

THE SCOTS COLLEGE

2014

HSC Task 3 – In Class Test 10th June 2014 20%

Mathematics Extension 2

General Instructions

- Working time 75 minutes
- Reading time 5 minutes

• Write using black or blue pen Black pen is preferred

• Board-approved calculators may be used

Show all necessary working

Total marks – 43

Learning Intentions:

Polynomials

Integration

Volumes

QUESTION 1 -
$$\int (4 - x^2)^{-\frac{1}{2}} dx$$

A) $\frac{(4 - x^2)^{\frac{1}{2}}}{-4x} + C$
B) $-x(4 - x^2)^{\frac{1}{2}} + C$
C) $\ln |x + \sqrt{(4 - x^2)}| + C$
D) $\sin^{-1}\frac{x}{2} + C$

QUESTION 2 - Which integral below gives the volume of the solid of revolution obtained by rotating the bounded region between $y = \sqrt{x}$, x = 4 and the line y = 0 around the y - axis?

A)
$$\int_{0}^{4} \pi x \, dx$$

B) $2 \int_{0}^{4} \pi x \sqrt{x} \, dx$
C) $\int_{0}^{2} \pi (16 - y) \, dy$
D) $2 \int_{0}^{2} \pi y \, dy$

QUESTION 3 -
$$\int x \sec^2 x \, dx$$

A)
$$x \tan x + \ln|\cos x| + C$$
 C) $\frac{x^2}{2} \tan x + C$

B)
$$\frac{x^2}{2}(\sec^2 x - \tan^2 x) + C$$
 D) $\frac{\sec^3 x}{3x} + C$

a) Evaluate

$$\int_{0}^{\frac{\pi}{6}} \cos\theta \sin^{3}\theta \ d\theta \tag{2}$$

b) Find

$$\int \frac{\sqrt{x}}{1+x} dx \tag{3}$$

c) i) Express
$$\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)}$$
 in the form $\frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1}$ where A, B and C are constants. (2)

ii) Hence find
$$\int \frac{x^2 + x + 2}{(x^2 + 1)(x + 1)} dx$$
 (2)

d) Using the substitution $t = \tan \frac{\theta}{2}$, evaluate,

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin\theta+\cos\theta} \, d\theta$$

(3)

<u>QUESTION FIVE</u> (8 MARKS) BEGIN A NEW SHEET OF PAPER

- a) Given that the polynomial $P(x) = x^4 + x^3 3x^2 5x 2$ has a zero of multiplicity 3, find all the zeros of P(x). (3)
- *b*) The base of a solid is the semi-circular region of radius 1 unit in the *x*-*y* plane as illustrated in the diagram below.

Each cross-section perpendicular to the x-axis is an isosceles triangle. Each of the two equal sides are three quarters the length of the third side.

i) Show that the area of the triangular cross-section at
$$x = a$$
 is $\frac{\sqrt{5}}{2}(1-a^2)$ (3)

ii) Hence find the volume of the solid.

(2)

a) i) If
$$I_n = \int_{0}^{\frac{\pi}{2}} x^n \sin x \, dx$$
 for $n \ge 2$ prove that (3)

$$I_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}$$

ii) Hence evaluate

$$\int_{0}^{\frac{\pi}{2}} x^2 \sin x \, dx$$

b) *i*) Prove that

$$\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \tag{2}$$

ii) Hence or otherwise, evaluate

$$\int_{0}^{\pi} x \sin^3 x \, dx \tag{3}$$

(2)

<u>QUESTION SEVEN (10 MARKS)</u> BEGIN A NEW SHEET OF PAPER

a) The region bounded by the curve $y = x - x^2$ and the *x*-axis is rotated around the *y*-axis to form a solid. When the region is rotated, the horizontal line segment *l* at height *y* sweeps out an annulus.

i) Show that the area of the annulus at height y is given by $2\pi \sqrt{\frac{1}{4} - y}$ (3)

- *ii)* Find the volume of the solid
- b) The region enclosed by the circles $(x + 1)^2 + y^2 = 4$ and $(x 1)^2 + y^2 = 4$ is rotated about the line x = -1.

Using the method of cylindrical shells,

i) Show that the volume is given by

$$8\pi \int_{0}^{1} \sqrt{4 - (x+1)^2} \, dx$$

ii) Hence calculate the volume

END OF EXAM

(2)

(3)

(2)

Ext 2 - task 3 Solutions - 2014

Thursday, 29 May 2014 2:23 PM

Multiple Choice

$$(\bigcup \int (4-2t)^{-\frac{1}{2}} dn = \int \frac{1}{\sqrt{4-x^2}} dn$$
$$= \int \int \frac{1}{\sqrt{4-x^2}} dn$$
$$D$$

Long Response
Q4.
a)
$$\int_{0}^{T_{e}} (\cos 0 \sin^{3} 0 d0)$$

 $\left[\frac{1}{4} \sin^{4} 0\right]_{0}^{T_{e}}$
 $\left[\frac{1}{4} (\sin \frac{T_{e}}{2})^{4} - 0\right]$
 $\left[\frac{1}{4} (\frac{1}{2})^{4}\right]$
 $\left[\frac{1}{69}\right]$

b)
$$\int \frac{\sqrt{\pi}}{1+\pi} d\pi$$
 let $u = \sqrt{\pi}$
 $\int \frac{u}{1+u^2} 2u dn$ $\frac{dn}{du} = 2u$
 $dx = 2u dn$

$$2 \int \frac{u^{2}}{(4u^{2})} du$$

$$2 \int \frac{u^{2} + (-1)}{u^{2} + (-1)} du$$

$$2 \int (-\frac{1}{u^{2} + (-1)}) du$$

$$3 \int (-\frac{1}{u^{2} + (-1)}) du$$

$$4 + (-\frac{1}{u^{2} + (-1)}$$

р 00

$$\frac{2c^{2}+2c+2}{(x^{2}+i)(x+i)} = \frac{1}{x^{2}+i} + \frac{1}{x+i}$$

 $\int \frac{1}{n^2 + 1} + \frac{1}{n + 1} dn$

$$\tan(n) + \ln|x+1| + C$$

$$\begin{array}{l} \stackrel{(\alpha)}{=} & \mathcal{R}^{4} + \mathcal{R}^{3} - 3\mathcal{R}^{2} - 5\mathcal{R} - 2 \\ \\ & \mathcal{P}^{1}(\alpha) = 4\mathcal{R}^{3} + 3\mathcal{R}^{2} - 8\mathcal{R} - 5 \\ \\ & \mathcal{P}^{1}(\alpha) = 12\mathcal{R}^{2} + 6\mathcal{R} - 5 \end{array}$$

$$= 6 (2x^{2} + x - 1)$$

$$= 6 (2x^{-1}) (x + 1)$$

$$x = \frac{1}{2} \quad or \quad -1 \qquad P(*) \text{ is more } \therefore (x + 1) \text{ is }$$

$$P(w) = (x + 1)^{3} (x - 2)$$

$$k^{2} = (\frac{x}{2} + 1)^{3} (x - 2)$$

$$k^{2} = (\frac{x}{2} + 1)^{3} (x - 2)$$

$$k^{2} = (\frac{x}{2} + 1)^{3} - \frac{x}{2}$$

$$A = \frac{1}{2} \text{ bh}$$

$$= \frac{1}{2} \times 2g \times \int \frac{g}{2} + \frac{g}{2}$$

$$A = \frac{1}{2} \text{ bh}$$

$$= \frac{1}{2} \times 2g \times \int \frac{g}{2} + \frac{g}{2}$$

$$A = \frac{1}{2} \text{ bh}$$

$$= \int_{0}^{1} \frac{g}{2} (1 - x^{2}) dx$$

 $=\frac{\sqrt{5}}{2}\left(\varkappa-\frac{\varkappa}{3}\right)_{0}^{1}$

$$= \frac{\sqrt{5}}{2} \left[\left(1 - \frac{1}{3} \right) - 0 \right]$$

= $\frac{\sqrt{5}}{3} u_{n} t^{3}$

b) i)
$$\int_{a}^{a} f(x) dx$$
 let $x = a - u$ (=) $u = a - x$
 $dx = -du$
 $dx = -du$
if $x = a$
 $\int_{a}^{a} f(a - u) - du$
 $\int_{a}^{a} f(a - u) du$
 $\int_{a}^{b} f(a - x) du$
 $\int_{a}^{b} f(a - x) du$

$$\begin{aligned} \text{ii} \end{pmatrix} \int_{a}^{T} x \sin^{3} x \, dx \qquad \text{using part}(i) \\ \int_{a}^{T} x \sin^{3} x \, dx &= \int_{a}^{T} (T - x) \sin^{3}(T - x) \, dx \\ &= \int_{a}^{T} T \sin^{3}(T - x) \, dx - \int_{a}^{T} x \sin^{3}(T - x) \, dx \\ &= \sin(T - x) = \sin x \\ &= \pi \int_{a}^{T} \sin^{3}(x) \, dx - \int_{a}^{T} x \sin^{3}(x) \, dx \\ &= 2 \int_{a}^{T} x \sin^{3} x \, dx = \pi \int_{a}^{T} \sin^{3}(x) \, dx \\ &= \int_{a}^{T} x \sin^{3} x \, dx = -\frac{\pi}{2} \int_{a}^{T} \sin^{3} x \, dx \\ &= \pi \int_{a}^{T} \sin^{3} x \, dx = -\frac{\pi}{2} \int_{a}^{T} \sin^{3} x \, dx \\ &= \pi \int_{a}^{T} \sin^{3} x \, dx = -\frac{\pi}{2} \int_{a}^{T} \sin^{3} x \, dx \\ &= \pi \int_{a}^{T} \sin^{3} x \, dx = -\frac{\pi}{2} \int_{a}^{T} \sin^{3} x \, dx \\ &= \pi \int_{a}^{T} \sin^{3} x \, dx = -\frac{\pi}{2} \int_{a}^{T} \sin^{3} x \, dx \\ &= -\sin x \, dx \\ &= -\sin x \, dx \\ &= -\sin x \, dx \end{aligned}$$

$$= \frac{\pi}{2} \int_{0}^{1} \sin^{2} x \cdot \sin x \, dx \qquad dx = -\sin x \, dx$$

$$= \frac{\pi}{2} \int_{1}^{1} (1 - u^{2}) \cdot - \, dx$$

$$= \frac{\pi}{2} \int_{-1}^{1} 1 - u^{2} \, dx$$

$$= \frac{\pi}{2} \left[u - \frac{u^{3}}{3} \right]_{-1}^{1} = \frac{\pi}{2} \left[\frac{2}{3} + \frac{u}{3} \right]$$

$$= \frac{2\pi}{3}$$

* Question

$$J = \frac{1}{4} - \left(\frac{1}{4}\right)$$

$$J = \frac{1}{4} - \frac{1}{4}$$

$$J = \frac{1}{4} - \frac{1}{4} - \frac{1}{4}$$

$$= 2\pi \left[\left(-\frac{2}{3} \left(\frac{1}{4} - y \right)^{3} \right)^{3} \right]^{3}$$

$$= 2\pi \left[0 - \left(-\frac{2}{3} \left(\frac{1}{4} \right)^{2} \right) \right]$$

$$= 2\pi \left[\frac{2}{3} \left(\frac{1}{4} \right)^{2} \right]$$

$$= \frac{\pi}{6} \text{ units}^{3}$$

6

$$V = 4\pi \int_{0}^{1} (1+\pi) \sqrt{4 - (n+1)^{2}} dn + 4\pi \int_{0}^{1} (1-\eta) \sqrt{4 - (n+1)^{2}} dn$$

$$V = 4\pi \int_{0}^{1} (1+\pi) \sqrt{4 - (n+1)^{2}} dn + 4\pi \int_{0}^{1} (1-\pi) \sqrt{4 - (n+1)^{2}} dn$$

$$v = n$$

$$V = 4\pi \int_{0}^{1} (1+\pi) \sqrt{4 - (n+1)^{2}} dn$$

$$V = 8\pi \int_{0}^{1} \sqrt{4 - (n+1)^{2}} dn$$
as required

ii)

$$V = 8\pi \int_{0}^{1} \int (4 - (n+1)^{2} dn)$$

let $n+1 = 2\sin 0$
 $dn = 2\cos 0 d0$
when $n=0$ $0 = \frac{\pi}{6}$

$$V = 8\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int (-(2\sin \theta)^{2} \cdot 2\cos \theta \, d\theta)$$

$$= 8\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 4\cos^{2}\theta \, d\theta$$

$$= 32\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (1+\cos 2\theta) \, d\theta$$

$$= 16\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin 2\theta \int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= 16\pi \left(\frac{\pi}{2} + o\right) - 16\pi \left(\frac{\pi}{6} + \frac{1}{2}\left(\frac{\sqrt{3}}{2}\right)\right)$$

$$= 16 \overline{4} \left(\frac{\overline{4}}{2} - \frac{\overline{4}}{6} - \frac{57}{4} \right)$$
$$= 16 \overline{4} \left(\frac{\overline{4}}{3} - \frac{53}{4} \right)$$

Assessing tests Page 10

3

 $= \frac{16\pi^2}{3} - 47\sqrt{3} \quad u_{n,7}^{3}$

Æ

ii)
$$\sqrt{=} \otimes \pi \int_{-\infty}^{1} \int \frac{1}{\sqrt{4-(\mu-1)^{2}}} d\pi$$

let $\chi_{-1} = \mu$
 $\sqrt{=} \otimes \pi \int_{-1}^{1} \int \frac{1}{\sqrt{4-\mu^{2}}} d\pi$
 $\mu_{\pm} = 2\omega i \theta$ $\mu_{\pm 0} = \theta = \frac{\pi}{2}$
 $\lambda_{\pm} = -2\sin \theta d\theta$ $\mu_{\pm -1} = \theta = \frac{\pi}{2}$
 $= g\pi \int_{-\infty}^{\infty} \frac{1}{\sqrt{4-\mu^{2}}} d\theta$
 $= g\pi \int_{-\infty}^{\infty} \frac{1}{\sqrt{4-\mu^{2}}} d\theta$
 $= g\pi \int_{-\infty}^{\infty} \frac{1}{\sqrt{4-\mu^{2}}} d\theta$
 $= -\frac{1}{\sqrt{4}} \frac{1}{\sqrt{4}} \frac{1}{$

$$= +16\pi \left[0 - \frac{1}{2} \sin 2\theta \right]_{\frac{\pi}{2}}$$

$$= 16\pi \left[\left[\frac{2\pi\pi}{3} - \frac{1}{2} \left(\sin \frac{4\pi}{3} \right) \right] - \left(\frac{\pi}{2} - \frac{1}{2} \sin \pi \right] \right]$$

$$= \left(\sqrt{\pi} \left[\left(\frac{2\pi}{3} - \frac{1}{2} \left(-\frac{\sqrt{3}}{2} \right) \right) - \left(\frac{\pi}{2} - \frac{1}{2} \left(-\frac{\sqrt{3}}{2} \right) \right) \right]$$

$$= 16\pi \left[\frac{2\pi}{3} + \frac{\sqrt{3}}{4} - \frac{3\pi}{2} \right]$$

$$= 16\pi \left[\frac{\pi}{4} + \frac{\sqrt{3}}{4} \right]$$

$$= \frac{8\pi^{2}}{3} + 4\sqrt{3}\pi^{2}$$