

$$= \pi (2\sqrt{y} - y - y^{2})$$

$$V = \pi \int_{0}^{1} (2\sqrt{y} - y - y^{2}) \ dy$$

$$= \pi \left[\frac{4y^{3/2}}{3} - \frac{y^{2}}{2} - \frac{y^{3}}{3} \right]_{0}^{1}$$

$$= \frac{\pi}{2}$$

(e)