

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2014

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #2

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Each of the three Sections (A, B, and C) is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 91

- Attempt questions 1 6
- Board approved calculators maybe used.
- Full marks may not be awarded for careless or badly arranged work.
- Unless otherwise stated, give answers in simplest exact form.

Examiner: P.R.Bigelow

Section A (Start a new answer sheet.)

Question 1. (17 marks)

(a) Find
$$\int \frac{2x+1}{x^2+2x+2} dx$$
. 2

(b) Evaluate
$$\arg((2+i)\overline{z})$$
 where $z = -1-3i$ 2

(c) (i) Sketch the curve:

$$(x+1)(y-2)=1$$

- (ii) Express the function in (i) in the form y = f(x). Hence or otherwise sketch:
 - $(\alpha) \qquad y = f(x-2) \qquad \qquad 1$

$$(\beta) \qquad y^2 = f(x) \qquad \qquad 2$$

$$(\gamma) \qquad y = \frac{1}{f(x)}$$

(d) Find:

$$\int \frac{d\theta}{8\cos^2\theta + 1}$$

(e) If z is a complex number such that $z = k(\cos \theta + i \sin \theta)$ where k is real, show that $2 \arg(z+k) = \frac{\theta}{2}$.

(f) Use the substitution $u = 1 - \sqrt{x}$ to find:

$$\int \frac{dx}{1-\sqrt{x}}$$

Question 2. (15 marks)

(a)	(i)	Show that:	Marks 2
		$\int_{-a}^{a} f(x) dx = \int_{0}^{a} \left[f(x) + f(-x) \right] dx$	
	(ii)	Hence evaluate $\int_{-2}^{2} \frac{dx}{1+e^{-x}}$	2
(b)	(i)	Express $-\sqrt{27} - 3i$ in mod-arg form.	2
	(ii)	Hence find $\left(-\sqrt{27}-3i\right)^6$, giving your answer in the form $a+ib$ where <i>a</i> and <i>b</i> are real.	2
(c)	The	e complex number z lies on the locus $\arg(z+i) = \frac{\pi}{4}$:	
	(i)	Sketch the locus, showing any intercepts with the axes.	1
	(ii)	Find the least value of $ z $.	2

(d) (i) Use the graph of $y = \sin x$ to sketch on separate diagrams, the graphs of the functions $y = |\sin x|$ and $y = \sin |x|$ for $-2\pi \le x \le 2\pi$.

(ii) Evaluate:
$$\int_{-2\pi}^{2\pi} (\sin|x| + |\sin x|) dx$$
 2

Section B (Start a new answer sheet.)

Question 3. (16 marks)

(a)	The nine letters of the word <i>REDIVIDER</i> are arranged at random in a line.	Marks
	(i) How many letter sequences are possible?	2
	(ii) What is the probability that the sequence is the same from left to right as from right to left.	2
(b)	An object of mass 10 kg falls from rest from a stationary balloon, and experiences air resistance of magnitude $4v^2$. Take the value of g to be 10 m/s ² , and take downwards to be positive.	2
	(i) Show that the equation of motion is:	1
	$\ddot{x} = \frac{50 - 2v^2}{5}$	
	(ii) Find the terminal velocity of the object.	1
	(iii) Show that the velocity v at time t is given by:	3
	$t = \frac{1}{4} \ln \left(\frac{5+\nu}{5-\nu} \right)$	
	(iv) Show $v = \frac{5(e^{4t}-1)}{e^{4t}+1}$	2

(v) Find the vertical distance fallen as a function of t. 3

Question 4 (14 marks)

(a)

Let $p = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$

(i) Show that $1 + p + p^2 + p^3 + p^4 = 0$ 2

(ii) Simplify
$$(p+p^4)(p^2+p^3)$$
 1

- (iii) Form a quadratic equation with roots $(p+p^4)$ and (p^2+p^3) 1
- (iv) Hence or otherwise show that $\cos \frac{2\pi}{5} \cdot \cos \frac{4\pi}{5} = -\frac{1}{4}$ 2
- (b) There are eight people, 5 men and 3 women, to be seated at a round table. How many arrangements are there if:
 - (i) there are no restrictions?
 - (ii) no two women are next to one another?
 - (Give your answers in the form of powers and factorials.)
- (c) The constants *m* and *n* are such that the equation $x^3 mx + n = 0$ has three no-zero roots α , β , γ .
 - (i) Find in terms of *m* and *n* the cubic equation (in expanded form) whose roots are α^3 , β^3 and γ^3 .
 - (ii) Hence or otherwise find $\alpha^7 \beta \gamma + \alpha \beta^7 \gamma + \alpha \beta \gamma^7$ in terms of *m* and *n*. 3

Section C (Start a new answer booklet)

Question 5 (14 marks)

A particle is projected from a point *O* on a plane inclined at 45° to the horizontal. The velocity of projection is *V* at an angle of θ to the inclined plane, where $\theta = \tan^{-1} \frac{1}{2}$.

[You are given that
$$y = x \tan \alpha - \frac{gx^2}{2V^2} (1 + \tan^2 \alpha)$$
 where $\alpha = 45^{\circ} + \theta$]

(i) Show that
$$\tan \alpha = 3$$
.

(ii) Hence show that
$$y = 3x - \frac{5gx^2}{V^2}$$
.

(iii) Show that the range *OP* is
$$\frac{2\sqrt{2}V^2}{5g}$$
. 2

(iv) Show that it meets the plane at right-angles. 3

(b) The sketch is of the parabola

$$f(x) = \frac{x^2 - 2x}{2}.$$

Without calculus, draw the following on separate diagrams, showing essential features:

1

Question 6 (15 marks)

- (a) Sketch the following, showing essential features:
 - (i) $y = \ln(\ln x)$ 2

(ii)
$$f(x) = \cos^{-1}(\sin x)$$
 2

(b) The triangle OPQ is equilateral.

P represents the complex number z, and Q represents the complex number w.

2

2

(c) Let
$$I_n = \int_0^1 (1-x^2)^n dx$$
 and $J_n = \int_0^1 x^2 (1-x^2)^n dx$.

(i) Using integration by parts, on I_n , show that $I_n = 2nJ_{n-1}$.

(ii) Hence show that
$$I_n = \frac{2n}{2n+1} I_{n-1}$$
.

(iii) Show that
$$J_n = I_n - I_{n+1}$$
. 2

(iv) Hence deduce that
$$J_n = \frac{1}{2n+3}I_n$$
. 2

(v) Hence find a reduction formula for
$$J_n$$
 in terms of J_{n-1} .

This is the end of the paper.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

SBHS 2014 Extension 2 Assessment #2 Solutions $\frac{2x+1}{x^2+2x+2}$ dx 1)a $\int \frac{2\chi + 2}{\chi^2 + 2\chi + 2} = \frac{1}{\chi^2 + 2\chi + 1 + 1}$ dx <u>-</u> $\frac{2n+2}{(x+2n+2)} - \frac{1}{(n+1)^2+1} dx$ $(x^2+2x+2) - \tan(x+1) + ($ b) arg ((2+i)(-1-3i) = arg ((2+i)(-1+32 = arg (-2+6i-i-3) = ang (-5+5i) = <u>3π</u> 4 c)i)(x+1)(y-2)=2+170 3 x = -1 y-270 y + 2 ブス 7 when z=0 4=3 when y=0 $\chi=-\frac{3}{2}$

 $d) \int \frac{d0}{8\cos^2(0+1)}$ $= \int \frac{d\theta}{8\cos^2\theta + \sin^2\theta + \cos^2\theta}$ $\int \frac{d\theta}{9\cos^2\theta + \sin^2\theta}$ $\frac{\frac{1}{\cos^2\theta}}{\frac{9\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta}}$ $\int \frac{\sec^2 \Theta d\Theta}{9 + \tan^2 \Theta}$ let u= tant du sec²0 $d\theta = du$ $\sec^2 \theta$ 9+ u2 - sec20 a= 3 $\frac{1}{3} \tan\left(\frac{y}{3}\right) + C$ 3 tan (tan0) + C arg(z+k) = arg(k(cosO+isinO)+k)= arg/k (cosO+1) + kisinO) = arg(k/2cos2-1+1)+ki2sin2cos2 $= \arg\left(2k\cos\left(\cos\left(\cos\left(\frac{1}{2}+i\sin\left(\frac{1}{2}\right)\right)\right)\right)$

Graphically Note: = R = k * Z+k is the diagonal of a rhombus it since the diagonals of a rhombus bisect the angles, ang (Z+k) = O Z * In Z

dx 1-52 let u= 1-Jn $\frac{du}{dx} = \frac{1}{2\sqrt{2x}}$ dr = - 2 Jrdu $=\int \frac{-2\sqrt{\pi}du}{u}$ $= \int -2(1-u) du$ $= 2 \int u - 1 du$ $= 2 \int \left(1 - \frac{1}{u}\right) du$ $= 2 \left[u - nu \right] + C$ $= 2 \left[1 - \sqrt{x} - \ln(1 - \sqrt{x}) \right] + C$

 $(2)a)i) \int f(n)dn$ $= \int_{-\alpha}^{\alpha} f(x) dx + \int_{-\alpha}^{\alpha} f(x) dx$ Consider f/n/dn let u=-x when x=-qu du = x=0,u= $= \int_{0}^{0} \frac{dx}{dx} = -du$ $= -\int_{0}^{a} f(-u) du$ $= \int_{-\infty}^{\alpha} f(-u) du$ $= \int_{-\infty}^{\alpha} f(-x) du$ $= \int_{-\infty}^{\alpha} f(-x) dx$ $= \int_{-\infty}^{\alpha} f(-x) dx$ $= \int_{0}^{u} f(-x) dx + \int_{0}^{a} f(x) dx$ $= \int_{a}^{a} \left[f(n) + f(-n) \right] dn$ $\frac{1}{1+e^{-\alpha}}$ $= \int_{-1}^{2} \left[\frac{1}{1+e^{-n}} + \frac{1}{1+e^{n}} \right] dx$ $= \int \frac{e^{n}}{e^{n}} \frac{e^{n}}{e^{n}} + \frac{1}{1+e^{n}} \int \frac{dx}{dx}$

In ١ ¢-,)4 ---- | arg(z+i) = II $= arg(z - (-i)) = \frac{T}{4}$ $\left(\right) \right)$ 0 ß Consider the area of SOAB in two ways 6 A Ľ $\frac{1}{2}$ x $\sqrt{2}$ x d $\frac{1}{2} \times \frac{1}{1} \times \frac{1}{2} =$ d= 5 value of /2/= 1the least $=\sqrt{2}$ Z y=sinx İ 0 . 2 m π 2/1

5 y= / sina 7 60 - 11 -2M J A y= sih 1 27 π -A 17 $\int \frac{dx}{dx} dx = \frac{dx}{dx}$ -2π + sunx dre $\int_{-2\pi}^{2\pi} \frac{\sin \left| x \right|}{\sin \left| x \right|} dx$ 1-211 $0 + 4 \int sin n d n$ $-\cos n$ 4 - $4\left[-\cos \pi \left(-\cos 0\right)\right]$ $4 \left[- (-1) + (-1) \right]$ 8

$$\frac{9 \text{ uestion (3)}}{|Y \rightarrow 1||} |\sum_{i} F_{i}, I \rightarrow 2$$
(i) The possible sequences
are:
$$\frac{q!}{2^{4}} = \frac{362880}{16} = 22680$$
(ii) On a way to put $|V|$ in
the middle. The rest of
 $j F_{i} F_{i} I$ can be atranged 4!
Ways.
Now, once the letters on
lither the left vined there
is only 1 way to arrange
hight/left side = 1×41
 $Proh. = \frac{4!}{(q!/2t)} = \frac{1}{q45}$

$$\frac{|Soluttion s|}{(Sh)} (i) = 10 \text{ is } 10 \text{ is$$

.

$$\begin{array}{rcl} \dot{f} &= \frac{5}{20} \int \left(\frac{1}{5+V} + \frac{1}{5-V} \right) dV \\ \Rightarrow & f &= \frac{1}{4} \left[ln(5+V) - ln(5-V) \right] \\ \vdots & f &= \frac{1}{4} ln\left(\frac{5+V}{5-V} \right) \\ \vdots & f &= \frac{1}{4} ln\left(\frac{5+V}{5-V} \right) \\ \vdots & f &= \frac{1}{4} ln\left(\frac{5+V}{5-V} \right) \\ \vdots & f &= \frac{1}{20} ln\left(\frac{5+V}{5-V} \right) \\ \vdots & f &= \frac{5+V}{5-V} = e^{4T} \\ 5 &= e^{4T} - (e^{4T})V = 5+V \\ 5 &= e^{4T} - (e^{4T})V = 5+V \\ 5 &= e^{4T} - (e^{4T})V = 5+V \\ 5 &= \frac{5}{2} \left(e^{4T} - 1 \right) \\ e^{4T} + 1 \\ \hline V &= \frac{1}{2} \left(e^{4T} - 1 \right) \\ e^{4T} + 1 \\ \hline V &= \frac{1}{2} \left(e^{4T} + 1 \right) \\ e^{4T} + 1 \\ \hline S &= pavating + he Variables \\ \int dx &= 5 \int \left[\left(e^{4T} + 1 \right) - 2 \\ e^{4T} + 1 \\ \hline dt \\ &= 5 \int \left(1 - \frac{2}{e^{4T} + 1} \right) dt \\ \end{array}$$

$$= 5\pi - 10 \int \frac{dt}{e^{4t} + 1}$$
Now, $10 \int \frac{dt}{e^{4t} + 1} \left(x \frac{\bar{o}^{4t}}{e^{-4t}}\right)$

$$= 10 \int \frac{-4t}{1 + e^{-4t}} dK$$

$$= 10 \int \frac{-4t}{1 + e^{-4t}} dK$$

$$= -\frac{5}{2} \int \frac{(-4e^{-4t})dt}{1 + e^{-4t}}$$

$$= -\frac{5}{2} \int \frac{du}{M} = -\frac{5}{2} \ln n$$

$$= -\frac{5}{2} \int \frac{du}{M} = -\frac{5}{2} \ln n$$

$$= -\frac{5}{2} \int \frac{du}{M} = -\frac{5}{2} \ln n$$

$$= -\frac{5}{2} \ln (1 + e^{-4t})$$

$$\therefore \chi = 5/t - \frac{5}{2} \ln (1 + e^{-4t}) + c.$$
When $t = 0$, $\chi = 0$, $\Rightarrow (=\frac{5}{2} \ln c.)$

$$\therefore \chi = 5/t + \frac{5}{2} \ln (\frac{2}{1 + e^{-4t}})$$

$$= 5/t - \frac{5}{2} \ln (\frac{2}{1 + e^{-4t}})$$

• Method (1)

$$\frac{Y = 5(e^{4t} - 1)}{e^{4t} + 1}$$

$$\frac{dx}{dt} = \frac{5(e^{4t} - 1)}{e^{4t} + 1}$$

$$x = 5\int \left(\frac{e^{4t} + 1}{e^{4t} + 1}\right) dt$$

$$= 5\int \left(1 - \frac{2}{e^{4t} + 1}\right) dt$$

$$= 5\int \left(1 + \frac{-2e^{-4t}}{1 + e^{-4t}}\right) dt$$

$$= 5\int \left(1 + \frac{1}{2}\left(\frac{-4e^{-4t}}{1 + e^{-4t}}\right)\right) dt$$

$$= 5t + \frac{5}{2}l_n\left(1 + \frac{-4t}{1 + e^{-4t}}\right) + C$$

When
$$f=0$$
, $x=0$, $0 = \frac{5}{2} \ln 2 + c$

$$x = 5f + \frac{5}{2} \ln \left(\frac{1+e^{-4f}}{2}\right)$$
Method (2) $Y = 5 \int \frac{e^{4f} - 1}{e^{4f} + 1} dt$
but $x = 5 \int \frac{e^{2f} - e^{2f}}{e^{2f} + e^{-2f}} dt$.
Let $u = e^{2f} + e^{-2f} du = 2(e^{2f} - e^{-2f}) dt$.
 $x = \frac{5}{2} \int \frac{du}{du}$
 $x = \frac{5}{2} \int \frac{du}{du}$
 $x = \frac{5}{2} \ln (e^{2f} + e^{-2f}) + c$
When $f = 0$, $x = 0$
 $\Rightarrow c = -\frac{5}{2} \ln 2$.
 $x = \frac{5}{2} \ln (\frac{e^{2f} + e^{-2f}}{2})$

-**

$$\frac{\text{Method } (3)}{\chi = 5} \frac{Q(3) (b)(V)}{e^{4t}H} = \frac{1}{2} \int \frac{e^{4t}}{e^{4t}H} dt - 5 \int \frac{dt}{e^{4t}H} \\ = \frac{5}{4} \ln \left(e^{4t} + 1 \right) - 5 \int \frac{4e^{4t} dt}{4e^{4t}(e^{4t} + 1)} \\ = \frac{5}{4} \int \frac{4e^{4t}}{e^{4t}(e^{4t} + 1)} \\ = \frac{5}{4} \int \frac{4e^{4t}}{e^{4t}(e^{4t} + 1)} \\ = \frac{1}{4} \int \frac{4e^{4t}}{e^{4t}} dt \\ = \frac{1}{4} \int \frac{1}{4e^{4t}} dt \\ = \frac{1}{4} \int \frac{1}{4e^{4t}} dt \\ = \frac{1}{4e^{4t}} \int \frac{1}{e^{4t}} $

•

$$= -\frac{5}{4} \ln \left(\frac{e^{4t}}{e^{4t+1}} \right)$$

$$x = \frac{5}{4} \ln \left(e^{4t} \right) - \frac{5}{4} \ln \left(\frac{e^{4t}}{e^{4t+1}} \right) + C$$

$$x = \frac{5}{4} \left[\ln \left(e^{4t} + 1 \right) - \ln \left(e^{4t} \right) + \ln \left(\frac{4t}{e^{4t}} \right) \right]$$

$$+ C$$

$$x = \frac{5}{4} \left(2 \ln \left(e^{4t} + 1 \right) - 4t \right) + C$$

When $t = 0$, $x = 0$

$$0 = \frac{5}{4} \left(2 \ln 2 \right) + C$$

$$\Rightarrow C = -\frac{5}{2} \ln 2.$$

$$x = \frac{5}{2} \ln \left(\frac{e^{4t} + 1}{2} \right) - 5t$$

$$3$$

Conclusion: / All 3 are Now, expanding (SAME becomes method (1) we have expansions (') $\lambda = 5t + \frac{5}{2} ln \left(\frac{1+\frac{1}{e^{4}}}{2} \right)$:) $L = 5t + \frac{5}{2} ln\left(\frac{e^{+t}+1}{204t}\right)$ Expand method (2) (2) $\mathcal{K} = \frac{5}{2} \ln \left(\frac{e^{2t} + \frac{1}{e^{2t}}}{1 - \frac{1}{e^{2t}}} \right)$ $\mathcal{H} = \frac{5}{2} \ln \left(\frac{2^{4} + 1}{1 \cdot 2^{4}} \right)$ Method (3) left as it is $x = \frac{5}{2} ln(\frac{e^{4}t+1}{2}) - 5t$ (3) dopending on whether you take out et Ve as a factor!

question lt. (c) $\chi^{3} - mx + h = 0'$ (c) (b)(i) Let $y = x^3 \Rightarrow x = y^3$. : Obecomes y-my/3+n=0 = $y/3 = \left(\frac{y+n}{m}\right)$ $\frac{1}{2} \left[(y + n)^{3} \right]$ (I). $m^{3}y = y^{3} + 3ny^{2} + 3n^{2}y + n^{3}$ For a circular arrange ment collecting like terms = -1(11) Fix one man as a ref. $y^{3} + 3ny^{2} + (3n^{2} - m^{3})y + n^{3} = 0$ (one way) The rest of the men can arrange themselves Cii) In A! Way $a^{6}+\beta^{6}+\delta^{6} = \left(Zd_{i}\right)^{2} - 2\sum_{i\neq j}d_{j}d_{j}$ The Women can arrange themselves between the men $(\Sigma d_{j})^{2} = (-3n)^{2} - 2(3n^{2} - n^{3})$ IN (5x4x3) Ways -. The number of Ways. to $9 n^2 - 6 n^2 + 2m^3$. attange 5M, 3M so that ho $\alpha\beta\delta = -n$, (from $\mu^3 - m\chi + n = 0$) two women are next to one another $\alpha \beta \left(\alpha 6 + \beta 6 - \beta 6 \right) = -n \left(3n^2 + 2m^3 \right).$ 411×(5×4×3 x12 = 1440

$$= 0$$

$$(iv)$$

$$p^{2}$$

$$P^{4} = (cis \frac{2\pi}{5})^{4}$$

$$= cis \frac{8\pi}{5}$$

$$= cis \frac{8\pi}{5}$$

$$= cis (-\frac{2\pi}{5})$$

$$p^{3}$$

$$p^{4} = p$$

$$P^{5} = (Ji)$$

$$P^{5} = (Ji)$$

$$P^{5} = (Cis \frac{6\pi}{5}) = (cis - \frac{4\pi}{5}) = p^{2}$$

$$P^{5} = (Ji)$$

$$No W_{i} (p+p^{4}) (p^{2}+p^{3}) = -i (proreu)$$

$$From(ii)$$

$$= 0^{i}$$

$$= 0^{i}$$

$$P^{5} = (P) \times 2 \operatorname{Re}(p^{2})$$

$$= -i$$

$$Ie = \frac{6\pi^{2}\pi}{5} \text{ for } \frac{4\pi}{5} = -i$$

2014 Extension 2 Mathematics Task 2: Solutions— Section C

Question 5 (14 marks)

A particle is projected from a point O on a plane inclined at 45° to the horizontal. The velocity of projection is V at an angle of θ to the inclined plane, where $\theta = \tan^{-1} \frac{1}{2}$.

[You are given that $y = x \tan \alpha - \frac{gx^2}{2V^2}(1 + \tan^2 \alpha)$ where $\alpha = 45^\circ + \theta$.]

(i) Show that $\tan \alpha = 3$.

Solution:
$$\tan \alpha = \tan(\theta + 45^\circ),$$

$$= \frac{\frac{1}{2} + 1}{1 - \frac{1}{2} \times 1},$$
$$= 3.$$

(ii) Hence show that
$$y = 3x - \frac{5gx^2}{V^2}$$
.

Solution:
$$y = 3x - \frac{gx^2}{2V^2}(1+9),$$

= $3x - \frac{10gx^2}{2V^2},$
= $3x - \frac{5gx^2}{V^2}.$

(iii) Show that the range
$$OP$$
 is $\frac{2\sqrt{2}V^2}{5a}$

Solution: At
$$P$$
, $y = x$,
so $2x = \frac{5gx^2}{V^2}$,
 $x = \frac{2V^2}{5g}$ as $x \neq 0$.
Now $OP = \sqrt{x^2 + x^2}$,
 $= \sqrt{2x}$,
 $= \frac{2\sqrt{2}V^2}{5g}$.

Marks

2

1

(iv) Show that it meets the plane at right-angles.

Solution: Method 1—

$$\frac{dy}{dx} = 3 - \frac{10gx}{V^2}.$$
At $P, x = \frac{2V^2}{5g},$
so $\frac{dy}{dx} = 3 - \frac{10g}{V^2} \times \frac{2V^2}{5g},$
 $= -1$ at $P.$
Now the slope of the plane is 1, so the particle meets it at right-angles.

Solution: Method 2—

$$\begin{array}{l} \ddot{y} = -g & \ddot{x} = 0 \\ \dot{y} = -gt + V \sin \alpha & \dot{x} = V \cos \alpha \\ y = -\frac{gt^2}{2} + Vt \sin \alpha & x = Vt \cos \alpha \\ \text{At } P, \quad Vt \cos \alpha = Vt \sin \alpha - \frac{gt^2}{2}, \ t \neq 0 \\ \frac{gt}{2} = V \sin \alpha - V \cos \alpha \\ t = \frac{2V}{g} \times \left(\frac{3-1}{\sqrt{10}}\right) \\ = \frac{4V}{g\sqrt{10}} \\ \dot{y} = \frac{3V}{\sqrt{10}} - \frac{4V}{\sqrt{10}} \\ \dot{y} = -\frac{V}{\sqrt{10}} \\ \therefore \frac{\dot{y}}{\dot{x}} = -\frac{V}{\sqrt{10}} \times \frac{\sqrt{10}}{V} \\ = -1. \\ \text{Now the slope of the plane is 1, so the particle meets it at right-angles.} \end{array}$$

(b) The sketch is of the parabola

$$f(x) = \frac{x^2 - 2x}{2}.$$

Without calculus, draw the following on separate diagrams, showing essential features:

Question 6 (15 marks)

(a) Sketch the following, showing essential features:

Marks

2

(b) The triangle OPQ is equilateral.

P represents the complex number z, and Q represents the complex number w.

Show that $z^3 + w^3 = 0$.

Solution: $w = z \operatorname{cis} \frac{\pi}{3},$ $w^{3} = z^{3} \operatorname{cis} \pi,$ $= -z^{3}.$ $\therefore z^{3} + w^{3} = z^{3} - z^{3},$ = 0.

- (c) Let $I_n = \int_0^1 (1 x^2)^n dx$ and $J_n = \int_0^1 x^2 (1 x^2)^n dx$.
 - (i) Using integration by parts on I_n , show that $I_n = 2nJ_{n-1}$.

Solution:

$$u = (1 - x^{2})^{n} \qquad v' = dx$$

$$u' = -2xn(1 - x^{2})^{n-1}dx \qquad v = x$$

$$I_{n} = \left[x(1 - x^{2})^{n}\right]_{0}^{1} + \int_{0}^{1} 2nx^{2}(1 - x^{2})^{n-1}dx,$$

$$= 0 + 2n\int_{0}^{1} x^{2}(1 - x^{2})^{n-1}dx,$$

$$= 2nJ_{n-1}.$$

(ii) Hence show that $I_n = \frac{2n}{2n+1}I_{n-1}$.

Solution:
$$I_n = -2n \int_{0}^{1} -x^2 (1-x^2)^{n-1} dx,$$

 $= -2n \int_{0}^{1} \left((1-x^2) (1-x^2)^{n-1} - (1-x^2)^{n-1} \right) dx,$
 $= -2n \int_{0}^{1} (1-x^2)^n dx + 2n \int_{0}^{1} (1-x^2)^{n-1} dx,$
 $= 2n I_{n-1} - 2n I_n,$
 $(1+2n) I_n = 2n I_{n-1},$
 $\therefore I_n = \frac{2n}{2n+1} I_{n-1}.$

2

2

(iii) Show that $J_n = I_n - I_{n+1}$.

Solution: Method 1—

$$I_n - I_{n+1} = \int_0^1 (1 - x^2)^n dx - \int_0^1 (1 - x^2)^{n+1} dx,$$

$$= \int_0^1 \left((1 - x^2)^n - (1 - x^2)(1 - x^2)^n \right) dx,$$

$$= \int_0^1 x^2 (1 - x^2)^n dx,$$

$$= J_n.$$

Solution: Method 2—

$$2nJ_{n-1} = \frac{2n}{2n+1}I_{n-1}$$
 (from (i) and (ii)),
 $\therefore 2nJ_{n-1} + J_{n-1} = I_{n-1},$
 $I_n + J_{n-1} = I_{n-1},$
 $J_{n-1} = I_{n-1} - I_n,$
so $J_n = I_n - I_{n+1}.$

(iv) Hence deduce that $J_n = \frac{1}{2n+3}I_n$.

Solution: Method 1—

$$I_{n+1} = (2(n+1))J_n \text{ (from (i))},$$

$$\therefore J_n = I_n - (2n+2)J_n \text{ (from (iii))},$$

$$J_n(2n+2+1) = I_n,$$

$$J_n = \frac{1}{2n+3}I_n$$

Solution: Method 2—

$$I_{n+1} = \frac{2(n+1)}{2(n+1)+1} I_{(n+1)-1} \text{ (from (ii))},$$

 $= I_n \left(\frac{2n+2}{2n+3}\right).$
So $J_n = I_n \left(\frac{2n+3-(2n+2)}{2n+3}\right) \text{ (from (iii))},$
 $= \frac{1}{2n+3} I_n.$

(v) Hence find a reduction formula for J_n in terms of J_{n-1} .

Solution:
$$J_n = \frac{1}{2n+3} \times 2nJ_{n-1},$$

$$= \frac{2n}{2n+3}J_{n-1}.$$

2

1