HSC Task 3 - In Class Test
$13^{\text {th }}$ June 2012

Mathematics Extension 2

General Instructions

- Working time - 45 minutes
- Write using black or blue pen

Black pen is preferred

- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working

Total marks - $\mathbf{3 0}$

Learning Intentions:
Integration and Volumes

QUESTION ONE ($\mathbf{1 5}$ MARKS) Use a SEPARATE writing booklet.
a) $\int \sin ^{3} \theta d \theta$
b) $\int x e^{x} d x$
(2)
c) By using the substitution $t=\tan \frac{\theta}{2}$, evaluate in exact form

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{5-4 \cos \theta} \tag{3}
\end{equation*}
$$

d) $\int_{-2}^{2}\left(x \sqrt{4-x^{2}}-\sqrt{4-x^{2}}\right) d x$
e) Given that

$$
\begin{equation*}
I_{n}=\int_{1}^{e}(1-\ln x)^{n} d x,(n=1,2,3, \ldots) \tag{3}
\end{equation*}
$$

i. Show that $\quad I_{n}=-1+n I_{n-1}$
ii. Hence evaluate

$$
\begin{equation*}
\int_{1}^{e}(1-\ln x)^{3} d x \tag{2}
\end{equation*}
$$

End of Question 1

QUESTION TWO ($\mathbf{1 5}$ MARKS) Use a SEPARATE writing booklet.

a) The circle $x^{2}+y^{2}=9$ is rotated about the line $x=5$ to form a ring. When the circle is rotated, the line segment S at height y sweeps out an annulus. The coordinates of the end-points of S are x_{1} and $-x_{1}$, where $x_{1}=\sqrt{9-y^{2}}$.

i. Show that the area of the annulus is equal to

$$
\begin{equation*}
20 \pi \sqrt{9-y^{2}} \tag{2}
\end{equation*}
$$

ii. Hence find the volume of the ring.
b) i. Sketch region bounded by the curve $y=4 x-x^{2}, x=1, y=x$ and the y-axis.
ii. This region is rotated about the y-axis. Use the method of cylindrical shells to calculate the volume of the solid created.
c) A particular solid has as its base the region bounded by the hyperbola $x^{2}-y^{2}=1$ and the line $x=2$. Cross-sections perpendicular to this base and the x-axis are semi-circles whose diameter are in the base. Find the volume of the solid.
d) A tetrahedron has three mutually perpendicular faces and three mutually perpendicular edges of length A, B and C .
By slicing parallel to the base and summing such slices, confirm the formula for the volume of a tetrahedron is $V=\frac{A B C}{6}$.

End of Paper

Year 12 HSC Extension 22012 - Task 3 - Solutions

c)	$\int_{0}^{\frac{\pi}{3}} \frac{1}{5-4 \cos (x)} d x=\frac{2 \pi}{9} \approx 0.698132$	
	pasxble imtermediate steps: $\int \frac{1}{5-4 \cos (x)} d x$ For the integrand $\frac{1}{5-4 c a s}$, substute $y=\tan \left(\frac{x}{2}\right)$ and $d u=\frac{1}{2} \sec \left(\frac{x}{2}\right) d x$. Then transform the megrand using the substitutions $\sin (x)=\frac{2 u}{x^{2}+1}, \cos (x)=\frac{1-u^{2}}{u^{2}+1}$ and $d x=\frac{2 \pi x}{4^{2}+1} ;$ $=\int \frac{2}{\left(u^{2}+1\right)\left(5-\frac{4\left(1-u^{2}\right)}{u^{2}+1}\right)} d u$ Simplify the integrand $\frac{2}{\left(4^{2}+1\right)\left(5-\frac{4\left(1-x^{2}\right)}{u^{2}+1}\right)}$ to get $\frac{2}{9 u^{2}+1}$: $=\int \frac{2}{9 u^{2}+1} d u$ Factor out constants: $=2 \int \frac{1}{9 u^{2}+1} d u$ The integral of $\frac{1}{9 u^{2}+1} 10 \frac{1}{3} \tan ^{-1}(3 d)$ $=\frac{2}{3} \tan ^{-1}(3 u)+\text { constant }$ Substhute back for $a=\tan \left(\frac{x}{2}\right)$ $=\frac{2}{3} \tan ^{-1}\left(3 \tan \left(\frac{x}{2}\right)\right)+\text { constant }$	1 mark. set yo I mask correedt substitutiom
	$\int_{0}^{\frac{\pi}{3}} \frac{1}{5-4 \cos (x)} d x=\frac{2 \pi}{9} \approx 0.698132$	1 mash solution
d)	$\begin{aligned} & \underbrace{\int_{-2}^{2}\left(x \sqrt{4-x^{2}}-\sqrt{4-x^{2}}\right) d x}_{\text {odd fn }} \\ & 0-\underbrace{\int_{-2}^{2} x \sqrt{4-x^{2}} d x}_{\text {semi-cirde }}-\underbrace{\int_{-2}^{2} \sqrt{4-x^{2}} d x}_{-2} \\ & -\frac{1}{2} \pi r^{2} \\ & 0 \times 4= \end{aligned}$	I methat 1 recegnise odd b semme I sotution

