\qquad
TEACHER: \qquad

The Scots College

Year 12 HSC Mathematics Extension 2

Assessment 3

June 2013

General Instructions

- Working time - 45 minutes
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- A table of standard integrals is provided at the end of the paper

TOTAL MARKS: 36
Weighting: 20 \%

Question	Topic	Max Marks	Marks Obtained
1	Integration	24	
2	Volumes	12	
Total		36	

Question 1 (24 Marks)

a) Find the following integrals
(i) $\int \frac{x-1}{\sqrt{1-x^{2}}} d x$
[2]
(ii) $\int \frac{e^{4 x}-1}{e^{x}+1} d x$
(iii) $\int \frac{d x}{3 \sin x+4 \cos x}$
(iv) $\int x \tan ^{-1} x d x$
b) (i) Express $\frac{x^{3}}{(x-1)(x-2)}$ in the form $a x+b+\frac{c}{x-1}+\frac{d}{x-2}$ where a, b, c and d are real numbers.
(ii) Hence evaluate $\int_{3}^{4} \frac{x^{3}}{(x-1)(x-2)} d x$
c) (i) Let $I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x} d x$ where n is a non-negative integer.

Show that $I_{n}=\frac{2 n}{2 n+3} I_{n-1}$, for $n \geq 1$.
(ii) Hence evaluate $\int_{0}^{1} x^{3} \sqrt{1-x} d x$.
d) (i) Show that $\int_{-a}^{a} f(x) d x=\int_{0}^{a}[f(x)+f(-x)] d x$.
(ii) Hence evaluate $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+e^{x}} d x$

Question 2 (12 Marks)

a) A solid sphere is formed by rotating the circle $x^{2}+y^{2}=36$ about the $y-$ axis. A cylindrical hole of diameter 6 cm is bored through the centre of the hole in the direction $O y$.
(i) By considering a slice perpendicular to the y - axis, use the method of cylindrical shell to determine the volume of the solid remaining.
(ii) Also determine the volume of the section cut out from the sphere.
b) The region bound by the curve $y=x(4-x)$ and the x - axis is rotated about the y axis.
(i) By considering the solid formed by taking a slice perpendicular to the y-axis, show that the volume δV of this solid is given as $8 \pi \sqrt{4-y}$ cubic units.
(ii) Hence determine the volume of the solid of revolution.

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Yr 12 lAse Mathematics Extension 2
2.07 mm

Assessment 3 - Solutions - June 2013.

$$
\begin{aligned}
1 \text { (a) } & \int \frac{x-1}{\sqrt{1-x^{2}}} d x \\
& =\int\left(\frac{x}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\right) d x \\
& =-\frac{1}{2} \frac{\left(1-x^{2}\right)^{1 / 2}}{1 / 2}-\sin ^{-1} x+C \\
& =-\sqrt{1-x^{2}}-\sin ^{-1} x+C
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int \frac{d x}{3 \sin x+4 \cos x}, \\
& \text { let } t=\tan \frac{x}{2} \\
& d t=\frac{1}{2} \sec ^{2} \frac{x}{2} d x . \\
& =\int \frac{2 d t / 1+t^{2}}{3\left(\frac{2 t}{1+t^{2}}\right)+\frac{4\left(1-t^{2}\right)}{1+t^{2}}} \\
& =\int \frac{2 d t /\left(1+t^{2}\right)}{\left(6 t+4-4 t^{2}\right) /\left(1+t^{2}\right)} \\
& =\int \frac{d t}{2+3 t-2 t^{2}} \\
& =\int \frac{d t}{(2+t)(1+2 t)} \\
& \text { let } \frac{1}{(2-t)(1+2 t)}=\frac{A}{2-t}+\frac{B}{1+2 t} \\
& 1=A(1+2 t)+B(2-t) \\
& =\int\left(\frac{1}{5(2-t)}+\frac{2}{5(1+2 t)}\right) d t \\
& t=2 \\
& 1=5 A \quad A=\frac{1}{5} \\
& =\frac{1}{5}\left[1 \log (2-t)+\frac{2 \log _{e}}{2} 1+2 t\right]+C \\
& =\frac{1}{5} \log _{e} \frac{1+2 t}{2-t}+C \\
& =\frac{1}{5} \log _{e} \frac{1+2 \tan \frac{x}{2}}{2-\tan \frac{x}{2}}+C
\end{aligned}
$$

(iii)

$$
v^{\prime}=x
$$

$$
v=\frac{x^{2}}{2}
$$

9.14^{-}

$$
\begin{aligned}
& \int x \tan ^{-1} x d x \\
& u=\tan ^{-1} x \\
& u^{\prime}=\frac{1}{1+x^{2}} \\
& =\frac{x^{2}}{2} \tan ^{-1} x \int \frac{x^{2}}{2\left(1+x^{2}\right)} d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int\left(\frac{x^{2}+1-1}{1+x^{2}}\right) d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{1}{2}\left[x-\tan ^{-1} x\right]+C \\
& =\frac{x^{2}}{2} \tan ^{-1} x+\frac{1}{2} \tan ^{-1} x-\frac{1}{2} x+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (i) } I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x} d x \text {. } \\
& u=x^{n} \quad v^{\prime}=(1-x)^{1 / 2} \\
& I_{n}=\left[\frac{2}{3} x^{n}(1-x)^{3 / 2}\right]_{0}^{1}+\frac{2 n}{3} \int(1-x)^{3} x^{n-1} d y u^{\prime}=1 n x^{n-1} \quad v=\frac{-2}{3}(1-x)^{3 / 2} \\
& =[0-0]+\frac{2 n}{3} \int(1-x) \sqrt{1-x} x^{n-1} d x \\
& =\frac{2 n}{3} \int\left[x^{n-1} \sqrt{1-x}-x^{n} \sqrt{1-x}\right] d x \\
& =\frac{2 n}{3} I_{n-1}-\frac{2 n}{3} I_{n} \\
& I_{n}\left(1+\frac{2 n}{3}\right)=\frac{2 n}{3} I_{n-1} \\
& I_{n}\left(\frac{3+2 n}{3}\right)=\frac{2 n}{3} I_{n-1} \\
& \therefore I_{n}=\frac{2 n}{2 n+3} I_{n-1} \\
& \text { (ii) } \int_{0}^{1} x^{3} \sqrt{1-x} d x=I_{3}=\frac{1}{9} I_{2} \\
& =\frac{6}{9}\left[\frac{4}{7}\left\{\frac{2}{5} I_{0}\right\}\right] \\
& I_{0}=\int_{0}^{1} \sqrt{1-x} d x=\left[-\frac{2}{3}(1-x)^{3 / 2}\right]_{0}^{1} \\
& =0-\left(-\frac{2}{3}\right)=2 / 3 \\
& \therefore I_{3}=\frac{6}{9} \times \frac{4}{7} \times \frac{2}{5} \times \frac{2}{3}=\frac{96}{945} .
\end{aligned}
$$

9.26 .
(c)
(i) $\int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x$
let $I_{1}=\int_{-a}^{0} f(x) d x$ let $y=-x \quad d y=-d x$
when $x=0, y=0$

$$
x=-a, y=a
$$

$$
I_{1}=\int_{a}^{0} f(-y)(-a y)
$$

$$
=\int_{0}^{a} f(-y) d y
$$

$$
=\int_{0}^{a} f(-x) d x
$$

$$
\therefore \int_{-a}^{a} f(x) d x=\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x
$$

$$
=\int_{0}^{a}[f(x)+f(-x)] d x
$$

(ii)

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+e^{x}} d x=\int_{0}^{0}\left[\frac{\cos ^{2} x}{1+e^{x}}+\frac{[\cos (-x)]^{2}}{1+e^{-x}}\right] d x \\
&=\int_{0}^{\pi}\left[\frac{\cos ^{2} x}{1+e^{x}}+\frac{\cos ^{2} x}{\left.1+\frac{1}{e^{\frac{1}{x}}}\right] d x}\right. \\
&=\int_{0}^{\pi}\left(\frac{\cos ^{2} x}{1+e^{x}}+\frac{e^{x} \cos ^{2} x}{e^{x}+1}\right) d x \\
&=\int_{0}^{\pi} \frac{\cos ^{2} x\left(1+e^{x}\right)}{1+e^{x}} d x=\int_{0}^{\pi} \cos ^{2} x d x \\
&=\frac{1}{2} \int_{0}^{\pi}(1+\cos 2 x] d x=\frac{1}{2}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\pi}=\frac{1}{2}[1+0-0 .-0] \\
&=\pi / 2
\end{aligned}
$$

9.59 .

Q 2
(a)

$$
\begin{aligned}
d V & =\pi\left[(x+d x)^{2}-x^{2}\right] \cdot 2 y \\
& =\pi\left[x^{2}+2 x d x+(d x)^{2}-x^{2}\right] \cdot 2 y \\
& =\pi[2 x d x] 2 y \\
V & =4 \pi \int_{3}^{6} x y d y \\
& =4 \pi \int_{3}^{6} \lambda \sqrt{36-x^{2}} d x \\
& =4 \pi\left[-\frac{1}{x} \frac{\left(36-x^{2}\right)^{3 / 2}}{3 / 2}\right]_{3}^{6} d x \\
& =4 \pi\left[0+\frac{1}{3}(36-9)^{3 / 2}\right] \\
& =4 \pi\left[0+\frac{1}{3} 25^{13 / 2}\right] \\
& =\frac{500 \pi}{3} u^{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=4 x-x^{2} \\
& x^{2}-4 x+y=0
\end{aligned}
$$

$$
\delta V=k\left[x_{2}^{2}-x_{1}^{2}\right] \delta y .
$$

$$
=\pi\left[x_{2}-x_{1}\right]\left[x_{2}+x_{1}\right] d y
$$

$$
=\pi[4(2 \sqrt{4-y})] d y
$$

$$
=8 \pi \sqrt{4-y} d y
$$

(b)

$$
\begin{aligned}
V & =8 \pi \int_{0}^{4}(4-y)^{1 / 2} d y \\
& =8 \pi\left[-\frac{(4-y)^{3 / 2}}{3}\right]_{0}^{4} \\
& =8 \pi\left[-\frac{2}{3}(0)+\frac{2}{3} 4^{3 / 2}\right] \\
& =\frac{8 \pi}{3}\left(\frac{16}{3}\right)=\frac{128 \pi}{9} u^{3}
\end{aligned}
$$

