## SYDNEY BOYS HIGH SCHOOL modre pari, surry hills

## 2008

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

## Mathematics

## Extension 2

## General Instructions

- Reading Time - 5 Minutes
- Working time -2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.


## Total Marks - 84

- Attempt questions 1 - 6
- Board approved calculators maybe used.
- Full marks may not be awarded for careless or badly arranged work.

Examiner: A.M.Gainford

## Section A

(Start a new answer sheet.)
Question 1. (14 marks)
(a) Given the complex number $z=-1+\sqrt{3} i$ :
(i) Express $z$ in modulus-argument form.
(ii) Hence evaluate $z^{9}$.
(b) Sketch the region in the Argand diagram which simultaneously satisfies:

$$
\frac{\pi}{4} \leq \arg (z-i) \leq \frac{3 \pi}{4} \quad \text { and } \quad|z-i|<2
$$

(c) Find the square roots of $8-6 i$.
(d) Find the two complex numbers which satisfy:

$$
3 z \bar{z}+2(z-\bar{z})=39+12 i
$$

(e) If $z=\cos \theta+i \sin \theta$, show that $1+z=2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)$.

Question 2. (14 marks)

## Marks

(a) Evaluate:

$$
\int_{0}^{\frac{1}{4}} \frac{1}{\sqrt{1-4 x^{2}}} d x
$$

(b) Use the substitution $u^{6}=x$ to evaluate:

$$
\int_{0}^{1} \frac{1}{\sqrt{x}+\sqrt[3]{x}} d x
$$

(c) Use integration by parts to find:

$$
\int e^{x} \cos x d x
$$

(d) Find:

$$
\int \frac{d x}{x^{2}-x-6}
$$

(e) Use the substitution $t=\tan \frac{x}{2}$ to evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x+\sin x} d x
$$

Give your answer in simplest exact form.

## Section B <br> (Start a new answer sheet.)

Question 3. (14 marks)
(a) The equation $x^{3}+k x+2=0$ has roots $\alpha, \beta$ and $\gamma$.
(i) Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$, in terms of $k$.
(ii) Find the monic cubic equation with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$, in terms of $k$.
(iii) Show that the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ is independent of $k$.
(b) (i) Prove that if $\alpha$ is a double root of the polynomial equation $P(x)=0$, then $P^{\prime}(\alpha)=0$.
(ii) Find all the roots of the equation

$$
18 x^{3}+3 x^{2}-28 x+12=0
$$

given that two of the roots are equal.
(c) Given that $f(x)=\frac{11-x}{x^{2}-x-2}$ :
(i) Graph $y=f(x)$, clearly marking its asymptotes and stationary points, if any. (Use approximate values.)
(ii) Hence, or otherwise, graph $y=\frac{1}{f(x)}$.

Question 4 (14 marks)
(a) Let $O A B C$ be a square on the Argand diagram, where $O$ is the origin, and $C$ is to the left of $A$. The point $A$ represents the complex number $z=2+3 i$.
(i) Find the complex numbers represented by $B$ and $C$ in the form $a+i b$.
(ii) The square is now rotated about $O$ through $45^{\circ}$ in the anticlockwise direction to $O A^{\prime} B^{\prime} C^{\prime}$. Find the complex numbers represented by the points $A^{\prime}, B^{\prime}, C^{\prime}$, in the form $a+i b$.
(b) (i) Use the substitution $x=a-t$, where $a$ is a constant, to prove that:

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-t) d t
$$

(ii) Hence, or otherwise, show that $\int_{0}^{2} x^{2}(2-x)^{9} d x=6 \frac{34}{165}$.
(c) A particle moves in a straight line with velocity given by $v^{2}=36-4 x^{2}$, where $x$ is the displacement in metres from a fixed point $O$ and $t$ is the time in seconds.
(i) Show that the motion is simple harmonic.
(ii) Find the period of the motion.
(d) Express the five fifth roots of unity in modulus-argument form, and clearly show them on an Argand diagram.

## Section C

(Start a new answer booklet)
Question 5 (14 marks)
(a) Solve for $z$ :

$$
z^{2}+(1+2 i) z-(2-4 i)=0
$$

Give your answers in the form $a+i b$.
(b) Let $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ where $n$ is a positive integer.
(i) Find the value of $I_{1}$.
(ii) Using integration, show that $I_{n}+I_{n-2}=\frac{1}{n-1}$.
(iii) Evaluate $J=\int_{0}^{\frac{\pi}{4}} \tan ^{11} x d x$.
(c) Use de Moivre's theorem to express $\cos 4 \theta$ in terms of $\cos \theta$.
(d) Given that $2+i$ is a root of the equation $x^{3}-x^{2}-7 x+15=0$, find all roots of the equation.

Question 6 (14 marks)
(a) Consider the function $y=e^{-x^{2}}$ :
(i) Sketch the graph of the function in the domain $-2 \leq x \leq 2$.
(ii) Show, using your graph, that $1<\int_{-2}^{2} e^{-x^{2}} d x<4$.
(iii) Approximate $\int_{-2}^{2} e^{-x^{2}} d x$ correct to two decimal places using Simpson's Rule with five $x$-values.
(c)


A projectile is fired from a point $O$ with initial speed $V \mathrm{~m} / \mathrm{s}$ at an angle of elevation of $\theta$. It is subject only to the force of gravity, resulting in a constant downward acceleration of magnitude $g \mathrm{~m} / \mathrm{s}^{2}$.
(i) Find functions for its horizontal (x) and vertical (y) displacements from $O$ after $t$ seconds.
(ii) The projectile falls to a point $P$, below the level of $O$, such that $P M=O M$.
Prove that the time taken to reach $P$ is $\frac{2 V(\sin \theta+\cos \theta)}{g}$ seconds.
(iii) Show that the distance $O M$ is $\frac{V^{2}(\sin 2 \theta+\cos 2 \theta+1)}{g}$ metres.
(iv) If the horizontal range of the projectile level with $O$ is $r \mathrm{~m}$ and the distance $O M$ is $\frac{4 r}{3}$, prove that $\sin 2 \theta-3 \cos 2 \theta=3$, and find the value of $\tan \theta$.

This is the end of the paper.

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2 x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: ln } x=\log _{e} x, x>0
\end{aligned}
$$

Question 1
(a) i) $z=-1+\sqrt{3} i$

$\tan \alpha=\sqrt{3}$
$r^{2}=(1)^{2}+(\sqrt{3})^{2}$
$\alpha=\frac{\pi}{3}$
$r^{2}=4$
$\theta=2 \frac{\pi}{3}$
$r=2$

$$
z=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)
$$

ii)

$$
\begin{aligned}
z^{9} & =\left[2\left(\cos 2 \frac{\pi}{3}+i \sin \frac{2 \pi}{3}\right)\right]^{9} \\
& =2^{9}(\cos 6 \pi+i \sin 6 \pi) \\
& =2^{9}(1+i(0)) \\
& =2^{9} \\
& =512
\end{aligned}
$$

(b)

(c) let $a+i b=\sqrt{8+6 i}$

$$
\begin{align*}
& a^{2}-b^{2}+2 a b i=8-6 i \\
& a^{2}-b^{2}=8  \tag{1}\\
& 2 a b=-6 \\
& a b=-3  \tag{2}\\
&\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}-4(a b)^{2} \\
&=64+4(-3)^{2} \\
&=100 \\
& a^{2}+b^{2}=10  \tag{3}\\
& \text { (1) } \\
& 2 a^{2}=18
\end{align*}
$$

$$
=\frac{\pi}{12}
$$

(c) $I=\int e^{x} \cos x d x$

$$
\begin{aligned}
& u=\cos x \\
& u^{\prime}=-\sin x \Longleftrightarrow \\
& r^{\prime}=e^{x} \\
& r=e^{x}
\end{aligned}
$$

$I=e^{x} \cos x+\int e^{x} \sin x d x+C$

$$
a=\sin x \quad v^{\prime}=e^{x}
$$

$$
u^{\prime}=\cos x \longleftarrow v=e^{x}
$$

$$
\begin{aligned}
& I=e^{x} \cos x+e^{x} \sin x-\int e^{x} \cos x d x+k \\
& I=e^{x}(\cos x+\sin x)-I+k \\
& I I=e^{x}(\cos x+\sin x)+k \\
& I=\frac{e^{x}}{2}(\cos x+\sin x)+k \text { whene } k \text { is a constant. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int_{0}^{1} \frac{d x}{\sqrt{x}+\sqrt[3]{x}} \\
& u^{6}=x \\
& \frac{d x}{d u}=6 u^{5} \\
& d x=6 u^{5} d u \\
& =\int_{0}^{1} \frac{6 u^{5} d u}{u^{3}+u^{2}} \\
& \text { when } x=1, u=1 \\
& x=0, u=0 \\
& =6 \int_{0}^{1} \frac{u^{3} d u}{1+u} \\
& =6 \int_{0}^{1} \frac{u^{3}+1}{1+u} d u-6 \int_{0}^{1} \frac{d u}{1+u} \\
& =6 \int_{0}^{1} \frac{(u \lambda)\left(u^{2}-u+1\right)}{u \lambda 1} d u-6 \int_{0}^{1} \frac{d u}{u+1} \\
& =6\left[\frac{u^{3}}{3}-\frac{u^{2}}{2}+u-\ln (u+1)\right]_{0}^{1} \\
& =6\left[\frac{1}{3}-\frac{1}{2}+1-\ln 2-0\right] \\
& =5-6 \ln 2
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}=9 \\
& a= \pm 3
\end{aligned}
$$

when $a=3$

$$
n=-3
$$

$$
b=-1 \quad b=1
$$

$$
3-i,-3+i
$$

(d)

$$
\begin{aligned}
& z=x+i y \\
& \bar{z}=x-i y \\
& 2 \bar{z}=x^{2}+y^{2} \\
& 3\left(x^{2}+y^{2}\right)+2(2 i y)=39+12 i \\
& 3\left(x^{2}+y^{2}\right)=39 \quad 4 y=12 \\
& x^{2}+y^{2}=13 \quad y=3 \\
& x^{2}+(3)^{2}=13 \\
& x^{2}=4 \\
& x= \pm 2 \\
& z=2+3 i,-2+3 i
\end{aligned}
$$

(e)

$$
\begin{aligned}
z & =\cos \theta+i \sin \theta \\
1+z & =1+\cos \theta+i \sin \theta \quad \text { since } \cos \theta=2 \cos ^{2} \theta-1 \\
& =2 \cos ^{2} \frac{\theta}{2}+2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} i \quad \text { 事 } \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
& =2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)
\end{aligned}
$$

Question 2
(a)

$$
\begin{aligned}
& \int_{0}^{\frac{1}{4}} \frac{d x}{\sqrt{1-4 x^{2}}} \\
= & \frac{1}{2} \int_{0}^{\frac{1}{4}} \frac{d x}{\sqrt{\frac{1}{4}-x^{2}}}, a=\frac{1}{2} \\
= & \frac{1}{2}\left[\sin ^{-1} 2 x\right]_{0}^{\frac{1}{4}} \\
= & \frac{1}{2}\left[\sin ^{-1} \frac{1}{2}-\sin ^{-1} 0\right] \\
= & \frac{1}{2}\left(\frac{\pi}{6}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { (d) } & \int \frac{d x}{x^{2}-x-6} \\
= & \int \frac{d x}{(x-3)(x+2)}
\end{aligned}
$$

$$
\begin{array}{rl}
\frac{1}{(x-3)(x+2)} \equiv \frac{a}{x-3} & +\frac{b}{x+2} \\
1 \equiv a(x+2)+b(x-3) \\
\text { let } x=3 & \text { eet } x=-2 \\
1=5 a & 1 \\
\begin{aligned}
a=\frac{1}{5} &
\end{aligned} & b=-5 b
\end{array}
$$

$$
\begin{aligned}
\therefore \int \frac{d x}{x^{2}-x-6} & =\frac{1}{5} \int \frac{d x}{x-3}-\frac{1}{5} \int \frac{d x}{x+2} \\
& =\frac{1}{5} \ln (x-3)-\frac{1}{5} \ln (x+2)+C \\
& =\frac{1}{5} \ln \left(\frac{x-3}{x+2}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } \begin{array}{l}
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x+\sin x} \\
=\int_{0}^{1} \frac{1}{1+\frac{1-t^{2}}{1+t^{2}+\frac{2 t}{1+t^{2}}}} \cdot \frac{2 d t}{1+t^{2}} \\
=2 \int_{0}^{1} \frac{d t}{1+t^{2}+1+t^{2}+2 t} \\
=2 \int_{0}^{1} \frac{d t}{2(1+t)} \\
=\int_{0}^{1} \frac{d t}{1+t} \\
=[\ln (1+t)]_{0}^{1} \\
=\ln 2-\ln 1
\end{array}=\ln 2
\end{aligned}
$$

$$
t=\tan \frac{x}{2}
$$

$$
\frac{x}{2}=\tan ^{-1} t
$$

$$
x=2 \tan ^{-1} t
$$

$$
\frac{d x}{d t}=\frac{2}{1+t^{2}}
$$

$$
d u=\frac{2 d t}{1+t^{2}}
$$

Quastone 3
(a) Yivien $x^{3}+k x+2=0$ (A) wick roots $\alpha, \beta \vee \gamma$.
(1) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}=\frac{k}{-2}=-\frac{1}{2} k$.
(ii) Let $x=x^{2}$
[NB $\sum \alpha \beta=+\frac{k}{a}=k$.
$\Rightarrow x= \pm \sqrt{x}$. in the abere. (A)

$$
\left.\alpha \alpha \beta \gamma=\frac{-d}{a}=-2 .\right]
$$

$$
\begin{aligned}
\therefore( \pm \sqrt{x})^{3}+k( \pm \sqrt{x})+2 & =0 . \\
\pm x \sqrt{x} \pm k \sqrt{x} & =-2 . \\
\pm \sqrt{x}(x+k) & =-2 . \\
\cdot: x(x+k)^{2} & =4 . \\
\frac{x\left(x^{2}+2 k x+k^{2}\right)}{x^{3}+2 k x^{2}+k^{2} x-4} & =4 . \\
& =0 .
\end{aligned}
$$

(III) Frer (A) $\alpha^{3}+k \alpha+2=0$

$$
\begin{array}{r}
\beta^{3}+k \beta+2=0 \\
\times \quad \gamma^{3}+k \gamma+2=0
\end{array}
$$

Addeng we get:

$$
\begin{aligned}
& \alpha^{3}+\beta^{3} * \gamma^{3}+k(\alpha+\beta+\gamma)+6=0 \\
& \therefore \alpha^{3}+\beta^{3}+\gamma^{3}+k \times 0+6=0 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-6
\end{aligned}
$$

(b) (1) Let $P(x)=(x-\alpha)^{2} Q(x)$.

$$
\begin{aligned}
P^{\prime}(x) & =2(x-\alpha) Q(x)+(x-\alpha)^{2} \varphi^{\prime}(x) . \\
\text { ie } P^{\prime}(x) & =(x-\alpha)\left(\alpha(P)-(x-\alpha) Q^{\prime}(x)\right) . \\
& =(x-\alpha) R_{r}(x) \\
\therefore P^{\prime}(\alpha) & =(\alpha-\alpha) \cdot R(\alpha) . \\
& =0 \cdot R(\alpha) \\
& =0 .
\end{aligned}
$$

(ii). Let $\quad P(x)=18 x^{3}+3 x^{2}-28 x+12=0$

$$
\begin{aligned}
p_{(x)}^{\prime}= & 54 x^{2}+6 x-28=0 \\
p_{(x)}^{\prime}= & 2\left(27 x^{2}+3 x-14\right)=0 \\
=2(9 x+7)(3 x-2) & =0 \\
\therefore \quad x & =\frac{2}{3},-\frac{7}{9}
\end{aligned}
$$

Canacder $x=\frac{2}{3}$

$$
\begin{aligned}
P\left(\frac{2}{3}\right) & =18 \cdot\left(\frac{2}{3}\right)^{3}+3 \cdot\left(\frac{2}{3}\right)^{2}-28 \times \frac{2}{3}+12 . \\
& =18 \times \frac{8}{27}+3 \times \frac{4}{9}-\frac{56}{3}+12 . \\
& =\frac{16}{3}+\frac{4}{3}-\frac{56}{3}+12 . \\
& =\frac{6+4-56+36}{3} \\
& =0 .
\end{aligned}
$$

ie $P\left(\frac{\alpha}{3}\right)=P^{\prime}\left(\frac{\alpha}{3}\right)=0$
$\therefore$ Rosts are $\frac{2}{3}, \frac{2}{3}$ and $\alpha$.
sureve $\sum$ roit $=\frac{2}{3}+\frac{2}{3}+\alpha=-\frac{3}{18}=\frac{-1}{6}$.

$$
\begin{aligned}
\therefore \quad \frac{4}{3}+\alpha & =-\frac{1}{6} \\
\alpha & =-\frac{9}{6}=-1 \frac{1}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f(x) & =\frac{11-x}{x^{2}-x-2}=\frac{11-x}{(x-2)(x+1)} \\
f^{\prime}(x) & =\frac{\left(x^{2}-x-2\right)(-1)-(11-x)(2 x-1)}{(x-2)^{2}(x+1)^{2}} \\
& =\frac{-x^{2}+x+2-\left(22 x-11+x-2 x^{2}\right)}{(x-2)^{2}(x+1)^{2}} \\
& =\frac{-x^{2}+x+2-\left(23 x-11-2 x^{2}\right)}{(x-2)^{2}(x+1)^{2}} \\
& =\frac{x^{2}-22 x+13}{(x-2)^{2}(x+1)^{2}}
\end{aligned}
$$

for $f^{\prime}(x)=0$

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& x=\frac{22 \pm \sqrt{484-52}}{2} \\
&=\frac{22 \pm \sqrt{432}}{2} \\
&=\frac{22 \pm 2 \sqrt{3}}{2} \\
&=11 \pm 6 \sqrt{3} \\
& \doteq 21.4,0.6 . \\
& \therefore \text { st.N5 at }(0.6,-4.6)+(21.4,-0.02)
\end{aligned}
$$

Reathing

| $x$ | 0 | 0.6 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y^{\prime}$ | $\frac{13}{4}$ | 0 | -2 |  |  |
| -1 |  |  |  |  |  |$\quad \therefore \quad \operatorname{Rin} 4 . \max (0.6,-4 \cdot 6)$



Ris MIN

$$
\begin{aligned}
& a x \\
& (21.4,-0.02)
\end{aligned}
$$



Quistion 4.
(a)

(1) $C$ is given by.

$$
i(2+3 i)=-3+2 i
$$

(II) $B$ is grein ley.
(II)

$$
\left.\begin{array}{rl}
A^{\prime} & =\operatorname{cis} 45^{\circ}(2+3 i) \\
& =\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)(2+3 i) \\
& =\frac{1}{\sqrt{2}}(1+i)(2+3 i) \\
& =\frac{1}{\sqrt{2}}(-1+5 i) \\
& =-\frac{1}{\sqrt{2}}+\frac{5}{\sqrt{2}} i \\
0 \frac{2}{2}\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)
\end{array}\right]
$$

$$
\begin{aligned}
& B^{\prime}=\frac{1}{\sqrt{2}}(1+i)(-1+5 i) \\
&=\frac{1}{\sqrt{2}}(-6+4 i) \\
&=\frac{-6}{V^{2}}+\frac{4}{\sqrt{2}} i \\
& \text { OR }(-3 \sqrt{2}+2 \sqrt{2} i)
\end{aligned}
$$

$$
\begin{aligned}
& C^{\prime}=\frac{1}{\sqrt{2}}(1+i)(-3+2 i) \\
&=\frac{1}{\sqrt{2}}(-5-i) \\
&=\frac{\sqrt{2}}{\sqrt{2}}-\sqrt{2} i \\
& 0 \Omega\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{a} f(x) d x & =\int_{a}^{0} f(a-t) \cdot d t \\
& =-\int_{a_{a}}^{0} f(a-t) d t \\
& =\int_{0}^{a} f(a-t) d x \\
& =\int_{0}^{a} f(a-x) d x
\end{aligned}
$$

(11)

$$
\begin{aligned}
\int_{0}^{2} x^{2}(2-x)^{9} d x & =\int_{02}^{2}(2-x)^{2} \cdot x^{9} d x \\
& =\int_{0}^{1}\left(4-4 x+x^{2}\right) x^{9} d x \\
& =\int_{0}^{2}\left(4 x^{9}-4 x^{10}+x^{11}\right) d x \\
& =\left[\frac{4 x^{10}}{10} \frac{-4 x^{\prime \prime}}{11}+\frac{x^{12}}{12}\right]_{0}^{2} \\
& =\frac{2}{5} \cdot 2^{10}-\frac{42^{11}}{11}+\frac{2^{12}}{12} \\
& =2^{10}\left[\frac{2}{5}-\frac{8}{11}+\frac{1}{3}\right] \\
& =2^{10} \times \frac{66-150+5}{165^{\prime}} \\
& =2^{10} \times \frac{121-120}{165^{\prime}} \\
& =\frac{2^{10}}{163^{\prime}} \\
& =\frac{1024}{165^{\prime}} \\
& =\frac{34}{165}
\end{aligned}
$$

(c) (1) $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} u^{2}\right)$
(i1) $T=\frac{2 \pi}{n}$.

$$
\begin{aligned}
& =\frac{d}{d x} \frac{1}{2}\left(36-4 x^{2}\right) \\
& =\frac{d}{d x}\left(18-2 x^{2}\right) \\
& =-4 x
\end{aligned}
$$

setue $n=2$

$$
\therefore \ddot{x} \propto x \quad \therefore \text { s.u.M. }
$$

is of the foun $\ddot{x}=-x^{2} x$
$=\pi \cdot$ sec.
(d) Let $3^{5}=1$.

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{5} & =1 . \\
\cos 5 \theta+i \sin 5 \theta & =1+0 i \\
\therefore \cos 5 \theta & =1 \\
\operatorname{s\theta } \theta & =2 k \pi, k \in Z . \\
\theta & =2 k \frac{k}{5} . \\
& =0, \pm \frac{2 \pi}{5}, k \frac{4 \pi}{5} .
\end{aligned}
$$

Seatue

$$
\begin{aligned}
& z=r(\cos \theta+i \sin \theta) \\
& \text { now }|z|=r \\
&\left|z^{5}\right|=|z|^{5} \\
&=1 \\
& \therefore|z|=r \\
&=1.7
\end{aligned}
$$

$\therefore$ sats are is 0, is $\pm \frac{2 \pi}{5}$, is $\pm \frac{4 \pi}{5}$.


SECTION C

QUESTION 5
(a) $z^{2}+(1+2 i) z-(2-4 i)=0$

let $5-12 i=(a+i b)^{2}$ $5-12 i=\left(a^{2}-b^{2}\right)+2 a b i$
$a^{4}-5 a^{2}-36=0$
$\left(a^{2}-9\right)\left(a^{2}+4\right)=0$

$$
a= \pm 3 \Rightarrow b=\mp 2
$$

$$
\begin{aligned}
& \therefore \quad z=\frac{-(1+2 i) \pm( \pm 3 \mp 2 i)}{2} \\
& \Rightarrow \quad z=1-2 i \text { or } z=-2
\end{aligned}
$$

(b) $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$
(i)

$$
\begin{aligned}
\therefore I_{1} & =\int_{0}^{\pi / 4} \tan x d x \\
& =[\ln (\sec x)]_{0}^{\pi / 4} \\
& =\ln \sqrt{2} \text { or } \frac{1}{2} \ln 2
\end{aligned}
$$

$$
\text { b) } I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x
$$

i)

$$
\text { (ii) } \begin{aligned}
I_{n} & =\int_{0}^{\pi / 4} \tan ^{n} x d x \\
& =\int_{0}^{\pi / 4} \tan ^{n-2} x \cdot \tan ^{2} x d x \\
& =\int_{0}^{\frac{\pi}{4}} \tan ^{n-2} x \sec ^{2} x d x-\int_{0}^{\frac{\pi}{4}} \tan ^{n^{2}} x d b x \\
I_{n} & =\frac{1}{n-1}\left[\tan ^{n-1} x\right]_{0}^{\frac{\pi}{4}}-\left[I_{n-2}\right] \\
\therefore I_{n} & =\frac{1}{n-1}-I_{n-2} \\
\Rightarrow I_{n} & +I_{n-2}=\frac{1}{n-1}
\end{aligned}
$$

QUESTION 6
(a)

$$
y=e^{-x^{2}}
$$

(i)

(ii)

$$
\begin{aligned}
& \text { Area sumall } \\
& \text { Rect }
\end{aligned} \int_{02}^{2} e^{-x^{2}} d x<\text { Area large }
$$

$$
4(e)^{-4}<\int_{-2}^{2} e^{-x^{2}}<4(1)
$$

$$
\Rightarrow 1<\int_{-2}^{2} e^{-x^{2}}<4
$$

[NOTE: $\left.4 e^{-1}>1\right]$
(iui)
(2)

$$
\begin{gathered}
-2 \\
\int_{-2}^{2} e^{-x^{2}} d x=\frac{1}{3}[f(-2)+4 f(-1)+f(0)] \\
+ \\
\frac{1}{3}[f(0)+4 f(1)+f(2)]
\end{gathered}
$$

ie $\underset{\geqslant}{\geqslant} 1.66$
(b) (i) $x=V t \cos \theta$ (1) $y=V t \sin \theta-\frac{g t^{2}}{2}$
(ii) Particle at $P \Rightarrow x=-y$
since $O M=M P$

$$
\begin{array}{r}
\Rightarrow V t \cos \theta=\frac{g t^{2}}{2}-V t \sin \theta  \tag{1}\\
\therefore \quad t=\frac{2 V(\sin \theta+\cos \theta)}{9}
\end{array}
$$

(iii)

$$
\begin{aligned}
O M & =x=V t \cos \theta \\
& =V \cos \theta \cdot\left[\frac{2 V(\sin \theta+\cos \theta)}{g}\right] \\
& =\frac{V^{2}}{9}[2(\sin \theta+\cos \theta) \cos \theta] \\
(2) & =\frac{V^{2}}{9}\left[\sin 2 \theta+2 \cos ^{2} \theta\right] \\
& =\frac{V^{2}}{9}[\sin 2 \theta+\cos 2 \theta+1]
\end{aligned}
$$

(iv) Range $r=\frac{v^{2}}{9} \sin 2 \theta$

$$
\begin{equation*}
O M=\frac{4}{3} r=\frac{v^{2}}{9}(\sin 2 \theta+\cos 2 \theta+1) \tag{2}
\end{equation*}
$$

$$
\Rightarrow \frac{4}{3}\left(\frac{v^{2}}{9} \sin 2 \theta\right)=\frac{v^{2}}{9}(\sin 2 \theta+\cos 2 \theta+1)
$$

$$
\therefore 4 \sin 2 \theta=3 \sin 2 \theta+3 \cos 2 \theta+3
$$

i.e $\sin 2 \theta-3 \cos 2 \theta=3$

Now $2 \sin \theta \cos \theta=3(1+\cos 2 \theta)$

$$
2 \sin \theta \cos \theta=3\left(2 \cos ^{2} \theta\right)
$$

$\left(\because \cos ^{2} \theta\right)$

$$
\begin{align*}
\Rightarrow \quad & \frac{2 \sin \theta}{\cos \theta}=6  \tag{2}\\
\therefore \quad \tan \theta & =3
\end{align*}
$$

