THE SCOTS COLLEGE
2014
HSC Task 3 - In Class Test
$10^{\text {th }}$ June 2014
20\%

Mathematics Extension 2

General Instructions

- Working time - 75 minutes
- Reading time - 5 minutes
- Write using black or blue pen

Black pen is preferred

- Board-approved calculators may be used
- Show all necessary working

Total marks - 43

Learning Intentions:
Polynomials
Integration
Volumes

QUESTION 1 - $\quad \int\left(4-x^{2}\right)^{-\frac{1}{2}} d x$

A) $\frac{\left(4-x^{2}\right)^{\frac{1}{2}}}{-4 x}+C$
B) $-x\left(4-x^{2}\right)^{\frac{1}{2}}+C$
C) $\quad \ln \left|x+\sqrt{\left(4-x^{2}\right)}\right|+C$
D) $\sin ^{-1} \frac{x}{2}+C$

QUESTION 2 - Which integral below gives the volume of the solid of revolution obtained by rotating the bounded region between $y=\sqrt{x}, x=4$ and the line $y=0$ around the y-axis ?
A) $\int_{0}^{4} \pi x d x$
B) $2 \int_{0}^{4} \pi x \sqrt{x} d x$
C) $\int_{0}^{2} \pi(16-y) d y$
D) $2 \int_{0}^{2} \pi y d y$

Question 3- $\quad \int x \sec ^{2} x d x$
A) $\quad x \tan x+\ln |\cos x|+C$
B) $\frac{x^{2}}{2}\left(\sec ^{2} x-\tan ^{2} x\right)+C$
C) $\frac{x^{2}}{2} \tan x+C$
D) $\frac{\sec ^{3} x}{3 x}+C$

QUESTION FOUR (12 MARKS) BEGIN A NEW SHEET OF PAPER

a) Evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{6}} \cos \theta \sin ^{3} \theta d \theta \tag{2}
\end{equation*}
$$

b) Find

$$
\begin{equation*}
\int \frac{\sqrt{x}}{1+x} d x \tag{3}
\end{equation*}
$$

c) \quad i) Express $\frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)}$ in the form $\frac{A x+B}{x^{2}+1}+\frac{C}{x+1}$ where A, B and C are constants.
ii) Hence find $\quad \int \frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)} d x$
d) Using the substitution $t=\tan \frac{\theta}{2}$, evaluate,

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin \theta+\cos \theta} d \theta
$$

QUESTION FIVE (8 MARKS) BEGIN A NEW SHEET OF PAPER

a) Given that the polynomial $P(x)=x^{4}+x^{3}-3 x^{2}-5 x-2$ has a zero of multiplicity 3 , find all the zeros of $P(x)$.
b) The base of a solid is the semi-circular region of radius 1 unit in the $x-y$ plane as illustrated in the diagram below.

Each cross-section perpendicular to the x -axis is an isosceles triangle. Each of the two equal sides are three quarters the length of the third side.
i) Show that the area of the triangular cross-section at $x=a$ is $\frac{\sqrt{5}}{2}\left(1-a^{2}\right)$
ii) Hence find the volume of the solid.

QUESTION SIX (10 MARKS) BEGIN A NEW SHEET OF PAPER

a) i) If $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x \quad$ for $n \geq 2$ prove that

$$
I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}
$$

ii) Hence evaluate

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x
$$

b) i) Prove that

$$
\begin{equation*}
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \tag{2}
\end{equation*}
$$

ii) Hence or otherwise, evaluate

$$
\begin{equation*}
\int_{0}^{\pi} x \sin ^{3} x d x \tag{3}
\end{equation*}
$$

QUESTION SEVEN (10 MARKS) BEGIN A NEW SHEET OF PAPER

a) The region bounded by the curve $y=x-x^{2}$ and the x-axis is rotated around the y-axis to form a solid. When the region is rotated, the horizontal line segment l at height y sweeps out an annulus.

i) Show that the area of the annulus at height y is given by $2 \pi \sqrt{\frac{1}{4}-y}$
ii) Find the volume of the solid
b) The region enclosed by the circles $(x+1)^{2}+y^{2}=4$ and $(x-1)^{2}+y^{2}=4$ is rotated about the line $x=-1$.

Using the method of cylindrical shells,

i) Show that the volume is given by

$$
8 \pi \int_{0}^{1} \sqrt{4-(x+1)^{2}} d x
$$

ii) Hence calculate the volume

Ext 2 - task 3 Solutions - 2014
Thursday, 29 May 2014
2:23 PM
Multiple Choice
(1)

$$
\begin{align*}
\int(4-x)^{2-\frac{1}{2}} d x & =\int \frac{1}{\sqrt{4-x^{2}}} d x \\
& =\sin ^{-1}\left(\frac{x}{2}\right)+c
\end{align*}
$$

(2)

$$
\begin{array}{ll}
\pi \int_{0}^{2}\left(16-x^{2}\right) d y & 2 \int_{0}^{4} \pi x y d x \\
\pi \int_{0}^{2}\left(16-y^{4}\right) d y & 2 \int_{0}^{4} \pi x \sqrt{x} d x
\end{array}
$$

(3)

$$
\begin{aligned}
\int x \sec ^{2} x d x & =x \tan x-\int \tan x d x \\
& -x \tan x-\int \frac{\sin x}{\cos x} d x
\end{aligned}
$$

$$
=x \tan x-\ln |\cos x|+c
$$

(A)

Long Response
Q 4.
a)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{6}} \cos \theta \sin ^{3} \theta d \theta \\
& {\left[\frac{1}{4} \sin ^{-} \theta\right]_{0}^{\frac{\pi}{6}}} \\
& {\left[\frac{1}{4}\left(\sin \frac{\pi}{6}\right)^{4}-0\right]} \\
& {\left[\frac{1}{4}\left(\frac{1}{2}\right)^{4}\right]}
\end{aligned}
$$

b) $\int \frac{\sqrt{x}}{1+x} d x$
let

$$
\begin{aligned}
& u=\sqrt{x} \\
& u^{2}=x \\
& \frac{d x}{d u}=2 u \\
& d x=2 u d u
\end{aligned}
$$

$$
\begin{aligned}
& 2 \int \frac{u^{2}}{1+u^{2}} d u \\
& 2 \int \frac{u^{2}+1-1}{u^{2}+1} d u \\
& 2 \int 1-\frac{1}{u^{2}+1} d u \\
& 2\left[u-\tan ^{-1} u\right]+c \\
& \frac{2 \sqrt{x}-2 \tan ^{-1}(\sqrt{x})+c}{}
\end{aligned}
$$

c)
i)

$$
\begin{gathered}
\frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x+1} \\
x^{2}+x+2=(A x+B)(x+1)+C\left(x^{2}+1\right) \\
\therefore \\
A+C=1 \\
A=1-C \ldots(1) \\
B+C=2 \ldots(2)
\end{gathered}
$$

let $x=-1$

$$
\begin{aligned}
\therefore & =C+C \\
C & =1 \\
A & =0 \\
B & =1
\end{aligned}
$$

Do

$$
\frac{x^{2}+x+2}{\left(x^{2}+1\right)(x+1)}=\frac{1}{x^{2}+1}+\frac{1}{x+1}
$$

ii)

$$
\int \frac{1}{x^{2}+1}+\frac{1}{x+1} d x
$$

$$
\tan ^{-1}(x)+\ln |x+1|+c
$$

d)

$$
\tan \frac{\theta}{2}=t
$$

$$
\sin \theta=\frac{2 t}{1+t^{2}}
$$

$$
\theta=2 \tan ^{-1} t
$$

$$
\frac{d \theta}{d t}=\frac{2}{t^{2}+1}
$$

$$
\theta=\frac{\pi}{2}
$$

$$
t=\tan \frac{\pi}{4}=1
$$

$$
\theta=0
$$

$$
t=0
$$

* Question 5:
a)

$$
\begin{aligned}
& P(x)=x^{4}+x^{3}-3 x^{2}-5 x-2 \\
& P^{\prime}(x)=4 x^{3}+3 x^{2}-6 x-5 \\
& P^{\prime \prime}(x)=12 x^{2}+6 x-6
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{1}{1+\sin \theta+\cos \theta} d \theta \\
& \int_{0}^{1} \frac{1}{1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{t^{2}+1} d t \\
& \int_{0}^{1} \frac{2}{1+t^{2}+2 t+1-t^{2}} d t \\
& \int_{0}^{1} \frac{2}{2 t+2} d t=\int_{0}^{1} \frac{1}{t+1} d t \\
& =[\ln |t+1|]_{0}^{1} \\
& =\ln 2-\ln 1 \\
& =\ln 2
\end{aligned}
$$

$$
\begin{aligned}
= & 6\left(2 x^{2}+x-1\right) \\
= & 6(2 x-1)(x+1) \\
& x=\frac{1}{2} \text { or }-1 \quad P(x) \text { is manic } \therefore(x+1) \text { is } \\
P(x)= & (x+1)^{3}(x-2)
\end{aligned}
$$

b)
i)

$$
\begin{aligned}
h^{2} & =\left(\frac{3}{2} y\right)^{2}-y^{2} \\
& =\frac{9}{4} y^{2}-\frac{4}{4} y^{2}=\frac{5}{4} y^{2}
\end{aligned}
$$

$A=\frac{1}{2} b h$

$$
=\frac{1}{2} \times 2 y \times \sqrt{\frac{5}{4} y^{2}}
$$

$$
A=y \times \frac{\sqrt{5}}{2} \times y
$$

$$
=\frac{\sqrt{5}}{2}\left(1-x^{2}\right) \quad \text { at } x=a
$$

$$
A=\frac{\sqrt{5}}{2}\left(1-a^{2}\right)
$$

ii)

$$
\begin{aligned}
V & =\lim _{x x \rightarrow 0} \sum_{x=0}^{1} A d x \\
& =\int_{0}^{1} \frac{\sqrt{5}}{2}\left(1-x^{2}\right) d x \\
& =\frac{\sqrt{5}}{2}\left[x-\frac{x^{3}}{3}\right]_{0}^{1}
\end{aligned}
$$

Assessing tests Page 5

$$
\begin{aligned}
& =\frac{\sqrt{5}}{2}\left[\left(1-\frac{1}{3}\right)-0\right] \\
& =\frac{\sqrt{5}}{3} \text { units }^{3}
\end{aligned}
$$

*Question 6
$a)$

$$
\begin{aligned}
& I_{n}=\int_{0}^{\frac{\pi}{2}} x_{2 n d}^{n} \underbrace{\sin x}_{15 t} d x \\
& I_{n}=\left[-x^{n} \cos x\right]_{0}^{\frac{\pi}{2}}-n \int_{0}^{\frac{\pi}{2}}-x^{n-1} \cos x d x \\
& I_{n}=0+n \int_{0}^{\frac{\pi}{2}} x^{n-1} \cos x d n \\
& I_{n}=+n\left(\left[+x^{n-1} \sin x\right]_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}-(n-1) x^{n-2} \sin x d x\right) \\
& I_{n}=+n\left(\left[+\left(\frac{\pi}{2}\right)^{n-1}\right]-(n-1) \int_{0}^{\frac{\pi}{2}} x^{n-2} \sin x d x\right) \\
& I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}
\end{aligned}
$$

ii)

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x=2\left(\frac{\pi}{2}\right)^{1}-2(2-1) \int_{0}^{\frac{\pi}{2}} x \sin x d x
$$

$n=2$

$$
\begin{aligned}
& =\pi-2 \int_{0}^{\frac{\pi}{2}} \sin x d x \\
& =\pi-2[-\cos x]_{0}^{\frac{\pi}{2}} \\
& =\pi-2[0--1] \\
& =\pi-2
\end{aligned}
$$

b)
i)

$$
\int_{0}^{a} f(x) d x
$$

Let $x=a-u \Leftrightarrow u=a-x$
substitute

$$
\begin{aligned}
& \int_{a}^{0} f(a-u)-d u \\
- & \int_{a}^{0} f(a-u) d u \\
& \int_{0}^{a} f(a-u) d u
\end{aligned}
$$

substitute $u=x$

$$
\int_{0}^{a} f(a-x) d x
$$

\therefore

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

ii)

$$
\begin{aligned}
& \int_{0}^{\pi} x \sin ^{3} x d x \text { using part (i) } \\
& \begin{aligned}
& \int_{0}^{\pi} x \sin ^{3} x d x=\int_{0}^{\pi}(\pi-x) \sin ^{3}(\pi-x) d x \\
&=\int_{0}^{\pi} \pi \sin ^{3}(\pi-x) d x-\int_{0}^{\pi} x \sin ^{3}(\pi-x) d x \\
&=\pi \int_{0}^{\pi} \sin ^{3}(x) d x-\int_{0}^{\pi} x \sin ^{3}(x) d x \\
&=\pi \int_{0}^{\pi} \sin ^{3}(x) d x \\
& 2 \int_{0}^{\pi} x \sin ^{3} x d x=\frac{\pi}{2} \int_{0}^{\pi} \sin ^{3} x d x \\
&=\frac{\pi}{2} \int_{0}^{\pi} \sin ^{2} x \cdot \sin x d x \\
& \int_{0}^{\pi} x \sin ^{3} x d x
\end{aligned} \quad u=\cos x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{2} \int_{0} \sin ^{2} x \cdot \sin x d x \quad d x=-\sin x d x \\
& =\frac{\pi}{2} \int_{1}^{-1}\left(1-u^{2}\right) \cdot-d u \\
& =\frac{\pi}{2} \int_{-1}^{1} 1-u^{2} d u \\
& =\frac{\pi}{2}\left[u-\frac{u^{3}}{3}\right]_{-1}^{1}=\frac{\pi}{2}\left[\frac{2}{3}+\frac{2}{3}\right] \\
& \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

* Question

$$
\begin{aligned}
y & =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

$$
\text { a) } y=x-x^{2}
$$

$$
=x(1-x)
$$

$$
v=\int_{0}^{1 / 4} \pi\left(R_{1}^{2}-R_{2}^{2}\right) d y
$$

$$
=\int_{0}^{\frac{1}{4}} \pi\left(x_{1}^{2}-x_{2}^{2}\right) d y
$$

$$
=\pi \int_{0}^{\frac{1}{4}}\left(\frac{1}{2}+\sqrt{\frac{1}{4}-y}\right)^{2}-\left(\frac{1}{2}-\sqrt{\frac{1}{4}-y}\right)^{2} d y
$$

$$
=\pi \int_{0}^{\frac{1}{4}}\left(\frac{1}{4}+\sqrt{\frac{1}{4}-y}+\frac{1}{4}-y\right)-\left(\frac{1}{4}-\sqrt{\frac{1}{4}-y}+\frac{1}{4}-y\right) d y
$$

$$
=\pi \int_{0}^{\frac{1}{4}} 2 \sqrt{\frac{1}{4}-y} d y
$$

$$
=2 \pi \int_{0}^{\frac{1}{4}}\left(\frac{1}{4}-y\right)^{\frac{1}{2}} d \gamma
$$

$$
=2 \pi\left(-\frac{2}{2}\left(\frac{1}{4}-4\right)^{3 / 2}\right]^{1 / 4}
$$

$$
\begin{aligned}
& =2 \pi\left[-\frac{2}{3}\left(\frac{1}{4}-y\right)^{3 / 2}\right]_{0}^{1 / 4} \\
& =2 \pi\left[0-\left(-\frac{2}{3}\left(\frac{1}{4}\right)^{3 / 2}\right)\right] \\
& =2 \pi\left[\frac{2}{3}\left(\frac{1}{8}\right)\right] \\
& =\frac{\pi}{6} \text { units }^{3}
\end{aligned}
$$

b)

$$
(x+y)^{2}+y^{2}=4
$$

$$
(x-1)+y^{2}=4
$$

$$
\int_{0}^{1} A_{1} d x
$$

$$
\begin{aligned}
& \sum_{3}^{3} \\
& \int_{-1}^{\infty} A_{2} d x
\end{aligned}
$$

Remember - Radius \& Height MUST

$$
\delta V=2 \pi r h \delta x
$$

2 parts
 be positive values.

Radius will always be bigger then 1 .

$$
R=1+x
$$

Radius win always be smaller than 1 But x-value is negative \therefore $R=1+x$

Height for both volumes will

$$
\begin{aligned}
& V=\int_{0}^{1} A_{1} d x+\int_{-1}^{0} A_{2} d x \\
& \text { be } \\
& H=2 y \\
& V=\int_{-}^{1} 2 \pi(1+x) 2 \cdot \sqrt{4-(x+1)^{2}} d x+\int_{-1}^{0} 2 \pi(1+x) 2 \sqrt{4-(x-1)^{2}} d x \\
& \text { let } n=-x \\
& V=4 \pi \int_{0}^{1}(1+x) \sqrt{4-(x+1)^{2}} d x+4 \pi \int_{1}^{0}(-u+1) \sqrt{4-(-u-1)^{2}}-d u \\
& (-u-1)^{2}=(u+1)^{2} \\
& V=4 \pi \int_{\infty}^{1}(1+x) \sqrt{4-(x+1)^{2}} d x+4 \pi \int_{1}^{0}(u-1) \sqrt{4-(u+1)^{2}} d u \\
& \int_{a}^{b} f(x)=-\int_{b}^{a} f(x) \\
& .1 \pi\left(^ { \prime } (1 + x) \longdiv { (- 1 x + 1) ^ { 2 } } d x + 4 \pi (^ { \prime } (1 - x) \stackrel { 1 } { \square } \right.
\end{aligned}
$$

$$
\begin{aligned}
& V=4 \pi \int_{0}^{1}(1+x) \sqrt{4-(x+1)^{2}} d x+4 \pi \int_{0}^{1}(1-u) \sqrt{4-(u+1)^{2}} d x \\
& V=4 \pi \int_{0}^{1}(1+x) \sqrt{4-(x+1)^{2}} d x+4 \pi \int_{0}^{1}(1-x) \sqrt{4-(x+1)^{2}} d x \\
& E x=-\int_{b}^{a} f(x) \\
& V=4 \pi \int_{0}^{1} 2 \sqrt{4-(x+1)^{2}} d x \\
& V=8 \pi \int_{0}^{1} \sqrt{4-(x+1)^{2}} d x \quad \text { as required }
\end{aligned}
$$

ii)

$$
\begin{array}{lr}
V=8 \pi \int_{0}^{1} \sqrt{4-(x+1)^{2}} d x & \\
\text { Let } x+1=2 \sin \theta & \text { when } x=1 \quad \theta=\frac{\pi}{2} \\
d x=2 \cos \theta d \theta & x=0 \\
\theta=\frac{\pi}{6}
\end{array}
$$

\therefore

$$
\begin{aligned}
V & =8 \pi \int_{\frac{\pi}{6}}^{\pi / 2} \sqrt{4-(2 \sin \theta)^{2}} \cdot 2 \cos \theta d \theta \\
& =8 \pi \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 4 \cos ^{2} \theta d \theta \\
& =32 \pi \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =16 \pi\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
& =16 \pi\left(\frac{\pi}{2}+0\right)-16 \pi\left(\frac{\pi}{6}+\frac{1}{2}\left(\frac{\sqrt{3}}{2}\right)\right) \\
& =16 \pi\left[\frac{\pi}{2}-\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right] \\
& =16 \pi\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

$$
-11 \pi^{2}
$$

$=\frac{16 \pi^{2}}{3}-4 \pi \sqrt{3}$ units 3

ii) $V=8 \pi \int_{0}^{1} \sqrt{4-(x-1)^{2}} d x$

$$
\text { let } x-1=u
$$

$$
V=8 \pi \int_{-1}^{0} \sqrt{4-u^{2}} d u
$$

$$
\text { let } u=2 \cos \theta \quad u=0 \quad \theta=\frac{\pi}{2}
$$

$$
d u=-2 \sin \theta \quad d \theta \quad u=-1 \quad \theta=\frac{2 \pi}{3}
$$

$$
=8 \pi \int_{\frac{2 \pi}{3}}^{\frac{\pi}{2}} \sqrt{4-4 \cos ^{2} \theta} \cdot-2 \sin \theta d \theta
$$

$$
=8 \pi \int_{\frac{\pi}{2}}^{\frac{2 \pi}{2}} 2 \sin \theta \cdot-2 \sin \theta d \theta
$$

$$
=+32 \pi \int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} \sin ^{2} \theta d \theta
$$

$$
=+16 \pi \int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} 1-\cos 2 \theta d \theta
$$

$$
\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)
$$

$$
=+16 \pi\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{\pi}^{\frac{2 \pi}{3}}
$$

$$
\begin{aligned}
& =+16 \pi\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{\frac{\pi}{2}} \\
& =16 \pi\left[\left(\frac{2 \pi}{3}-\frac{1}{2}\left(\sin \frac{4 \pi}{3}\right)\right]-\left[\frac{\pi}{2}-\frac{1}{2} \sin \pi\right]\right) \\
& =16 \pi\left[\left(\frac{2 \pi}{3}-\frac{1}{2}\left(-\frac{\sqrt{3}}{2}\right)\right)-\left(\frac{\pi}{2}-\frac{1}{2}(0)\right)\right. \\
& =16 \pi\left[\frac{2 \pi}{3}+\frac{\sqrt{3}}{4}-\frac{3 \pi}{6}\right] \\
& =164\left[\frac{\pi}{6}+\frac{\sqrt{3}}{4}\right] \\
& =\frac{8 \pi^{2}}{3}+4 \sqrt{3} \pi
\end{aligned}
$$

