

SYDNEYBOYS HIGH SCHOOL
 moore pari, surry hills

2014
 HIGHER SCHOOL CERTIFICATE
 ASSESSMENT TASK \#2

Mathematics

Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time -2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Each of the three Sections (A, B, and C) is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 91

- Attempt questions 1 - 6
- Board approved calculators maybe used.
- Full marks may not be awarded for careless or badly arranged work.
- Unless otherwise stated, give answers in simplest exact form.

Examiner: P.R.Bigelow

Section A

(Start a new answer sheet.)

Question 1. (17 marks)
(a) Find $\int \frac{2 x+1}{x^{2}+2 x+2} d x$.
(b) Evaluate $\arg ((2+i) \bar{z})$ where $z=-1-3 i$
(c) (i) Sketch the curve:

$$
(x+1)(y-2)=1
$$

(ii) Express the function in (i) in the form $y=f(x)$.

Hence or otherwise sketch:

$$
(\alpha) \quad y=f(x-2)
$$

$(\beta) \quad y^{2}=f(x)$
$(\gamma) \quad y=\frac{1}{f(x)}$
(d) Find:

$$
\begin{equation*}
\int \frac{d \theta}{8 \cos ^{2} \theta+1} \tag{2}
\end{equation*}
$$

(e) If z is a complex number such that $z=k(\cos \theta+i \sin \theta)$ where k is real, show that

$$
\arg (z+k)=\frac{\theta}{2}
$$

(f) Use the substitution $\boldsymbol{u}=\mathbf{1}-\sqrt{\boldsymbol{x}}$ to find:

$$
\int \frac{d x}{1-\sqrt{x}}
$$

Question 2. (15 marks)
$\begin{array}{ll} & \text { Marks } \\ \text { (a) } & \text { (i) Show that: }\end{array}$

$$
\int_{-a}^{a} f(x) d x=\int_{0}^{a}[f(x)+f(-x)] d x
$$

(ii) Hence evaluate $\quad \int_{-2}^{2} \frac{d x}{1+e^{-x}}$
(b) (i) Express $-\sqrt{27}-3 i$ in mod-arg form.
(ii) Hence find $(-\sqrt{27}-3 i)^{6}$, giving your answer in the form $a+i b$ where a and b are real.
(c) The complex number z lies on the locus $\arg (z+i)=\frac{\pi}{4}$:
(i) Sketch the locus, showing any intercepts with the axes.
(ii) Find the least value of $|z|$.
(d) (i) Use the graph of $y=\sin x$ to sketch on separate diagrams, the graphs of the functions $y=|\sin x|$ and $y=\sin |x|$ for $-2 \pi \leq x \leq 2 \pi$.
(ii) Evaluate: $\int_{-2 \pi}^{2 \pi}(\sin |x|+|\sin x|) d x$

Section B

(Start a new answer sheet.)

Question 3. (16 marks)
(a) The nine letters of the word REDIVIDER are arranged at random in a line.
(i) How many letter sequences are possible? 2
(ii) What is the probability that the sequence is the same from left to right as from right to left.
(b) An object of mass 10 kg falls from rest from a stationary balloon, and experiences air resistance of magnitude $4 \boldsymbol{v}^{2}$. Take the value of g to be $10 \mathrm{~m} / \mathrm{s}^{2}$, and take downwards to be positive.
(i) Show that the equation of motion is:

$$
\ddot{x}=\frac{50-2 v^{2}}{5}
$$

(ii) Find the terminal velocity of the object.
(iii) Show that the velocity v at time t is given by:

$$
t=\frac{1}{4} \ln \left(\frac{5+v}{5-v}\right)
$$

(iv) Show $v=\frac{5\left(e^{4 t}-1\right)}{e^{4 t}+1}$
(v) Find the vertical distance fallen as a function of t.

Question 4 (14 marks)
(a) Let $p=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$
(i) Show that $1+p+p^{2}+p^{3}+p^{4}=0$
(ii) Simplify $\left(p+p^{4}\right)\left(p^{2}+p^{3}\right)$

1
(iii) Form a quadratic equation with roots $\left(p+p^{4}\right)$ and $\left(p^{2}+p^{3}\right)$
(iv) Hence or otherwise show that $\cos \frac{2 \pi}{5} \cdot \cos \frac{4 \pi}{5}=-\frac{1}{4}$
(b) There are eight people, 5 men and 3 women, to be seated at a round table. How many arrangements are there if:
(i) there are no restrictions?
(ii) no two women are next to one another?
(Give your answers in the form of powers and factorials.)
(c) The constants m and n are such that the equation $\boldsymbol{x}^{3}-\boldsymbol{m} \boldsymbol{x}+\boldsymbol{n}=\mathbf{0}$ has three no-zero roots α, β, γ.
(i) Find in terms of m and n the cubic equation (in expanded form) whose roots are α^{3}, β^{3} and γ^{3}.
(ii) Hence or otherwise find $\alpha^{7} \beta \gamma+\alpha \beta^{7} \gamma+\alpha \beta \gamma^{7}$ in terms of m and n.

Section C

(Start a new answer booklet)
Question 5 (14 marks)
(a)

A particle is projected from a point O on a plane inclined at 45° to the horizontal. The velocity of projection is V at an angle of θ to the inclined plane, where $\theta=$ $\tan ^{-1} \frac{1}{2}$.
[You are given that $y=x \tan \alpha-\frac{g x^{2}}{2 V^{2}}\left(1+\tan ^{2} \alpha\right)$ where $\alpha=45^{\circ}+\theta$]
(i) Show that $\tan \alpha=3$.
(ii) Hence show that $y=3 x-\frac{5 g x^{2}}{V^{2}}$.
(iii) Show that the range $O P$ is $\frac{2 \sqrt{2} V^{2}}{5 g}$.
(iv) Show that it meets the plane at right-angles.
(b) The sketch is of the parabola

$$
f(x)=\frac{x^{2}-2 x}{2}
$$

Without calculus, draw the following on separate diagrams, showing essential features:

$$
\begin{equation*}
y=|f(x)| \tag{i}
\end{equation*}
$$

(iii) $y=\tan ^{-1}(f(x))$
(iv) $|y|=f(x)$
(ii) $\quad y=\frac{x}{2}|x-2|$

Question 6 (15 marks)
(a) Sketch the following, showing essential features:
(i) $y=\ln (\ln x) \quad 2$
(ii) $\quad f(x)=\cos ^{-1}(\sin x)$
(b) The triangle $O P Q$ is equilateral.
P represents the complex number z, and Q represents the complex number w.

Show that $z^{3}+\boldsymbol{w}^{3}=\mathbf{0}$.

(c) Let $I_{n}=\int_{0}\left(1-x^{2}\right)^{n} d x$ and $J_{n}=\int_{0} x^{2}\left(1-x^{2}\right)^{n} d x$.
(i) Using integration by parts, on I_{n}, show that $I_{n}=2 n J_{n-1}$.
(ii) Hence show that $\quad I_{n}=\frac{2 n}{2 n+1} I_{n-1}$.
(iii) Show that $\quad J_{n}=I_{n}-I_{n+1}$.
(iv) Hence deduce that $\quad J_{n}=\frac{1}{2 n+3} I_{n}$.
(v) Hence find a reduction formula for J_{n} in terms of J_{n-1}.

This is the end of the paper.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

SBHS 2014 Extension 2 Assessment \#2 Solutions

1) a)

$$
\begin{aligned}
& \int \frac{2 x+1}{x^{2}+2 x+2} d x \\
= & \int\left(\frac{2 x+2}{x^{2}+2 x+2}-\frac{1}{x^{2}+2 x+1+1}\right) d x \\
= & \int\left(\frac{2 x+2}{x^{2}+2 x+2}-\frac{1}{(x+1)^{2}+1}\right) d x \\
= & \ln \left(x^{2}+2 x+2\right)-\tan ^{-1}(x+1)+C
\end{aligned}
$$

b)

$$
\begin{aligned}
& \arg ((2+i)(-1-3 i)) \\
= & \arg ((2+i)(-1+3 i)) \\
= & \arg (-2+6 i-i-3) \\
= & \arg (-5+5 i) \\
= & \frac{3 \pi}{4}
\end{aligned}
$$

c) i)

$$
\begin{gathered}
(x+1)(y-2)=1 \\
x+1 \neq 0 \\
x \neq-1 \\
y-2 \neq 0 \\
y \neq 2 \\
\text { when } x=0 \\
y=3
\end{gathered}
$$

when $y=0$

$$
x=-\frac{3}{2}
$$

ii)

$$
\begin{aligned}
(x+1)(y-2) & =1 \\
y-2 & =\frac{1}{x+1} \\
y & =\frac{1}{x+1}+2
\end{aligned}
$$

ג) $y=f(x-2)$

β)

8)

d)

$$
\left.\begin{array}{rl}
& \int \frac{d \theta}{8 \cos ^{2} \theta+1} \\
= & \int \frac{d \theta}{8 \cos ^{2} \theta+\sin ^{2} \theta+\cos ^{2} \theta} \\
= & \int \frac{d \theta}{9 \cos ^{2} \theta+\sin ^{2} \theta} \\
= & \int \frac{1}{\cos ^{2} \theta} \\
\frac{9 \cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}
\end{array} d \theta\right]=\int \frac{\sec ^{2} \theta d \theta}{9+\tan ^{2} \theta} .
$$

let $u=\tan \theta$

$$
\frac{d u}{d \theta}=\sec ^{2} \theta
$$

$$
d \theta=\frac{d u}{\sec ^{2} \theta}
$$

$$
=\int \frac{\sec ^{2} \theta}{9+u^{2}} \cdot \frac{d u}{\sec ^{2} \theta}
$$

$$
a=3
$$

$$
=\frac{1}{3} \tan ^{-1}\left(\frac{4}{3}\right)+C
$$

$$
=\frac{1}{3} \tan ^{-1}\left(\frac{\tan \theta}{3}\right)+C
$$

e)

$$
\begin{aligned}
\arg (z+k) & =\arg (k(\cos \theta+i \sin \theta)+k) \\
& =\arg (k(\cos \theta+1)+k i \sin \theta) \\
& =\arg \left(k\left(2 \cos ^{2} \frac{\theta}{2}-1+1\right)+k i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right. \\
& =\arg \left(2 k \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)\right) \\
& =\frac{\theta}{2}
\end{aligned}
$$

Graphically
Note: $|z|=k$
$|k|=k \quad \therefore z+k$ is the diagonal of a rhombus
 Since the diagonals of a -rhombus bisect the angles. $\quad \operatorname{ang}(2 \not k)=\frac{\theta}{2}$.
f) $\int \frac{d x}{1-\sqrt{x}}$
let $u=1-\sqrt{x}$

$$
\begin{aligned}
& \frac{d u}{d x}=-\frac{1}{2 \sqrt{x}} \\
& d x=-2 \sqrt{x} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{-2 \sqrt{x} d u}{u} \\
& =\int \frac{-2(1-u)}{u} d u \\
& =2 \int \frac{u-1}{u} d u \\
& =2 \int\left(1-\frac{1}{u}\right) d u \\
& =2[u-\ln u]+C \\
& =2[1-\sqrt{x}-\ln (1-\sqrt{x})]+C
\end{aligned}
$$

2)a)i.

$$
\begin{aligned}
& \text { } \int_{-a}^{a} f(x) d x \\
& =\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\text { Consider } \int_{-a}^{0} f(x) d x\right.} \\
& \text { let } u=-x \quad \text { whem } x=-a, u= \\
& \frac{d u}{d x}=-1 \\
& d x=-d u \\
& =\int_{a}^{0} f(-u) \cdot-d u \\
& =-\int_{a}^{a} f(-u) d u \\
& =\int_{0}^{a} f(-u) d u \\
& =\int_{0}^{a} f(-x) d x \\
& \text { for detin'te integrals } \\
& \text { the ravicble can be chayg oer } \\
& =\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a}[f(x)+f(-x)] d x
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \int_{-2}^{2} \frac{d x}{1+e^{-x}} \\
= & \int_{0}^{2}\left[\frac{1}{1+e^{-x}}+\frac{1}{1+e^{x}}\right] d x \\
= & \int_{0}^{2}\left[\frac{e^{x}}{e^{x}+1}+\frac{1}{1+e^{x}}\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left[\frac{1+e^{x}}{1-1 e^{x}}\right] d x \\
& =[x]_{0}^{2} \\
& =(2)-(0) \\
& =2
\end{aligned}
$$

$$
\text { b) 1) } \begin{aligned}
&-\sqrt{27}-3 i \\
& r^{2}=(\sqrt{27})^{2}+(3)^{2} \\
&=38 \\
& r=6
\end{aligned}
$$

$$
\begin{aligned}
\tan \alpha & =\frac{3}{\sqrt{27}} \\
& =\frac{3}{3 \sqrt{3}} \\
& =\frac{1}{\sqrt{3}} \\
\alpha & =\frac{\pi}{6} \\
\therefore \theta & =-\frac{5 \pi}{6}
\end{aligned}
$$

$$
-\sqrt{27}-3 i=6\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right)
$$

ii)

$$
\begin{aligned}
(-\sqrt{27}-3 i)^{6} & =\left[6\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right)\right]^{6} \\
& \left.=6^{6}(\cos (-5 \pi)+i \sin (-5 \pi))\right] \text { using de moiven theoren } \\
& =46656((-1)+i(0)) \\
& =-46656
\end{aligned}
$$

C) i)

$$
\begin{aligned}
& \arg (z+i)=\frac{\pi}{4} \\
= & \arg (z-(-i))=\frac{\pi}{4}
\end{aligned}
$$

ii)

Consider the area of $\triangle O A B$ in two ways

$$
\begin{gathered}
\frac{1}{2} \times 1 \times \left\lvert\,=\frac{1}{2} \times \sqrt{2} \times \alpha\right. \\
\alpha=\frac{1}{\sqrt{2}}
\end{gathered}
$$

the least value of $|2|=\frac{1}{\sqrt{2}}$

$$
=\frac{\sqrt{2}}{2}
$$

a)

ii)

$$
\begin{aligned}
& \int_{-2 \pi}^{2 \pi}(\sin |x|+|\sin x|) d x \\
= & \int_{-2 \pi}^{2 \pi} \sin |x| d x+\int_{-2 \pi}^{2 \pi}|\sin x| d x \\
= & 0+4 \int_{0}^{\pi} \sin x d x \\
= & 4[-\cos x]]_{0}^{\pi} \\
= & 4[-\cos \pi-(-\cos 0)] \\
= & 4[-(-1)+1] \\
= & 8 .
\end{aligned}
$$

\lfloor Solus 100 n s \rfloor

$$
\frac{\text { Question (3) }}{r \rightarrow 1 \quad D, E, R, I \rightarrow 2}
$$

(i) \therefore The possible sequences

$$
\text { are } \frac{9!}{2^{4}}=\frac{362880}{16}=22680
$$

(ii) one way to put ' V^{\prime} in the middle. The rest of D, E, R, I can be arranged 4 ! ways.
Now, once the liters on either the left/ right of r are deter mined there is only I way to arrange hight/ left side $=1 \times 4$!

$$
\begin{aligned}
\therefore \text { Prob. } & =\frac{4!}{\left(9!/ 2^{4}\right)}=\frac{1}{945} \\
& =0.010582
\end{aligned}
$$

(b) (i)

(ii) Terminal velocity when $\ddot{x}=0$.

$$
\Rightarrow V=5 \mathrm{~m} / \mathrm{sec}
$$

(iii) $\frac{d v}{d t}=\frac{50-2 v^{2}}{5} \Rightarrow \frac{d t}{d v}=\frac{5}{50-2 v .}$

$$
\therefore \quad A=\frac{5}{2} \int \frac{d v}{25-v^{2}}
$$

Now $\frac{1}{25-r^{2}}=\frac{a}{5+V}+\frac{b}{5-V}$

$$
\therefore 1=a(5-v)+-b(5+v)
$$

equate cogs.og $v, b-a=0 \Rightarrow a=b$. equate constant term $5 a+5 b=1$

$$
\begin{aligned}
& \therefore a+b=\frac{1}{5}, 2 a=\frac{1}{5} \\
& \therefore \quad a=b=\frac{1}{10} .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad t=\frac{5}{20} \int\left(\frac{1}{5+v}+\frac{1}{5-v}\right) d v \\
& \Rightarrow \quad t=\frac{1}{4}[\ln (5+V)-\ln (5-r)] \\
& \therefore t=\frac{1}{4} \ln \left(\frac{5+V}{5-V}\right) \\
& \text { (v) } N \otimes W, 4 t=\ln \left(\frac{5+v}{5-V}\right) \text {. } \\
& \therefore \frac{5+V}{5-V}=e^{4 t} \\
& 5 e^{4 t}-\left(e^{4 t}\right) v=5+v . \\
& 5\left(e^{4 t}-1\right)=r\left(1+e^{4 t}\right) \\
& \therefore \quad r=\frac{5\left(e^{4 t}-1\right)}{e^{4 t}+1}
\end{aligned}
$$

Now, $V=\frac{d x}{d t}$

$$
\therefore \frac{d x}{d t}=\frac{5\left(e^{4 t}-1\right)}{e^{4 t}+1}
$$

3-parating the variables.

$$
\begin{aligned}
\int d x & =5 \int\left[\frac{\left(e^{4 t}+1\right)-2}{e^{4 t}+1}\right] d t \\
& =5 \int\left(1-\frac{2}{e^{4 t}+1}\right) d t
\end{aligned}
$$

$$
=5 t-10 \int \frac{d t}{e^{4 t}+1}
$$

Now, $10 \int \frac{d t}{e^{4 t}+1}\left(x \frac{e^{-4 t}}{e^{-4 t}}\right)$

$$
=10 \int \frac{e^{-4 t}}{1+e^{-4 t}} d \Gamma
$$

Let $u=1+e^{-4 t}$ then $d u=-4 e^{-4 t} d t$
$=-\frac{5}{2} \int \frac{\left(-4 e^{-4 t}\right) d t}{1+e^{-4 t}}$
$=-\frac{5}{2} \int \frac{d u}{u}=-\frac{5}{2} \ln u$

$$
=-\frac{5 \ln }{2}\left(1+e^{-4 t}\right)
$$

$$
\therefore x=5 t-\frac{5}{2} \ln \left(1+\bar{e}^{-4 t}\right)+c
$$

$W h \ln t=0, x=0, \Rightarrow C=\frac{5}{2} \ln 2$.

$$
\begin{aligned}
\therefore \quad x & =5 t+\frac{5}{2} \ln \left(\frac{2}{1+e^{-4 t}}\right) \\
& \geqslant 5.17
\end{aligned}
$$

\cdot Method (1) $\mid \varphi(3)(b)(v)$

$$
\begin{aligned}
& \frac{r=5\left(e^{4 t}-1\right)}{e^{4 t}+1} \\
& \frac{d x}{d t}= 5\left(\frac{\left.e^{4 t}-1\right)}{e^{4 t+1}}\right. \\
& x=5 \int\left(\frac{\left(e^{4 t}+1\right)-2}{e^{4 t+1}}\right) d t \\
&=5 \int\left(1-\frac{2}{e^{4 t+1}}\right) d t \\
&=5 \int\left(1+\frac{-2 e^{-4 t}}{1+e^{-4 t}}\right) d t \\
&=5 \int\left(1+\frac{1}{2}\left(\frac{-4 e^{-4 t}}{1+e^{-4 t}}\right)\right) d t \\
&=5 t+\frac{5}{2} \ln \left(1+e^{-4 t}\right)+c
\end{aligned}
$$

When $t=0, x=0,0=\frac{5}{2} \ln 2+c$

$$
\therefore x=5 t+\frac{5}{2} \ln \left(\frac{1+e^{-4 t}}{2}\right)
$$

- Method (2) $\quad V=5 \int\left(\frac{e^{4 t}-1}{e^{4 t}+1}\right) d t$

Let $u=e^{2 t}+e^{-2 t} d u=2\left(e^{2 t}-e^{-2 t}\right) d t$
$\therefore x=\frac{5}{2} \int \frac{d u}{\mu}$
$\therefore x=\frac{5}{2} \ln \left(e^{2 t}+e^{-2 t}\right)+c$
When $k=0, x=0$
$\Rightarrow c=-\frac{5}{2} \ln 2$.

$$
\therefore x=\frac{5}{2} \ln \left(\frac{e^{2 t}+e^{-2 t}}{2}\right)
$$

Method (3) $Q(3)(b)(V)$

$$
\begin{aligned}
& x=5\left(\frac{e^{4 t}}{e^{4 t}+1} d t-5\left(\frac{d t}{e^{4 t}+1}\right.\right. \\
& =\frac{5}{4} \ln \left(e^{4 t}+1\right)-5 \int \frac{4 e^{4 t} d t}{4 e^{4 t}\left(e^{4 t+1}\right)} \\
& \frac{-5}{4} \int \frac{4 e^{4 t} d t}{e^{4 t}\left(e^{4 t+1}\right.}
\end{aligned}
$$

Now, to integrate this,
Let $\mu=e^{4 t} d u=4 e^{4 t} d t$. by partial fractionic

$$
\begin{aligned}
& \frac{1}{\mu(u+1)}=\frac{1}{\mu}-\frac{1}{\mu+1} \\
& \therefore \frac{-5}{4}\left(\left(\frac{4 e^{4 t} d t}{e^{4 t}+1}\right)\right. \\
& =-\frac{5}{4}(\ln u-\ln (n+1))
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{5}{4} \ln \left(\frac{e^{4 t}}{e^{4 t}+1}\right) \\
& \therefore x=\frac{5}{4} \ln \left(e^{4 t}+1\right)-\frac{5}{4} \ln \left(\frac{e^{4 t}}{e^{4 t+1}}\right)+c \\
& x=\frac{5}{4}\left[\ln \left(e^{4 t}+1\right)-\ln \left(e^{4 t}\right)+\ln \left(e^{4 t}+1\right)\right] \\
& x=\frac{5}{4}\left(2 \ln \left(e^{4 t}+1\right)-4 t\right)+c
\end{aligned}
$$

When $t=0, x=0$

$$
\begin{aligned}
& 0=\frac{5}{4}(2 \ln 2)+c \\
& \Rightarrow c=-\frac{5}{2} \ln 2 \\
& \therefore x=\frac{5}{2} \ln \left(\frac{e^{4 t}+1}{2}\right)-5 t
\end{aligned}
$$

Conclusion: (Ali 3 are
Now expanding stine because
(1) me tho (1) we have expansions

$$
\begin{aligned}
x & =5 t+\frac{5}{2} \ln \left(\frac{1+\frac{1}{e^{4 t}}}{2}\right) \\
& \therefore x=5 t+\frac{5}{2} \ln \left(\frac{e^{4 t}+1}{2 e^{4 t}}\right)
\end{aligned}
$$

(2) Expand method (2)

$$
\begin{aligned}
& x=\frac{5}{2} \ln \left(\frac{e^{2 t}+\frac{1}{e^{2 t}}}{2}\right) \\
& x=\frac{5}{2} \ln \left(\frac{e^{4 t}+1}{1 e^{2 t}}\right)
\end{aligned}
$$

(3) Method (3) left as it is $\therefore x=\frac{5}{2} \ln \left(\frac{e^{4 / t}+1}{2}\right)-5 t$
depending on whether you take out $e^{2 t}, v_{e}^{-2 t}$. as a factor!
question (4)
(b)

(i) For a circular arrangement

$$
\frac{8!}{8}=7!
$$

- (ii) Fix one man as a ref. Cone way) The teston the men can arrange themselves in 4! way
- The women can arrange themselves between the men in $(5 \times 4 \times 3)$ ways
\therefore The number of way si to arrange $5 \mathrm{~m}, 3 \mathrm{M}$ so that ho two women lave next to one another $(41) \times(5 \times 4 \times 3)$

$$
\begin{aligned}
& \text { the }=\frac{(4) \times(5 \times 4 \times 3)}{5!\times 12}=1440
\end{aligned}
$$

(c) $x^{3}-m x+n=0^{\prime}$
(i) Let $y=x^{3} \Rightarrow x=y / 3$.
\therefore (1) becomes $y-m y^{1 / 3}+n=0$

$$
\begin{aligned}
& \Rightarrow \quad y^{1 / 3}=\left(\frac{y+n}{m}\right) \\
& \therefore m^{3} y=(y+n)^{3}
\end{aligned}
$$

$m^{3} y=y^{3}+3 n y^{2}+3 n^{2} y+n^{3}$
collecting like terms

$$
y^{3}+3 n y^{2}+\left(3 n^{2}-m^{3}\right) y+n^{3}=0
$$

(ii)

$$
\begin{aligned}
\alpha^{6}+\beta^{6}+\gamma^{6} & =\left(\sum \alpha_{j}\right)^{2}-2 \sum_{j \neq j} \alpha_{i} \cdot \alpha_{j} \\
\left(\sum \alpha_{j}\right)^{2} & =(-3 n)^{2}-2\left(3 n^{2}-n^{3}\right) \\
& =9 n^{2}-6 n^{2}+2 m^{3} .
\end{aligned}
$$

$\alpha \beta \gamma=-n,\left(\right.$ from $\left.x^{3}-m x+n=0\right)$

$$
\therefore \alpha \beta \delta\left(\alpha^{6}+\beta^{6}-\gamma^{6}\right)=-n\left(3 n^{2}+2 m^{3}\right) .
$$

Question (k)
(a)

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
1+p+p^{2}+p^{3}+p^{4}=\frac{p^{5}-1}{p-1}=0 \\
\begin{aligned}
p^{5} & =\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)^{5} \\
& =\text { i }^{5} \\
& =1
\end{aligned} \\
\quad=2 \pi+i \sin 2 \pi\left(\frac{\text { lemorrrels }}{\text { Tim }}\right)
\end{aligned}
\end{aligned}
$$

$$
\therefore \quad p \frac{5-1}{p-1}=\frac{1-1}{p-1}=0
$$

(ii)

$$
\begin{aligned}
& \left(p+p^{4}\right)\left(p^{2}+p^{3}\right) \\
= & p^{3}+p^{4}+p^{6}+p^{7} \quad\left[\because p^{5}=1\right] . \\
= & p^{3}+p^{4}+p+1^{2} .
\end{aligned}
$$

from (1) $1+p+p^{2}+p^{3}+p^{4}=0^{\circ}$
(iii) The quadratic equation Is:

$$
Z^{2}-\left[\left(p+p^{4}\right)+\left(p^{2}+p^{3}\right)\right] z+\left(p+p^{4}\right)\left(p^{2}+p^{3}\right]=0
$$

From (1) \& (2)

$$
\begin{gathered}
z^{2}-(-1) z+(-1)=0 \\
z^{2}+z-1=0
\end{gathered}
$$

(iv)

$$
\begin{aligned}
p^{4} & =\left(\operatorname{cis} \frac{2 \pi}{5}\right)^{4} \\
& =\operatorname{cis} \frac{8 \pi}{5} \\
& =\operatorname{cis}\left(-\frac{2 \pi}{5}\right) \\
& =\bar{p}
\end{aligned}
$$

Also,

$$
\begin{aligned}
1 p^{3} & =\left(\cos \frac{2 \pi}{5}\right)^{3} \\
& =\left(\cos \frac{6 \pi}{5}\right)=\left(\cos -\frac{4 \pi}{5}\right)=\overline{p^{2}}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \quad \operatorname{NoW}\left((p+p 4)\left(p^{2}+p^{3}\right)=-1 \quad\left(\begin{array}{c}
\text { proven) } \\
\text { from(ii) }
\end{array}\right.\right. \\
& \therefore \quad(p+\bar{p})\left(p^{2}+\overline{p^{2}}\right)=-1 \\
& -1=2 \operatorname{Re}(p) \times 2 \operatorname{Re}\left(p^{2}\right) \\
& -1=48-\frac{2 \pi}{5} \cot \frac{4 \pi}{5} . \\
& 1 e \cos ^{2 \pi} \frac{2 \pi}{5} 80 \frac{4 \pi}{5}=-1
\end{aligned}
$$

2014 Extension 2 Mathematics Task 2:

Solutions- Section C

Question 5 (14 marks)
(a)

A particle is projected from a point O on a plane inclined at 45° to the horizontal. The velocity of projection is V at an angle of θ to the inclined plane, where $\theta=\tan ^{-1} \frac{1}{2}$.
[You are given that $y=x \tan \alpha-\frac{g x^{2}}{2 V^{2}}\left(1+\tan ^{2} \alpha\right)$ where $\alpha=45^{\circ}+\theta$.]
(i) Show that $\tan \alpha=3$.

Solution: $\tan \alpha=\tan \left(\theta+45^{\circ}\right)$,

$$
\begin{aligned}
& =\frac{\frac{1}{2}+1}{1-\frac{1}{2} \times 1}, \\
& =3
\end{aligned}
$$

(ii) Hence show that $y=3 x-\frac{5 g x^{2}}{V^{2}}$.

Solution: $\quad y=3 x-\frac{g x^{2}}{2 V^{2}}(1+9)$,
$=3 x-\frac{10 g x^{2}}{2 V_{2}^{2}}$,
$=3 x-\frac{5 g x^{2}}{V^{2}}$.
(iii) Show that the range $O P$ is $\frac{2 \sqrt{2} V^{2}}{5 g}$.

Solution: At $P, y=x$,

$$
\text { so } \begin{aligned}
2 x & =\frac{5 g x^{2}}{V^{2}} \\
x & =\frac{2 V^{2}}{5 g} \text { as } x \neq 0 .
\end{aligned}
$$

Now $O P=\sqrt{x^{2}+x^{2}}$,

$$
\begin{aligned}
& =\sqrt{2} x, \\
& =\frac{2 \sqrt{2} V^{2}}{5 g}
\end{aligned}
$$

(iv) Show that it meets the plane at right-angles.

Solution: Method 1-

$$
\begin{aligned}
\frac{d y}{d x} & =3-\frac{10 g x}{V^{2}} . \\
\text { At } P, x & =\frac{2 V^{2}}{5 g}, \\
\text { so } \frac{d y}{d x} & =3-\frac{10 g}{V^{2}} \times \frac{2 V^{2}}{5 g}, \\
& =-1 \text { at } P .
\end{aligned}
$$

Now the slope of the plane is 1 , so the particle meets it at right-angles.

Solution: Method 2-

$$
\begin{array}{ll}
\ddot{y}=-g & \ddot{x}=0 \\
\dot{y}=-g t+V \sin \alpha & \dot{x}=V \cos \alpha \\
y=-\frac{g t^{2}}{2}+V t \sin \alpha & x=V t \cos \alpha \\
\text { At } P, V t \cos \alpha=V t \sin \alpha-\frac{g t^{2}}{2}, t \neq 0
\end{array}
$$

$$
\begin{aligned}
\frac{g t}{2} & =V \sin \alpha-V \cos \alpha \\
t & =\frac{2 V}{g} \times\left(\frac{3-1}{\sqrt{10}}\right) \\
& =\frac{4 V}{g \sqrt{10}} \\
\dot{y} & =\frac{3 V}{\sqrt{10}}-\frac{4 V}{\sqrt{10}} \\
& =-\frac{V}{\sqrt{10}} \\
\therefore \frac{\dot{y}}{\dot{x}} & =-\frac{V}{\sqrt{10}} \times \frac{\sqrt{10}}{V} \\
& =-1 .
\end{aligned}
$$

Now the slope of the plane is 1 , so the particle meets it at right-angles.
(b) The sketch is of the parabola

$$
f(x)=\frac{x^{2}-2 x}{2}
$$

Without calculus, draw the following on separate diagrams, showing essential features:

(i) $y=|f(x)|$

(ii) $y=\frac{x}{2}|x-2|$

(iii) $y=\tan ^{-1}(f(x))$

(iv) $|y|=f(x)$

Question 6 (15 marks)

(a) Sketch the following, showing essential features:
(i) $y=\ln (\ln x)$

(ii) $f(x)=\cos ^{-1}(\sin x)$

(b) The triangle $O P Q$ is equilateral.
P represents the complex number z, and Q represents the complex number w.

Show that $z^{3}+w^{3}=0$.

Solution: $\quad w=z \operatorname{cis} \frac{\pi}{3}$,

$$
\begin{aligned}
w^{3} & =z^{3} \operatorname{cis} \pi, \\
& =-z^{3} . \\
\therefore z^{3}+w^{3} & =z^{3}-z^{3}, \\
& =0 .
\end{aligned}
$$

(c) Let $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$ and $J_{n}=\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n} d x$.
(i) Using integration by parts on I_{n}, show that $I_{n}=2 n J_{n-1}$.
(ii) Hence show that $I_{n}=\frac{2 n}{2 n+1} I_{n-1}$.

Solution: $\quad I_{n}=-2 n \int_{0}^{1}-x^{2}\left(1-x^{2}\right)^{n-1} d x$,

$$
\begin{aligned}
& =-2 n \int_{0}^{J_{0}^{1}}\left(\left(1-x^{2}\right)\left(1-x^{2}\right)^{n-1}-\left(1-x^{2}\right)^{n-1}\right) d x, \\
& =-2 n \int_{0}^{1}\left(1-x^{2}\right)^{n} d x+2 n \int_{0}^{1}\left(1-x^{2}\right)^{n-1} d x, \\
& =2 n I_{n-1}-2 n I_{n}, \\
2 n) I_{n} & =2 n I_{n-1}, \\
\therefore I_{n} & =\frac{2 n}{2 n+1} I_{n-1} .
\end{aligned}
$$

$$
(1+2 n) I_{n}=2 n I_{n-1}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& u=\left(1-x^{2}\right)^{n} \quad v^{\prime}=d x \\
& u^{\prime}=-2 x n\left(1-x^{2}\right)^{n-1} d x \quad v=x \\
& I_{n}=\left[x\left(1-x^{2}\right)^{n}\right]_{0}^{1}+\int_{0}^{1} 2 n x^{2}\left(1-x^{2}\right)^{n-1} d x, \\
& =0+2 n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n-1} d x \text {, } \\
& =2 n J_{n-1} \text {. }
\end{aligned}
$$

(iii) Show that $J_{n}=I_{n}-I_{n+1}$.

Solution: Method 1-

$$
\begin{aligned}
I_{n}-I_{n+1} & =\int_{0}^{1}\left(1-x^{2}\right)^{n} d x-\int_{0}^{1}\left(1-x^{2}\right)^{n+1} d x \\
& =\int_{0}^{1}\left(\left(1-x^{2}\right)^{n}-\left(1-x^{2}\right)\left(1-x^{2}\right)^{n}\right) d x \\
& =\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n} d x \\
& =J_{n}
\end{aligned}
$$

Solution: Method 2-

$$
\begin{aligned}
2 \hbar J_{n-1} & =\frac{2 \hbar}{2 n+1} I_{n-1}(\text { from }(\mathrm{i}) \text { and }(\mathrm{ii})), \\
\therefore 2 n J_{n-1}+J_{n-1} & =I_{n-1}, \\
I_{n}+J_{n-1} & =I_{n-1}, \\
J_{n-1} & =I_{n-1}-I_{n}, \\
\text { so } J_{n} & =I_{n}-I_{n+1} .
\end{aligned}
$$

(iv) Hence deduce that $J_{n}=\frac{1}{2 n+3} I_{n}$.

Solution: Method 1-

$$
\begin{aligned}
I_{n+1} & =(2(n+1)) J_{n}(\text { from }(\mathrm{i})), \\
\therefore J_{n} & =I_{n}-(2 n+2) J_{n}(\text { from }(\mathrm{iii})), \\
J_{n}(2 n+2+1) & =I_{n} \\
J_{n} & =\frac{1}{2 n+3} I_{n}
\end{aligned}
$$

Solution: Method 2-

$$
\begin{aligned}
I_{n+1} & =\frac{2(n+1)}{2(n+1)+1} I_{(n+1)-1}(\text { from (ii) }) \\
& =I_{n}\left(\frac{2 n+2}{2 n+3}\right) \\
\text { So } J_{n} & =I_{n}\left(\frac{2 n+3-(2 n+2)}{2 n+3}\right)(\text { from (iii) }), \\
& =\frac{1}{2 n+3} I_{n} .
\end{aligned}
$$

(v) Hence find a reduction formula for J_{n} in terms of J_{n-1}.

Solution: $\quad J_{n}=\frac{1}{2 n+3} \times 2 n J_{n-1}$,

$$
=\frac{2 n}{2 n+3} J_{n-1} .
$$

