

SYDNEYBOYS HIGH SCHOOL
 MoORE PARK, SURRY HILLS

2004

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 2

Mathematics

Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections.
Section A (Questions 1-3), Section B (Questions 4-5) and Section C (Questions 6-7).
- Start each NEW section in a separate answer booklet.

Total Marks - 75 Marks

- Attempt Sections A - C
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 78
Attempt Questions 1-7
All questions are NOT of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.
SECTION A (Use a SEPARATE writing booklet)
Question 1 (15 marks)
(a)
Evaluate

$$
\int_{0}^{3} \frac{x d x}{\sqrt{16+x^{2}}}
$$

3
(b) \quad By completing the square first, find

2

$$
\int \frac{d x}{x^{2}+6 x+13}
$$

(c) Use integration by parts to find

$$
\int x e^{-x} d x
$$

(d) Find

$$
\int \cos ^{3} \theta d \theta
$$

(e) (i) Find real numbers A, B, and C such that

$$
\frac{x^{2}-4 x-1}{(1+2 x)\left(1+x^{2}\right)}=\frac{A}{1+2 x}+\frac{B x+C}{1+x^{2}}
$$

(ii) Hence find $\int \frac{x^{2}-4 x-1}{(1+2 x)\left(1+x^{2}\right)} d x$
(a) On separate Argand diagrams, sketch the locus defined by:
(i) $2|z|=z+\bar{z}+2 \quad 2$
(ii) $\left|z^{2}-(\bar{z})^{2}\right| \geq 4 \geq 2$
(iii) $\arg (z-1)-\arg (z+1)=-\pi / 3$
(b)

$\triangle A B C$ is drawn in the Argand diagram above where $\angle B A C=45^{\circ}, A$ and B are the points $(10,2)$ and $(6,8)$ respectively.
The length of side $A C$ is twice the length of side $A B$.
Find:
(i) the complex number that the vector $\overrightarrow{A B}$ represents the complex

2 number $-4+6 i$;
(ii) the complex number that the point C represents.

Question 3 (12 marks)
(a) The quadratic equation $x^{2}-x+K=0$, where K is a real number, has two distinct positive real roots α and β.
(i) Show that $0<K<\frac{1}{4}$
(ii) Show that $\alpha^{2}+\beta^{2}=1-2 K$ and deduce that $\alpha^{2}+\beta^{2}>\frac{1}{2}$
(iii) Show that $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}>8$

SECTION A continued

Question 3 continued
(b) (i) Show, using De Moivre's Theorem, that $z=\omega$, where $\omega=\sqrt{2}+i \sqrt{2}$ satisfies $z^{4}=-16$.
Hence write down, in the form $x+i y$ where x and y are real, all the other solutions of $z^{4}=-16$.
(ii) Hence write $z^{4}+16$ as a product of two quadratic factors with 2 real coefficients.
(iii) Show that $\omega+\frac{\omega^{3}}{4}+\frac{\omega^{5}}{16}+\frac{\omega^{7}}{64}=0$ 2

SECTION B (Use a SEPARATE writing booklet)

Question 4 (8 marks)
(a) Evaluate
(i) $\int_{0}^{a} x \sqrt{a-x} d x$
(ii) $\int_{0}^{1} \frac{\sin ^{-1} x}{\sqrt{1+x}} d x$
(b) (i) Using the substitution $t=\tan \frac{x}{2}$ show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x+\sin x}=\ln 2
$$

(ii) Hence, by substituting $u=\frac{\pi}{2}-x$ evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{x d x}{1+\cos x+\sin x}
$$

Question 5 (11 marks)
(a)

The diagram is a sketch of the function $y=h(x)$ for $-5 \leq x \leq 5$.
On separate diagrams sketch each of the following:
(i) $y=h(x+1)$
(ii) $y=\frac{1}{h(x)}$
(iii) $\quad y=h(|x|)$
(iv) $y=\sqrt{h(x)}$ 2
(v) $y=h(\sqrt{x})$
(b) Sketch the curve $9 y^{2}=x(x-3)^{2}$ showing clearly the coordinates 3 of any turning point.

SECTION C (Use a SEPARATE writing booklet)

Question 6 (9 marks)
A firework missile of mass 0.2 kg is projected vertically upwards from rest by means of a force that decreases uniformly in 2 seconds from $2 g$ newtons to zero and thereafter ceases. Assume no air resistance and that g is the acceleration due to gravity.
(i) If the missile has an acceleration of $a \mathrm{~m} / \mathrm{s}^{2}$ at time t seconds, show that

$$
a= \begin{cases}g(9-5 t) & t \leq 2 \\ -g & t>2\end{cases}
$$

[Hint: Draw a diagram showing the forces on the missile.]
(ii) Hence find:
(α) the maximum speed of the missile;
(β) the maximum height reached by the missile.

A particle of mass 1 kg is projected from a point O with a velocity $u \mathrm{~m} / \mathrm{s}$ along a smooth horizontal table in a medium whose resistance is $R \nu^{2}$ newtons when the particle has velocity $v \mathrm{~m} / \mathrm{s}$. R is a constant, with $R>0$.
(i) Show that the equation of motion governing the particle is given by

$$
\ddot{x}=-R v^{2}
$$

where x is the horizontal distance travelled from O.
(ii) Hence show that the velocity, $v \mathrm{~m} / \mathrm{s}$, after t seconds is given by

$$
t=\frac{1}{R}\left(\frac{1}{v}-\frac{1}{u}\right)
$$

An equal particle is projected from O simultaneously with the first particle, but vertically upwards with velocity $u \mathrm{~m} / \mathrm{s}$ in the SAME medium.
(iii) Show that the equation of motion governing the second particle is given by

$$
\ddot{y}=-\left(g+R v^{2}\right)
$$

where $g \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity and y represents the vertical distance from O where the particle has a velocity of $v \mathrm{~m} / \mathrm{s}$.
(iv) Hence show that the velocity $V \mathrm{~m} / \mathrm{s}$ of the first particle when the second one is momentarily at rest is given by

$$
\frac{1}{V}=\frac{1}{u}+\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right), \text { where } R a^{2}=g
$$

THIS IS THE END OF THE PAPER

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

SYDNEYBOYS HIGH
 SCHOOL

MOORE PARK, SURRY HILLS

2004

HIGHER SCHOOL
CERTIFICATE
ASSESSMENT TASK \# 2

Mathematics
 Extension 2

Sample Solutions

Section	Marker
A	Mr Hespe
B	Mr Parker
\mathbf{C}	Mr Kourtesis

3 1. (a) Method 1:

$$
\begin{aligned}
\mathrm{I} & =\int_{0}^{3} \frac{x d x}{\sqrt{16+x^{2}}} \\
& =\frac{1}{2} \int_{16}^{25} u^{-\frac{1}{2}} d u \\
& =\frac{1}{2}\left[2 u^{\frac{1}{2}}\right]_{16}^{25} \\
& =5-4, \\
& =1
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
& \mathrm{I}=\int_{4}^{5} \frac{u d u}{u}, \\
& =u]_{4}^{5} \text {, } \\
& =1 \text {. } \\
& \text { put } u^{2}=16+x^{2} \\
& 2 u d u=2 x d x \\
& \text { when } x=0, \quad u=4 \\
& x=3, \quad u=5
\end{aligned}
$$

Method 3:

$$
\begin{aligned}
\mathrm{I} & =\int_{0}^{\tan ^{-1} \frac{3}{4}} \frac{4 \tan \theta \cdot 4 \sec ^{2} \theta d \theta}{4 \sec \theta}, \\
& =4 \sec \theta]_{0}^{\tan ^{-1} \frac{3}{4}} \\
& =4\left\{\frac{5}{4}-1\right\} \\
& =1
\end{aligned}
$$

Method 4:

$$
\begin{aligned}
\mathrm{I} & =\frac{1}{2} \int_{0}^{9} \frac{d u}{\sqrt{16+u}}, \\
& =\left[\frac{1}{2} \times 2 \times \sqrt{16+u}\right]_{0}^{9}, \\
& =5-4, \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Method } 5 \\
& \begin{aligned}
\mathrm{I} & =\frac{1}{2} \int_{0}^{3} \frac{d\left(x^{2}\right)}{\sqrt{16+x^{2}}} \\
& =\left[\frac{1}{2} \times 2 \times \sqrt{16+x^{2}}\right]_{0}^{3}, \\
& =5-4, \\
& =1
\end{aligned}
\end{aligned}
$$

2 (b) $\mathrm{I}=\int \frac{d x}{\left(x^{2}+6 x+9\right)+13-9}$,

$$
\begin{aligned}
& =\int \frac{d x}{(x+3)^{2}+4} \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+\mathrm{C}
\end{aligned}
$$

2

$$
\text { (c) } \begin{array}{rlrl}
\mathrm{I} & =\int x e^{-x} d x, & \begin{aligned}
u=x, & v^{\prime}
\end{aligned}=e^{-x} \\
u^{\prime}=1, & v=-e^{-2} \\
& =-x e^{-x}+\int e^{-x} d x, & & \\
& =-x e^{-x}-e^{-x}+\mathrm{C} . & &
\end{array}
$$

3 (d) Method 1

$$
\begin{array}{rlr}
\mathrm{I} & =\int \cos ^{2} \theta \cdot \cos \theta d \theta, & \begin{aligned}
& \text { put } \sin \theta=u \\
& \cos \theta d \theta=d u
\end{aligned} \\
& =\int\left(1-\sin ^{2} \theta\right) \cdot \cos \theta d \theta, \\
& =\int\left(1-u^{2}\right) d u, \\
& =u-\frac{1}{3} u^{3}+\mathrm{C}, \\
& =\sin \theta-\frac{1}{3} \sin ^{3} \theta+\mathrm{C} .
\end{array}
$$

$$
\begin{aligned}
& \text { Method 2: } \\
& \begin{aligned}
\mathrm{I} & =\int \cos ^{2} \theta \cdot \cos \theta d \theta, \\
& =\int\left(1-\sin ^{2} \theta\right) \cdot d \sin \theta, \\
& =\sin \theta-\frac{1}{3} \sin ^{3} \theta+\mathrm{C} .
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{lrlr}
\text { Method 3: } & \begin{array}{l}
u=\cos ^{2} \theta,
\end{array} & \begin{array}{l}
v^{\prime}=\cos \theta \\
\mathrm{I}
\end{array}=\int \cos ^{2} \theta \cdot \cos \theta d \theta, & \\
& =\cos ^{2} \theta \sin \theta+2 \int \sin ^{2} \theta \cos \theta d \theta, & & \\
& =\cos ^{2} \theta \sin \theta+2 \int \cos \theta\left(1-\cos ^{2} \theta\right) d \theta, & \\
& =\cos ^{2} \theta \sin \theta+2 \sin \theta-2 \int \cos ^{3} \theta d \theta, & \\
3 \mathrm{I} & =\cos ^{2} \theta \sin \theta+2 \sin \theta+c, \\
\mathrm{I} & =\frac{1}{3}\left\{\cos ^{2} \theta \sin \theta+2 \sin \theta\right\}+\mathrm{C} . &
\end{array}
$$

3 (e) (i) Method 1:

$$
\begin{aligned}
x^{2}-4 x-1 & =A\left(1+x^{2}\right)+(B x+C)(1+2 x) \\
\text { Put } x & =-\frac{1}{2}, \\
\frac{1}{4}+2-1 & =A\left(1 \frac{1}{4}\right), \\
A & =1 \\
\text { Also, } x^{2}-4 x-1 & =x^{2}(A+2 B)+x(B+2 C)+(A+C), \\
\text { so } A+2 B & =1, \\
1+2 B & =1, \\
2 B & =0 \\
B & =0 \\
\text { And } B+2 C & =-4, \\
2 C & =-4, \\
C & =-2 .
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
\frac{x^{2}-4 x-1}{(1+2 x)\left(1+x^{2}\right)} & =\frac{A}{1+2 x}+\frac{B x+C}{x^{2}+1} . \\
\lim _{x \rightarrow-\frac{1}{2}}\left\{\frac{x^{2}-4 x-1}{1+x^{2}}\right\} & =\lim _{x \rightarrow-\frac{1}{2}}\left\{A+\left(\frac{B x+C}{1+x^{2}}\right) \times(1+2 x)\right\}, \\
\frac{\frac{1}{4}+2-1}{1+\frac{1}{4}} & =A, \\
A & =1 . \\
\lim _{x \rightarrow i}\left\{\frac{x^{2}-4 x-1}{1+2 x}\right\} & =\lim _{x \rightarrow i}\left\{\left(\frac{A}{1+2 x}\right) \times\left(1+x^{2}\right)+B x+C\right\}, \\
\frac{-1-4 i-1}{1+2 i} & =B i+C, \\
-2-4 i & =B i+C-2 B+2 i C, \\
C-2 B & =-2, \\
B+2 C & =-4, \\
2 C-4 B & =-4, \\
5 B & =0, \\
B & =0, \\
C & =-2 .
\end{aligned}
$$

2

$$
\text { (ii) } \begin{aligned}
\mathrm{I} & =\frac{1}{2} \int \frac{2 x d x}{1+2 x}-2 \int \frac{d x}{1+x^{2}}, \\
& =\frac{1}{2} \ln (1+2 x)-2 \tan ^{-1} x+\mathrm{C} .
\end{aligned}
$$

2 2. (a) (i) $2 \sqrt{x^{2}+y^{2}}=x+i y+x-i y+2$,

$$
\begin{aligned}
x^{2}+y^{2} & =x^{2}+2 x+1 \\
y^{2} & =4\left(\frac{1}{2}\right)\left(x+\frac{1}{2}\right) .
\end{aligned}
$$

2 (ii) $\begin{aligned}\left|(x+i y)^{2}-(x-i y)^{2}\right| & \geq 4, \\ \left|x^{2}+2 i x y-y^{2}-\left(x^{2}-2 i x y-y^{2}\right)\right| & \geq 4, \\ |i x y| & \geq 1, \\ |i||x y| & \geq 1,\end{aligned}$

2
(iii)

(b) (i) $\overrightarrow{B A}=(10-6)+i(2-8)$,

$$
=4-6 i
$$

Note that the question was in error: what was meant was $\overrightarrow{A B}$. Both answers were accepted, $4-6 i$ or $-4+6 i$.
(ii) Method 1: $\overrightarrow{A C}=\overrightarrow{A B} \times 2 \times \operatorname{cis} \frac{\pi}{4}$,

$$
\begin{aligned}
& =-(4-6 i) \times 2 \times\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right), \\
& =-(4 \sqrt{2}+4 \sqrt{2} i-6 \sqrt{2} i+6 \sqrt{2}), \\
& =-10 \sqrt{2}+2 \sqrt{2} i . \\
\therefore C & =(10+2 i)+(-10 \sqrt{2}+2 \sqrt{2} i), \\
& =10(1-\sqrt{2})+2(1+\sqrt{2}) i .
\end{aligned}
$$

Method2: $\quad \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A B} \times 2 \times$ cis $\frac{\pi}{4}$,

$$
\begin{aligned}
& =(10+2 i)-(4-6 i) \times 2 \times\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right), \\
& =(10+2 i)-(4 \sqrt{2}+4 \sqrt{2} i-6 \sqrt{2} i+6 \sqrt{2}), \\
& =10+2 i-10 \sqrt{2}+2 \sqrt{2} i . \\
& =10(1-\sqrt{2})+2(1+\sqrt{2}) i .
\end{aligned}
$$

1 3. (a) (i) Roots α, β positive implies $\alpha \beta>0$,
i.e. $\frac{c}{a}>0$ or $K>0$.

Also, for distinct real roots, $\Delta=1-4 K>0$,

$$
\begin{aligned}
1 & >4 K, \\
K & <\frac{1}{4} .
\end{aligned}
$$

So, $0<K<\frac{1}{4}$.
2
(ii) $\alpha+\beta=1$,
$\alpha \beta=K$,

$$
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta
$$

$$
=1-2 K
$$

Method 1:
$K<\frac{1}{4}$,
$\therefore \alpha^{2}+\beta^{2}>1-2\left(\frac{1}{4}\right)$ ("greater than" as we are subtracting "less than"),
i.e. $\alpha^{2}+\beta^{2}>\frac{1}{2}$.

Method 2:

$$
\begin{aligned}
& 2 K=1-\left(\alpha^{2}+\beta^{2}\right) \\
& K=\frac{1-\left(\alpha^{2}+\beta^{2}\right)}{2}<\frac{1}{4}, \\
& -\left(\alpha^{2}+\beta^{2}\right)<-\frac{1}{2}, \\
& \therefore \alpha^{2}+\beta^{2}>\frac{1}{2} .
\end{aligned}
$$

2
(iii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}$,

$$
=\frac{1-2 K}{K^{2}}, \text { (from above). }
$$

Now, also from above,

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & >\frac{1}{2} \\
\alpha^{2} \beta^{2} & <\left(\frac{1}{4}\right)^{2} \\
\frac{1}{\alpha^{2} \beta^{2}} & >16 \\
\text { So } \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} & >16 \times \frac{1}{2}, \\
\therefore \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} & >8
\end{aligned}
$$

3
(b) (i)

$$
\begin{aligned}
\omega & =2\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right), \\
& =2 \operatorname{cis} \frac{\pi}{4} . \\
\omega^{4} & =\left(2 \operatorname{cis} \frac{\pi}{4}\right)^{4}, \\
& =16 \operatorname{cis} \pi, \\
& =-16+16 \times 0, \\
& =-16 . \\
\therefore \omega_{0} & =\sqrt{2}+\sqrt{2} i, \\
\omega_{1} & =-\sqrt{2}+\sqrt{2} i, \\
\omega_{2} & =-\sqrt{2}-\sqrt{2} i, \\
\omega_{3} & =\sqrt{2}-\sqrt{2} i .
\end{aligned}
$$

(ii) $z^{4}+16=(z-\sqrt{2}-\sqrt{2} i)(z-\sqrt{2}+\sqrt{2} i)(z+\sqrt{2}+\sqrt{2} i)(z+\sqrt{2}-\sqrt{2} i)$,

$$
=\left(z^{2}-2 \sqrt{2} z+4\right)\left(z^{2}+2 \sqrt{2} z+4\right)
$$

2
(iii) Method 1:

$$
\begin{aligned}
& \omega=2 \operatorname{cis} \frac{\pi}{4} \\
& \omega^{3}=2 \operatorname{cis} \frac{3 \pi}{4} \\
& \begin{aligned}
& \omega^{5}=32 \operatorname{cis} \frac{5 \pi}{4} \\
& \begin{aligned}
& \omega^{7}=128 \operatorname{cis} \frac{7 \pi}{4} \\
& \begin{aligned}
& \\
& \begin{aligned}
\omega^{3} \\
4
\end{aligned} \frac{\omega^{5}}{16}+\frac{\omega^{7}}{64}=2 \operatorname{cis} \frac{\pi}{4}+2 \operatorname{cis} \frac{3 \pi}{4}+2 \operatorname{cis} \frac{5 \pi}{4}+2 \operatorname{cis} \frac{7 \pi}{4} \\
&=\omega_{0}+\omega_{1}+\omega_{2}+\omega_{3}, \text { the sum of the roots } \\
&=0
\end{aligned}
\end{aligned} .
\end{aligned}=\begin{array}{l}
\\
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Method 2: } \\
& \begin{aligned}
\frac{64 \omega+16 \omega^{3}+4 \omega^{5}+\omega^{7}}{64} & =\left(16 \omega\left(4+\omega^{2}\right)+\omega^{5}\left(4+\omega^{2}\right)\right) \times \frac{1}{64} \\
& =\omega\left(16+\omega^{4}\right)\left(4+\omega^{2}\right) \times \frac{1}{64}
\end{aligned}
\end{aligned}
$$

But $16+\omega^{4}=0$,

$$
\therefore \omega+\frac{\omega^{3}}{4}+\frac{\omega^{5}}{16}+\frac{\omega^{7}}{64}=0
$$

Method 3:

$$
\begin{aligned}
\omega^{4}=-16 \\
\begin{aligned}
\omega+\frac{\omega^{3}}{4}+\frac{\omega^{5}}{16}+\frac{\omega^{7}}{64} & =\omega+\frac{\omega^{3}}{4}+\frac{-16 \omega}{16}+\frac{-16 \omega^{3}}{64} \\
& =\omega-\omega+\frac{\omega^{3}}{4}-\frac{\omega^{3}}{4} \\
& =0
\end{aligned}
\end{aligned}
$$

Method 4:
In the geometric series given, $a=\omega$ and $r=\frac{\omega^{2}}{4}$.

$$
\begin{aligned}
S_{4} & =\frac{\omega\left(1-\left(\frac{\omega^{2}}{4}\right)^{4}\right)}{1-\frac{\omega^{2}}{4}}, \text { note that } \frac{\omega^{8}}{256}=\frac{(-16)^{2}}{256}=1 \\
& =\frac{\omega(1-1)}{1-\frac{\omega^{2}}{4}} \\
& =0
\end{aligned}
$$

(4)(a)(i) $\int_{0}^{a} x \sqrt{a-x} d x$

$$
\begin{aligned}
& =\int_{a}^{0}(a-u) \sqrt{u}(-d u) \quad \begin{array}{l}
u=a-x \Rightarrow x=a-u ; d x=-d u \\
x=0 \Rightarrow u=a
\end{array} \\
& =\int_{0}^{a}(a-u) u^{1 / 2} d u \\
& =\int_{0}^{a}\left(a u^{1 / 2}-u^{3 / 2}\right) d u \\
& =\left[\frac{2 a}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}\right]_{0}^{a} \\
& =\left(\frac{2 a^{2}}{3}-\frac{2 a^{2}}{5}\right) \sqrt{a} \\
& =\frac{4 a^{2}}{15} \sqrt{a}=\frac{4 a^{5 / 2}}{15}
\end{aligned}
$$

(ii) $\int_{0}^{1} \frac{\sin ^{-1} x}{\sqrt{1+x}} d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left((1+x)^{-1 / 2} \times \sin ^{-1} x\right) d x \\
& =\left.2 \sqrt{1+x} \sin ^{-1} x\right|_{0} ^{1}-\int_{0}^{1} \frac{2 \sqrt{1+x}}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

$$
=\sqrt{2} \pi-2 \int_{0}^{1} \frac{1}{\sqrt{1-x}} d x
$$

$$
=\sqrt{2} \pi+2 \int_{0}^{1}-(1-x)^{-1 / 2} d x
$$

$$
=\sqrt{2} \pi+2 \times\left. 2 \sqrt{1-x}\right|_{0} ^{1}
$$

$$
=\sqrt{2} \pi-4
$$

(b)(i) $\int_{0}^{1} \frac{\left(2 d t / 1+t^{2}\right)}{1+\left(1-t^{2} / 1+t^{2}\right)+\left(2 t / 1+t^{2}\right)}$

$$
\begin{array}{l|l}
=\int_{0}^{1} \frac{2 d t}{1+t^{2}+1-t^{2}+2 t} & t=\tan \frac{x}{2} \\
=\int_{0}^{1} \frac{2 d t}{2+2 t} & \cos x=\frac{1-t^{2}}{1+t^{2}}, \sin x=\frac{2 t}{1+t^{2}} \\
=\int_{0}^{1} \frac{d t}{1+t} & d x=\frac{2 d t}{1+t^{2}} \\
=[\ln |1+t|]_{0}^{1} &
\end{array}
$$

$$
=\ln 2
$$

4 (b) (ii)

$$
\begin{aligned}
& I=\int_{0}^{\frac{\pi}{2}} \frac{x d x}{1+\sin x+\cos x} \\
& \\
& =\int_{\frac{\pi}{2}}^{0} \frac{-\left(\frac{\pi}{2}-u\right) d u}{1+\sin \left(\frac{\pi}{2}-u\right)+\cos \left(\frac{\pi}{2}-u\right)} \sqrt{u=\frac{\pi}{2}-x \Rightarrow x=\frac{\pi}{2}-u ; d x=-d u} \\
& \\
& =\int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2}-u\right) d u}{1+\cos u+\sin u} \\
& \therefore 2 I=0 \Rightarrow u=\frac{\pi}{2} ; x=\frac{\pi}{2} \Rightarrow u=0 \\
& \therefore I=\frac{\pi \ln 2}{4} \frac{\frac{\pi}{2} d u}{1+\cos u+\sin u}=\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{d u}{1+\cos u+\sin u}=\frac{\pi}{2} \times \ln 2
\end{aligned}
$$

5 (a)
(i) $y=h(x+1)$

Move the curve 1 unit to the left

(ii) $y=\frac{1}{h(x)}$

Where $h(x)=0$ there are vertical asymptotes.
Where $h \rightarrow 0^{+}, y \rightarrow \infty$
Where $h \rightarrow 0^{-}, y \rightarrow-\infty$
Where $h=1$, the reciprocal is pointed ie not smooth.
(See the bottom diagram on the right.)

5 (a)
(iii) $\quad y=h(|x|)$.

Erase the LHS of h and then reflect the RHS, so that the result is an even function.
(iv) $y=\sqrt{h(x)}$

First erase the graph where $h<0$.
Where $0<h<1 \Rightarrow \sqrt{h}>h$
Where $y=1$, the graph is pointed, ie not smooth.
Where $y=0$, vertical tangents.

(v) $y=h(\sqrt{x})$

Domain: $x \geq 0$
Note that $0 \leq x \leq 4 \Rightarrow 0 \leq \sqrt{x} \leq 2$
So $h(\sqrt{4})=h(2)=0$
The graph for $0 \leq x \leq 4$ will be the same y values for h over $0 \leq x \leq 2$.

5 (b)
First draw $9 y=x(x-3)^{2}$
Clearly x intercepts are at $x=0$ and $x=3$ with $x=3$ is a double root.
$y=x(x-3)^{2} / 9 \Rightarrow z^{\prime}=\frac{1}{9}\left(2 x(x-3)+(x-3)^{2}\right)=\frac{(x-3)}{9}(2 x+x-3)$
$\therefore y^{\prime}=\frac{1}{9}(x-3)(3 x-3)=\frac{1}{3}(x-1)(x-3)=\frac{1}{3}\left(x^{2}-4 x+3\right)$
$\therefore y^{\prime \prime}=\frac{1}{3}(2 x-4)$
Stationary points when $y^{\prime}=0 \Rightarrow x=1,3$ ie $\left(1, \frac{4}{9}\right) \&(3,0)$
At $x=1, y^{\prime \prime}<0 \Rightarrow\left(1, \frac{4}{9}\right)$ is a maximum.
The graph in Fig I is the graph of z. The horizontal line is the line $y=1$.
So with $y=\frac{1}{3} \sqrt{x(x-3)^{2}}$, the maximum turning point remains the same except it is now ($1, \frac{2}{3}$).

Any part of the graph in Fig I below the x-axis is not defined for the square root. Where $0<y<1$ we get $\sqrt{y}>y$ and where $y>1$ we get $\sqrt{y}<y$.

The $x=0$ intercept will have a vertical tangent, the $x=3$ intercept is not smooth. This is shown in Fig 2.

We need to draw $y= \pm \frac{1}{3} \sqrt{x(x-3)^{2}}$: the \pm means that the top part of the graph will be reflected.
The final graph is Fig 3. With turning points $\left(1, \pm \frac{2}{3}\right)$

Fig I

Fig II

Fig III

Question 6
(i)

$$
F=g(2-t)
$$

$\therefore m a=F-m g=g(2-t)-m g$
$\therefore a=\frac{g(2-t)}{0 \cdot 2}-g$
$\therefore a=5 g(2-t)-g=g(9-5 t)$

6(ii)

$$
\begin{aligned}
& \text { (a) For } 0 \leq t \leq 2 \\
& \left.\begin{array}{l}
\frac{d v}{d t}=g(9-5 t) \\
\\
v=9 g t-\frac{5}{2} g t^{2}+c_{1} \\
\left.\begin{array}{l}
t=0 \\
v=0 \\
c_{1}=0
\end{array}\right\} \therefore v=g t\left[9-\frac{5}{2} t\right] \quad+x=\frac{9 g t^{2}}{2}-\frac{5}{6} g t^{3}+c_{3} *
\end{array}\right)
\end{aligned}
$$

Max speed when $a=g(9-5 t)=0$

$$
\text { is whew } t=9 / 5
$$

\therefore Max speed $V=\frac{81 \mathrm{~g}}{10} \mathrm{~m} / \mathrm{s}$

$$
\begin{align*}
\text { (B) When } t=2, \quad v & =8 g \\
\text { For } t \geq 2, \quad a & =-9 \\
\frac{d v}{d t} & =-g \\
v & =-g t+C_{2} \\
C_{2}=\log \quad \text { ie } v & =\log -g t
\end{align*}
$$

For max height $v=0 \Rightarrow t=10$
From (*) when $t=2, x=\frac{34 g}{3}$
From $<x=10 g t-\frac{g t^{2}}{2}+C_{4}$
When $t=2, x=\frac{34 g}{3} \Rightarrow C_{4}=\frac{-20 g}{3}$

$$
\therefore x=-\frac{g t^{2}}{2}+\log t-\frac{20 g}{3}
$$

When $t=10, x=\frac{130 \mathrm{~g}}{3} \mathrm{~m}$

Question 7
(i)

since $m=1 \Rightarrow \ddot{x}=-R v^{2}$
(ii)

$$
\begin{aligned}
& \frac{d v}{d t}=-R v^{2} \\
& \int_{u}^{v} \frac{d v}{v^{2}}=-R \int_{0}^{t} d t \\
& {\left[-\frac{1}{v}\right]_{u}^{v}=-R t} \\
& -\frac{1}{v}+\frac{1}{u}=-R t \\
& t=\frac{1}{R}\left(\frac{1}{v}-\frac{1}{u}\right)
\end{aligned}
$$

(iii)
$\uparrow+v e \prod_{m g} \downarrow R v^{2}$

$$
\begin{gathered}
m \ddot{y}=-m g-R v^{2} \\
m=1 \Rightarrow \ddot{y}=-\left(g+R v^{2}\right)
\end{gathered}
$$

(iv) $y=-\left(g+R v^{2}\right)$

Since $g=R a^{2}$

$$
\Rightarrow \ddot{y}=-\left(R a^{2}+R v^{2}\right)
$$

$$
i \ddot{y}=-R\left(a^{2}+v^{2}\right)
$$

$$
\begin{aligned}
& \frac{d v}{d t}=-R\left(a^{2}+v^{2}\right) \\
& \int_{u}^{0} \frac{d v}{a^{2}+v^{2}}=-R \int_{0}^{t} d t \\
& {\left[\frac{1}{a} \tan ^{-1} \frac{v}{a}\right]_{u}^{0} }=-R t \\
& 0-\frac{1}{a} \tan ^{-1} \frac{u}{a}=-R t \\
& \Rightarrow t=\frac{1}{R a} \tan ^{-1} \frac{u}{a} \quad 3^{\frac{1}{2}}
\end{aligned}
$$

At this time Ind particle is at rest.

$$
\begin{aligned}
& \text { Sublet into (ii) with } v=V \\
& \Rightarrow \frac{1}{R}\left[\frac{1}{y}-\frac{1}{u}\right]=\frac{1}{R a} \tan ^{-1} \frac{u}{a} \\
& \therefore \frac{1}{V}=\frac{1}{u}+\frac{1}{a} \tan ^{-1} \frac{u}{a}
\end{aligned}
$$

where $V=$ vel of ist particle. when the second is momentarily at rest

