The Scots College

Year 12 Mathematics Extension 2

Task 3

10 June 2010

Name:

General Instructions

- Working time - 45 minutes
- Write using blue or black pen
- Board approved calculators may be Used (Non Graphic)
- All necessary working should be shown in every question
- Standard Integrals Table attached

TOTAL MARKS: 32

Weighting: 20 \%

Question 1 (Marks 17)

a) Evaluate

$$
\int_{3}^{4} \frac{d x}{\sqrt{x^{2}-9}}
$$

b) By completing the square, find

$$
\int \frac{1}{x^{2}-10 x+34} d x
$$

c) i) Find the real numbers a, b and c such that

$$
\frac{3-x}{\left(1+2 x^{2}\right)(1+6 x)} \equiv \frac{a x+b}{1+2 x^{2}}+\frac{c}{1+6 x}
$$

ii) Hence find

$$
\begin{equation*}
\int_{0}^{2} \frac{3-x}{\left(1+2 x^{2}\right)(1+6 x)} d x \tag{3}
\end{equation*}
$$

d) Find

$$
\int(x \log x)^{2} d x
$$

e) i) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$, show that $I_{n}=\frac{n-1}{n} I_{n-2}$ where
ii) Hence evaluate I_{3}.

Question 2 (Marks 17)
a) A hollow glass container is to be formed by rotating the curve $y=\cos x$ about the line $y=-1$ between $x=0$ and $=\pi$. If one unit in the Cartesian plane represents 5 cm , find the volume of liquid it can hold to the nearest millilitre.
b) Copy the figure below into your worksheet and find the volume of the solid generated by rotating the shaded region about the y-axis. Use the cylindrical shell method.

c) The base of a particular solid is $x^{2}+y^{2}=9$. Find the volume of the solid if every cross-section perpendicular to the x -axis is a semi-ellipse with minor axis in the base of the solid and semi-major axis equal to its minor axis.

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& \int e^{a x} d x \\
& =\ln x, \quad x>0 \\
& =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Selution ExT 2 Task 3 Sune 2010
Q. 1.

$$
\text { (a) } \begin{aligned}
\int_{3}^{4} & \frac{1}{\sqrt{x^{2}-9}} d x \\
& =\int_{3}^{4} \frac{1}{\sqrt{x^{2}-3^{2}}} d x \\
& \left.=\ln \left(x+\sqrt{x^{2}-9}\right)\right]_{3}^{4} \\
& =\ln (4+\sqrt{16-9})-\ln (3+\sqrt{0}) \\
& =\ln \left(\frac{4+\sqrt{7})}{3}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \frac{1}{x^{2}-10 x+34} d x \\
= & \int \frac{1}{x^{2}-10 x+25+9} d x \\
= & \int \frac{1}{(x-5)^{2}+9} d x \\
= & \frac{1}{3} \tan ^{-1}\left(\frac{x-5}{3}\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) (i) } \\
& \text { (e) } \frac{3-x}{\left(1+2 x^{2}\right)(1+6 x)} \equiv \frac{a x+b}{1+2 x^{2}}+\frac{c}{1+6 x} \\
& 3-x \equiv(a x+b)(1+6 x)+c\left(1+2 x^{2}\right) \\
& x=-\frac{1}{6} \Rightarrow c\left(1+\frac{\frac{1}{2}}{18}\right)=3+\frac{1}{6} \\
& \frac{19}{18} c=\frac{19}{6} \\
& c=3 \quad \# \\
& \text { coeff. of } x^{2} \quad .6 a+2 c=0 \\
& 3 a=-c \\
& 3 a=-3 \\
& a=-1 \quad \# \\
& x=0 \Rightarrow b+c=3 \\
& b+3=3 \\
& b=0 \text { \# . } 1
\end{aligned}
$$

(iiv) \int_{0}^{2}

$$
\begin{aligned}
\int_{0}^{2} & \frac{3-x}{\left(1+2 x^{2}\right)(1+6 x)} d x \\
& =\int_{0}^{2} \frac{-x}{1+2 x^{2}} d x+\int_{0}^{2} \frac{3}{1+6 x} d x \\
& =\left[-\frac{1}{4} \ln \left(1+2 x^{2}\right)\right]_{0}^{2}+\frac{1}{2}[\ln (1+6 x)]_{0}^{2} \\
& =-\frac{1}{4} \ln 9+\frac{1}{4} \ln 1+\frac{1}{2} \ln 13-\frac{1}{2} \ln 1 \\
& =\frac{1}{2} \ln 13-\frac{1}{2} \ln 9^{1 / 2} \\
& =\frac{1}{2} \ln (13 / 3)
\end{aligned}
$$

\qquad
(f)

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 2} \cos ^{n} x d x \\
& =\int_{0}^{\pi / 2} \cos ^{n-1} x \cdot \cos x d x \quad u=\cos ^{n-1} x \quad \frac{d u}{d x}=-(n-1)^{\sin ^{n-2} x \sin x} d x=\sin x \\
& =\left[\cos ^{n-1} x \cdot \sin x\right]_{0}^{\pi / 2}+(n-1) \int_{0}^{\pi / 2} \cos ^{n-2} \sin x \cdot \sin x d x \\
& =0+(n-1) \int_{0}^{\pi / 2} \cos ^{n-2} x^{2} \sin ^{2} x d x \\
& =(n-1) \int_{0}^{\pi / 2} \cos ^{n-2} x\left(1-\cos ^{2} x\right) d x \\
& =(n-1)\left[\int_{0}^{\pi / 3} \cos ^{n-2} x d x-\int_{0}^{\pi / 2} \cos ^{n} x d x\right] \\
I_{n} & =(n-1) I_{n-2}-(n-1) I_{n} \\
I_{n} & +(n-1) I_{n}=(n-1) I_{n-2} \\
& n I_{n}=(n-1) I_{n-2} \\
I_{3} & =\frac{2}{3} I_{1} \\
& =\frac{2}{3} \int_{0}^{\pi / 2} \cos x d x \\
& =\frac{2}{3}[\sin x]_{0}^{\pi / 2} \\
& =\frac{2}{3}[1-0] \\
& =\frac{2}{3}
\end{aligned}
$$

Q2 (a)

$$
\begin{aligned}
& \delta v=\pi(y+1)^{2} \delta x \\
& \delta v=\pi(\cos x+1)^{2} \delta x \\
v & =\pi \int_{0}^{\pi}(\cos x+1)^{2} d x \\
= & \pi \int_{0}^{\pi}\left(\cos ^{2} x+2 \cos x+1\right) d x \\
= & \pi \int_{0}^{\pi}\left(\frac{1}{2}(1+\cos 2 x)+2 \cos x+1\right) d x \\
= & \pi\left[\frac{3 x}{2}+\sin 2 x+2 \sin x\right]_{0}^{\pi} \\
= & \pi\left\{\left[\frac{3 \pi}{2}+0+0\right]-[0]\right\} \\
= & \frac{3 \pi}{2}
\end{aligned}
$$

Now 1 cubic unit $=5 \times 5 \times 5=125 \mathrm{~cm}^{3}$

$$
\therefore \quad \begin{aligned}
\therefore & =\frac{3 \pi^{2}}{2} \times 125 \\
& \doteqdot 589 \mathrm{~cm}^{3} \\
& \doteqdot 589 \mathrm{mK} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
A & =\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2} \\
& =\pi(1+\sqrt{y})^{2}-\pi(1+y)^{2} \\
& =\pi\left(2 \sqrt{y}-y-y^{2}\right) \\
V & =\pi \int_{0}^{1}\left(2 \sqrt{y}-y-y^{2}\right) d y \\
& =\pi\left[\frac{4 y^{3 / 2}}{3}-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{1} \\
& =\frac{\pi}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \delta v=2 \pi r h \Sigma_{x} \\
& V=2 \pi \int_{0}^{\sqrt{x}} x \sin \left(x^{2}\right) d x \\
& v=2 \pi \int_{0}^{\sqrt{x}} \not x \sin u \frac{d u}{\frac{1}{2} z} \\
& \begin{array}{l}
u=x^{2} \\
d u=0
\end{array} \quad \frac{d v}{d x}=\sin \left(x^{2}\right) \\
& 2 x d x \text {. } \\
& \frac{d u}{2 x}=d x \\
& r=-\frac{\cos \left(x^{2}\right)}{2 x} \\
& x=0 \text {. } u=0 \\
& x=\sqrt{\pi} \quad u=\pi \\
& =\pi \int_{0}^{\pi} \operatorname{sen} u d u \\
& =\pi[-\cos u]_{0}^{\pi} \\
& =\pi[-\cos \pi+\cos 0]_{0}^{\pi} \\
& =\pi
\end{aligned}
$$

(d)

Votume of cross-section:

$$
\begin{aligned}
& \delta V=\frac{8 y^{2}}{3} \delta x \\
& \delta V=\frac{8}{3}\left(9-x^{2}\right)^{2} \delta x \\
& V
\end{aligned} \begin{aligned}
\delta & \frac{8}{3} \int_{-3}^{3}\left(9-x^{2}\right) \\
& =\frac{8}{3}\left[9 x-\frac{x^{3}}{3}\right]_{-3}^{3} \\
& =\frac{8}{3}[(27-9)-(-27+9)] \\
& =\frac{8}{3}[18+18] \\
& =8 \times 12
\end{aligned}
$$

$$
=96 \text { cubic units. }
$$

simpsors Rule.

$$
\begin{aligned}
A & =\frac{y}{3}\{0+4(2 y)+0\} \\
& =\frac{8 y^{3}}{3}
\end{aligned}
$$

