

SYDNEY BOYS HIGH SCHOOL **MOORE PARK, SURRY HILLS**

2015

HSC Task #2

Mathematics Extension 2

General Instructions

- Reading time 5 minutes. •
- Working time -2 hours. •
- Write using black or blue pen. •
- Board approved calculators may be used. •
- All necessary working should be shown in • every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or • badly arranged work.
- Leave your answers in the simplest exact form, unless otherwise stated.
- Start each **NEW** question in a separate answer • booklet.

Total Marks – 100

(Section I

Pages 2–6

10 Marks

- Attempt Questions 1–10 •
- Allow about 15 minutes for this section.

(Section II)

Pages 7–13

90 marks

- Attempt Questions 11–16
- Allow about 1 hour and 45 • minutes for this section

P. Parker Examiner:

Section I – Multiple Choice

10 Marks Attempt question 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 In the diagram below, the point z lies on a circle such that $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$.

Which of the following equations best represents the locus of z?

- (A) $|z-i| \leq 2$
- $(B) \qquad \left| z-i \right| = 2$
- (C) $|z-i| \le \sqrt{2}$
- (D) $|z-i| = \sqrt{2}$
- 2 Consider the curve with equation $y = [p(x)]^m$, for integer *m*. Which of the following statement best describes a feature of the curve of $y = [p(x)]^m$?
 - (A) The curve exhibits point symmetry about (0, 0).
 - (B) The *x*-intercepts of y = p(x) correspond to stationary points on $y = [p(x)]^m$.
 - (C) The curve does not exist for values for which p(x) < 0.
 - (D) The nature of the stationary points of y = p(x) are preserved for $y = [p(x)]^m$.

4 For the function $y = \tan^{-1}(e^{2x})$, what is the range?

- (A) $0 \le y \le \frac{\pi}{2}$
- (B) $0 < y \le \frac{\pi}{2}$

(C)
$$0 \le y < \frac{\pi}{2}$$

$$(D) \qquad 0 < y < \frac{\pi}{2}$$

5 Consider the following two statements:

I:
$$\int_{0}^{1} \frac{1}{1+x^{n+1}} dx > \int_{0}^{1} \frac{1}{1+x^{n+2}} dx$$
 II: $\int_{0}^{\frac{\pi}{4}} \sqrt{\sin 2x} dx = \int_{0}^{\frac{\pi}{4}} \sqrt{\cos 2x} dx$

Which of these statements are correct?

- (A) Neither statement.
- (B) Statement I only.
- (C) Statement II only.
- (D) Both statements.
- 6

Which of the following would best describe how the graph of the function $y = 2^{x^2-4x+3}$ can be obtained from the graph of $y = 2^{x^2}$?

(A) A stretch parallel to the *y*-axis followed by a translation parallel to the *y*-axis.

- (B) A translation parallel to the *x*-axis followed by a stretch parallel to the *y*-axis.
- (C) A stretch parallel to the *x*-axis followed by a translation parallel to the *x*-axis.
- (D) A translation parallel to the *y*-axis followed by a stretch parallel to the *x*-axis.

7 The diagram below shows the graph of the function y = f(x).

Which of the following could be the graph of $y = \sqrt{f(x)}$?

_ 5 _

8

Which of the following could be the derivative of $\ln[(x + y)^2]$ with respect to *x*, where y represents a differentiable function of *x*.

(A)
$$\frac{2(1+\frac{dy}{dx})}{x+y}$$

(B)
$$2(x+y)(1+\frac{dy}{dx})$$

(C)
$$\frac{2(1+\frac{dy}{dx})}{(x+y)^2}$$

(D)
$$\frac{1+\frac{dy}{dx}}{x+y}$$

9 Which of the following is the same as $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^3 2x \, dx$?

(A)
$$\int_{0}^{\frac{\sqrt{3}}{2}} (1-u^2) du$$

(B)
$$\int_{0}^{\frac{\sqrt{3}}{2}} (u^2 - 1) \, du$$

(C)
$$\frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}} (1-u^2) \, du$$

(D)
$$\frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}} (u^2 - 1) \, du$$

10 Fifteen identical boxes are being sent to five distinct people. How many different ways can the boxes get distributed if it is possible for people to get no boxes (e.g. all the boxes get lost)?

(A)
$$\frac{15!}{5!10!}$$

(B) $\frac{19!}{4!15!}$
(C) $\frac{20!}{5!15!}$
(D) $\frac{21!}{5!16!}$

Section II

90 marks Attempt Questions 10–16 Allow about 1 hour and 45 minutes for this section

Answer each question in a NEW writing booklet. Extra pages are available

In Questions 10–16, your responses **should include** relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW Writing Booklet

(a) Use the substitution $u = 1 + 3\tan x$ to find the exact value of $\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{1 + 3\tan x}}{\cos^2 x} dx$ 3

(b) Find
$$\int x \tan(x^2) dx$$
. 2

(c) Find
$$\int \frac{2x-9}{2(x-3)\sqrt{x-3}} dx$$
 2

(d) Let
$$f(x) = \frac{6+6x}{(2-x)(2+x^2)}$$
.
(i) Express $f(x)$ in the form $\frac{A}{2-x} + \frac{Bx+C}{2+x^2}$ 2

(ii) Show that
$$\int_{-1}^{1} f(x) dx = 3\ln 3$$
 3

(e) Find
$$\int x \sec^4 x \tan x \, dx$$
 3

(a) Sketch the region where the inequalities $-\frac{\pi}{2} \le \arg(z-1-2i) \le \frac{\pi}{4}$, and $|z| \le \sqrt{5}$ both hold. 3

(a) The function *f* is a discontinuous function. The diagram below shows the graph of y = f(x).

Draw large (half page), separate sketches of each of the following:

(i)
$$y = f\left(\frac{x}{2}\right)$$
 1

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = f(2-x)$$
 2

(iv)
$$y = \tan^{-1} f(x)$$
 2

5

(b) The equation of a curve is
$$2x^2 + 3xy + y^2 = 3$$
.
Find the equation of the tangent at the point (2, -1).

(c) A sequence of numbers
$$T_n$$
, for integers $n \ge 1$, is defined below.

$$T_1 = 2$$
, $T_2 = -4$ and $T_n = 2T_{n-1} - 4T_{n-2}$ for $n \ge 3$

Use mathematical induction to show that $T_n = (1 + \sqrt{3}i)^n + (1 - \sqrt{3}i)^n$ for $n \ge 1$.

(a) The graph of y = f'(x) is drawn below. Given that f(1) = 2 and f(-1) = -2, draw a sketch of y = f(x). Include any asymptotes if necessary.

(b) Let *a* and *b* be real numbers. Consider the cubic equation

$$x^{3} + 2bx^{2} - a^{2}x - b^{2} = 0 \tag{(*)}$$

(i) Show that if
$$x = 1$$
 is a solution of (*) then $1 - \sqrt{2} \le b \le 1 + \sqrt{2}$ 2

(ii) Show that there is no value of *b* for which x = 1 is a repeated root of (*). 2

(c) Find the six solutions of the equation
$$\sin\left(2\cos^{-1}\left(\cot\left(2\tan^{-1}x\right)\right)\right) = 0.$$
 4

(d) Rekrap is selling raffle tickets for \$1 per ticket. In the queue for tickets, there are *m* people each with a single \$1 coin and *n* people with a single \$2 coin. Each person in the queue wants to buy a single raffle ticket and each arrangement of people in the queue is equally likely to occur. Initially Rekrap has no coins and a large supply of tickets. Rekrap stops selling tickets if he cannot give the required change.

- (i) In the case n = 1 and $m \ge 1$, find the probability that Rekrap is able to sell **1** one ticket to each person in the queue.
- (ii) By considering the first three people in the queue, show that the probability that Rekrap is able to sell one ticket to each person in the queue in the case n = 2 and $m \ge 2$ is given by 3

$$\frac{m-1}{m+1}$$

Question 15 (15 Marks) Start a NEW Writing Booklet

- (a) The polynomial P(z) has equation $P(z) = z^4 2z^3 z^2 + 2z + 10$. Given that z - 2 + i is a factor of P(z), express P(z) as a product of two quadratic factors with real coefficients
- (b) A particular accounting firm has 15 CDs in a box. 12 of them have data on them and 3 of them are blank.
 One of the staff members obtains a CD, at random, from the box and checks to see if there is any data on it and does not place it back in the box after verifying the actual contents of the CD.
 Find the probability that the 13th disk checked will be the 10th disk that contains data.

3

2

3

(c) In the diagram below, the points *X*, *Y*, and *Z* lie on a circle. The chord *XY* is a fixed chord of the circle and *Z* is any point such that *XZY* is a major arc.

The chord *UX* is a bisector of $\angle ZXY$ and chord *VY* is a bisector of $\angle ZYX$.

Prove that UV is a chord of constant length, for any point Z on the major arc XZY.

Question 15 continues on page 12

Question 15 (continued)

- (d) (i) Let $z = r(\cos\theta + i\sin\theta)$. Prove that $z - \overline{z} = 2ir\sin\theta$.
 - (ii) Let *m* and *n* be positive integers. When $x^m (1-x)^n$ is divided by $1+x^2$ the remainder is ax+b.
 - (1) By writing $x^m (1-x)^n$ in the form $x^m (1-x)^n = A(x)Q(x) + R(x)$ show that $2ai = i^m (1-i)^n - (-i)^m (1+i)^n$

1

(2) Hence, or otherwise, show that
$$a = (\sqrt{2})^n \sin \frac{(2m-n)\pi}{4}$$
 3

End of Question 15

Please turn over

Question 16 (15 Marks) Start a NEW Writing Booklet

(a) Let
$$I = \int_0^a \frac{\cos x}{\sin x + \cos x} dx$$
 and $J = \int_0^a \frac{\sin x}{\sin x + \cos x} dx$, where $0 \le a \le \frac{3\pi}{4}$.

Show that $2I = a + \ln(\sin a + \cos a)$

(b) (i) Use the substitution
$$x = \frac{1}{t^2 - 1}$$
, where $t > 1$, to show that, for $x > 0$
$$\int \frac{1}{\sqrt{x(x+1)}} dx = 2\ln(\sqrt{x} + \sqrt{x+1}) + C$$

3

3

(ii) Hence show that
$$\int_{\frac{1}{8}}^{\frac{9}{16}} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}\right)^2 dx = 2\ln\frac{5}{4}.$$
 2

(c) For any given function
$$f$$
, let $I = \int \left[f'(x) \right]^2 \left[f(x) \right]^n dx$, where n is a positive integer.
Also, $f(x)$ also satisifies $f''(x) = k f'(x) f(x)$ for some constant k .

(i) By using integration by parts, or otherwise, show that

$$I = \frac{f'(x)\left[f(x)\right]^{n+1}}{n+1} - \frac{k\left[f(x)\right]^{n+3}}{\left(n+1\right)\left(n+3\right)} + C, \text{ for some constant } C.$$

(ii) Hence, or otherwise, find
$$\int \sec^2 x (\sec x + \tan x)^6 dx$$
. 3

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2015

HSC Task #2

Mathematics Extension 2 Suggested Solutions & Markers' Comments

QUESTION	Marker
1 - 10	_
11	PB
12	PB
13	AMG
14	AF
15	AMG
16	AF

Multiple Choice Answers

1.	D	5.	С	9.	D
2.	В	6.	В	10.	С
3.	В	7.	С		
4.	D	8.	А		

Solutions for Multiple Choice Y12 Ext 2 Task 2 2015 The mean score for this question was 6.32/10

Q1

D

А	1
В	19
С	4
D	92

- Q2
- · Point symmetry > odd function · p(ic) < 0 canser no problems for p an integer • Consider $y = (x^3)^2$ For $y = x^3$ stationary point of infloxion at n=0For y = 2c minimum turning point at 2c=0 .; Nature not preserved. · x intercepts of pin) are stationary points for (p(x))^M B A 7 В 66 C 2 D 41 Q3

A is
$$|3-i| \le |3-i|$$

B is $|3-i| \ge |3-i|$
C is $|3+i| \le |3-i|$
D is $|3+i| \ge |3-i|$

B

A	32
В	74
С	4
D	6

$$0 < e^{2x}$$

: $0 < \tan^{-1}(e^{2x}) < \frac{\pi}{2}$

D

А	5
В	8
С	11
D	92

Q5

5. $x^{n+1} > x^{n+2}$ if 0 < x < 1 $\therefore 1 + x^{n+1} > 1 + x^{n+2}$ $\therefore \frac{1}{1 + x^{n+1}} < \frac{1}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \frac{1}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+1}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}}$ $\therefore \frac{1}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx}{1 + x^{n+2}} < \int_{0}^{1} \frac{dx$

$$= \int_{0}^{T_{4}} \sqrt{\cos 2\pi} \, d\pi$$

C

А	21
В	24
С	46
D	25

6. $y = 2^{\chi^2 - 4\chi + 3}$ $= 2^{\chi^2 - 4\chi + 3}$ $= 2^{(\chi - 2)^2} - 1$ $= \frac{1}{2} \cdot 2^{(\chi - 2)^2}$ $y = 2^{\chi^2 - 4\chi + 3}$

involves a translation of 2 units to the right and them shrinking ... B

А

A	19
В	38
С	37
D	21

Q6

А	0
В	1
С	115
D	0

Q8

$$\frac{d}{dse}(ln(xty)^{2})$$

$$= \frac{d}{dse}(2en(xty))$$

$$= 2 \cdot \frac{1}{se+y} \cdot (1+y')$$

А	101
В	2
С	13
D	0

Q9

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \cos^{3} 2x \, dx$$

$$= \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \cos^{2} 2x \cdot \cos 2x \, dx$$

$$= \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 - \sin^{2} 2x) \cdot \cos 2x \, dx$$

$$= \int_{\frac{\pi}{3}}^{\infty} (1 - u^{2}) \cdot \frac{1}{2} \, du \quad \therefore \, du = 2 \cos 2x \, dx$$

$$= \int_{\frac{\pi}{2}}^{\infty} (1 - u^{2}) \cdot \frac{1}{2} \, du \quad \therefore \, du = 2 \cos 2x \, dx$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (u^{2} - 1) \, du \quad x = \frac{\pi}{2} \quad u = 0$$

D

А	4
В	7
С	48
D	57

Q10 This situatio

This situation can be thought of as having 15 items XXXX X and inserting 5 separators There are 16 positions for the first separator 17 for the second 20 for the fifth. ways to insert the segarators. As the reparators are indistinguished divide by 5! : Number of ways = 20! 5! 15! DR 15 boxes and 5 separators. : 20! avrangementr. We divide by 15! ar the boxes are indistinguishable. ad by 5! a the separators are indistinguishable - 20! ways C

А	13
В	29
С	52
D	21

QUESTION 11.

(a) JI+3tanse da = -3 (m a du. = 2 [u 32] 4 = 20 (8-1) 714

XY

let m = 1+3tense. du = 3 ale x dn. = 3 dr.

Counseri Neu done!

let n = x

du = 2xdn.

(5)

 $x \tan (x^2) dn$ = to fton m. du. a frinn. du. $= -\frac{1}{2}\ln(\cos n) + c$ = - 4 In (cober) + C.

COMMISMI Those who som this as a substitution question generally , altained full marks.)

$$Q_{11}(\underline{(MNTD)})$$

$$(c) \int \frac{2x-9}{2(x-5)\sqrt{x-5}} = \int \frac{2x-6}{2(x-5)\sqrt{x-5}} dx.$$

$$= \int \frac{dx}{\sqrt{x-5}} = -\frac{3}{4} \int \frac{dx}{(x-5)\sqrt{x-5}}$$

$$= \int (x-3)^{-\frac{1}{4}} - \frac{3}{4} \int (x-3)^{-\frac{3}{4}x} dx.$$

$$= 2(x-3)^{-\frac{1}{4}} + 3(x-3)^{-\frac{1}{4}} + c$$

$$= 2\sqrt{x-3} + \frac{3}{\sqrt{x-5}} + c$$

$$Q_{11} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{12} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{12} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{12} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{13} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{14} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{15} = \int \frac{2x-3}{\sqrt{x-5}} + c$$

$$Q_{16} = \frac{2x-3}{\sqrt{x-5}} +$$

QII (CONTR)

 $\frac{6+6x}{(2-x)(2+x^{4})} = \frac{3}{2-x} + \frac{3x}{2+x^{4}}$ Hence. $\int \frac{b+bn}{(2-n)(2+x^2)} dx = \int \frac{3dn}{2-n} + \int \frac{3\pi dn}{2+x^2} dx = \int \frac{3dn}{2-n} dx = \int \frac{3\pi dn}{2+x^2} dx$ = -3 [la [2-2]] + 0 = -3 [m 1 - ln 3 = 3 In 3. Comment & need to recognise that. 3r is an odd function. & alternatively 5 3x dr. = 3 [ln(2+2)] 2 3 [h 3 - ln 3] = 0.

* Question was well done.

(PII (CONTD) (e). Jæ sec⁴ætaræ. de = Jæ sec³e. secztennde = fr. d. (sec 4n.) dn = 4 x sec 4n - 4 frechdri = 4 x rect - + ((1+lon x) rect . dr. = 4 x rectr - 4 Secondr - 4 secontain dr. = 4 x Rect - 4 ton x - 4 x 5 ton 3 x + c = 4x secte - 4 torn - 1 ton 3n + C Counser & an alternative approach. Nas to let for secon ton a do = In flanz+1) sec se tan x du = Ja tenen seinde + Ja rein tenade this led to 4 x tent + to x ten n - ten n + x -1 ten n te 4 4 4 12 * This question proved too difficult for most students, given time constraints.

QUESTION 12.

CIN

XV

COMMENT

a significant number failed to recognize that (1,2) lies on the cicle.

YI W

Ito. manba zon Aine a shon of Cog(Zow) = II + II 5 6 W (lu), 6R. 3+W= 13+i + 0+2i = 13+3i : ~ ~ (grw) = ton 1 3/3 = tar 13 E H3

3(13,1)

Q12 (CONTD)

COMMANT (b) Parts (1 + (1) were well done. ("" many thought that ag(z+w) = ag z + ag w. which is a serieur mintake!

(c) (1) O could be arg3, - arg3r OR arg3r - arg3i

(11) Let $\Theta_1 = \alpha_{g} \mathcal{Z}_1$ $\forall \Theta_{\gamma} = \alpha_{g} \mathcal{Z}_2$. $\therefore \Theta = \pm (\Theta_1 - \Theta_{\gamma}) OR \left[\Theta_1 - \Theta_{\gamma} = \pm \Theta\right] (\mathcal{A})$

(") area of triangle is \$ 13:113v ino. = \$ Im(3; 3v)

(GIN CONTO)

(1+3i)(-3+2i) = (1+3i)(-3-2i).non = 3 -11 0 $d(-3+2i)(\overline{1+3i}) = (-3+2i)(1-3i)$ = 3 +11 .. :. In (3, 3,) is = 11. . . area of triangle is 1 - 11 (= 11 m) COMMBNT. (1) very few aravered this carectly. next simply answered as ag Z' which is net what was nequired. (11) An understanding of (1) was needed to get = 13,113 1 ain 0. very per full marks. (III) Question asked for HENCE Met HBACK OR OTHER WISE". (d) let x=1 :. x3-3x - x+2=0 hechnes (2) 3-3(2) - (2) +2=0 $i(2x^3-2^2-3x+1=0)$ COMMENT most obtained full marks.

Question 13

Comments: The main error was to graph y = f(2x).

Note: The origin is an open point, not in the solution.

Comments: Many failed to indicate the origin as open, whilst others had the middle part of the curve above the axis.

Comments: This was surprisingly poorly answered, by about half the candidates. They flipped y values, and had the asymptote at x = -2.

Note: Asymptote at $y = \frac{\pi}{2}$, the open point is $(0, \frac{\pi}{2})$.

Comments: Surprisingly well answered.

(iii)

(b)
$$2x^2 + 3xy + y^2 = 3$$

Differentiating implicitly

$$4x + 3xy' + 3y + 2yy' = 0$$

$$y' = \frac{-4x - 3y}{3x + 2y}$$
At (2,-1)

$$y' = -\frac{5}{4}$$
Hence tangent:

$$y - (-1) = -\frac{5}{4}(x - 2)$$

$$5x + 4y - 6 = 0$$

Comment: Many were careless in their differentiation, and some failed to give the equation of the tangent.

$$T_{1} = 2, \ T_{2} = -4, \ T_{n} = 2T_{n-1} - 4T_{n-2}$$

$$p(n): \ T_{n} = \left(1 + i\sqrt{3}\right)^{n} + \left(1 - i\sqrt{3}\right)^{n}$$

$$p(1): \ LHS = 2$$

$$RHS = \left(1 + i\sqrt{3}\right)^{1} + \left(1 - i\sqrt{3}\right)^{1}$$

$$= 2 = LHS$$

$$p(2): \ LHS = -4$$

$$RHS = \left(1 + i\sqrt{3}\right)^{2} + \left(1 - i\sqrt{3}\right)^{2}$$

$$= -4 = LHS$$

Thus the proposition is true for n = 1, n = 2.

p(k): Assume $T_k = (1 + i\sqrt{3})^k + (1 - i\sqrt{3})^k$ is true for all positive integers less than or equal to k.

Required to Prove that this implies p(k+1) is true.

ie
$$T_{k+1} = (1+i\sqrt{3})^{k+1} + (1-i\sqrt{3})^{k+1}$$

 $LHS = 2T_k - 4T_{k-1}$

$$= 2\Big[\Big(1+i\sqrt{3}\Big)^{k} + \Big(1-i\sqrt{3}\Big)^{k}\Big] - 4\Big[\Big(1+i\sqrt{3}\Big)^{k-1} + \Big(1-i\sqrt{3}\Big)^{k-1}\Big]$$

$$= 2\Big[\Big(1+i\sqrt{3}\Big)\Big(1+i\sqrt{3}\Big)^{k-1} + \Big(1-i\sqrt{3}\Big)\Big(1-i\sqrt{3}\Big)^{k-1}\Big] - 4\Big[\Big(1+i\sqrt{3}\Big)^{k-1} + \Big(1-i\sqrt{3}\Big)^{k-1}\Big]$$

$$= \Big(1+i\sqrt{3}\Big)^{k-1}\Big[2\Big(1+i\sqrt{3}\Big) - 4\Big] + \Big(1-i\sqrt{3}\Big)^{k-1}\Big[2\Big(1-i\sqrt{3}\Big) - 4\Big]$$

$$= \Big(1+i\sqrt{3}\Big)^{k-1}\Big[2\Big(1+i\sqrt{3}\Big) + \Big(1+i\sqrt{3}\Big)^{2} + \Big(1-i\sqrt{3}\Big)^{2}\Big] + \Big(1-i\sqrt{3}\Big)^{k-1}\Big[2\Big(1-i\sqrt{3}\Big) + \Big(1+i\sqrt{3}\Big)^{2} + \Big(1-i\sqrt{3}\Big)^{2}\Big]$$

$$= \Big(1+i\sqrt{3}\Big)^{k+1} + \Big(1-i\sqrt{3}\Big)^{k+1} + 2\Big[\Big(1+i\sqrt{3}\Big)^{k} + \Big(1-i\sqrt{3}\Big)^{k}\Big] + \Big(1+i\sqrt{3}\Big)^{k-1}\Big(1-i\sqrt{3}\Big)^{2} + \Big(1-i\sqrt{3}\Big)^{k-1}\Big(1+i\sqrt{3}\Big)^{k-1}\Big]$$

$$= \Big(1+i\sqrt{3}\Big)^{k+1} + \Big(1-i\sqrt{3}\Big)^{k+1} + 2\Big[\Big(1+i\sqrt{3}\Big)^{k} + \Big(1-i\sqrt{3}\Big)^{k}\Big] - 2\Big(1+i\sqrt{3}\Big)^{k} - 2\Big(1-i\sqrt{3}\Big)^{k}\Big]$$

Thus p(k+1) is true if the proposition is true for n = k, and for all positive integers less than k. Hence the proposition is true for all positive n.

Question 14 ······ (-1,-2) COMMENT Successful students considered the asymptotes and the nature of the stationary points. b) i) let $P(x) = x^3 + 2bx^2 - a^2x - b$ where ad b are real $P(1) = (1)^{3} + 2b(1)^{2} - a^{2}(1) - b^{2} = 0$ $1 + 2b - a^2 - b^2 = 0$ $1+2b-b^{2}=a^{2}$ 1+26-6270 , since a is real $b^2 - 2b + 1 \le 1 + 1$ $(b-1)^{L} \leq 2$ - 52 5 6-1 5 52 1-52565 1+52 ii) $P'(x) = 3x^2 + 4bx - a^2$ $P'(1) = 3(1)^{2} + 4b(1) - a^{-} = 0$ _____(2) $3+4b=a^2$ sub () into (2) $3+4b = 1+2b-b^{2}$ $b^{-}+2b+2=0$ $b^{2}+2b+1=-1$ $(b+1)^2 = -1$. No real value of b for which x=1 is a repeated root

COMMENT (i) students had trouble in getting an inequality from the equation (ii) Many students failed to link a with what was found in previous part. c) METHOD sin(2cos!(cot(2tan'x))) = 02 cos (cot (2+an 12)) = 0, T, 2T, ... $0 \leq \cos^2 \theta \leq \pi$ $\cos^{-1}\left(\cot\left(2\tan^{-1}x\right)\right) = 0, \frac{\pi}{2}, \frac{\pi}{2}$ eot(2tan'x) = cos0, cost, cost $\frac{2\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{2}, \frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4},$ fan x = 1 - 31 TE, - II, 31 - TE / - Extan 0 [- Extan 0 [] $\begin{aligned} \chi &= \tan \frac{\pi}{5} \tan \left(-\frac{3\pi}{8} \right) \tan \left(\frac{3\pi}{4} \right) \tan \frac{\pi}{4} \tan \left(-\frac{\pi}{2} \right) \tan \frac{3\pi}{5} \tan \left(\frac{\pi}{8} \right) \\ \chi &= \sqrt{2} - 1, -\sqrt{2} - 1, 1, -1, \sqrt{2} + 1, -\sqrt{2} + 1 \end{aligned}$ METHOD Z -12 < 2 < 12 let d = tan 'x tand = x $cot(2\alpha) = \frac{1}{tan2\alpha}$ = ((<u>2tank</u>) (<u>1-tay</u>201) $= \frac{1-\chi^2}{2\chi}$ $lef \beta = cos^2 \left(\frac{1-x^2}{2x} \right)$, OSBETC $(2x)^2 - (1-x^2)^2$ $\frac{B}{1-x^2} = \sqrt{4x^2 - (1-2x^2 + x^4)} = \sqrt{6x^2 - x^4 - 1}$ $\cos\beta = \frac{1-\chi^2}{2\chi}$ SIL2B = 2 sin BCESB

 $5\ln 2\beta = 2\sqrt{6\pi^2 - \pi^4 - 1} \cdot \frac{1 - \pi^2}{2\pi}$ $= 2(1-n)(1+n)\sqrt{6n^2-n^4-1}$ $\frac{4n^2}{4n^2}$ $s_{ih} 2\beta = 0$ $\frac{2(1-x)(1+x)\sqrt{6x^2-x^4-1}}{4x^2} = 0$ $x = \pm 1$ or $6x^2 - x^4 - 1 = 0$ $x^4 - 6x^2 + 9 = -1 + 9$ $(x^2-3)^2=8$ $x^2 - 3 = \pm 2\sqrt{2}$ $x^{2} = 3 \pm 2\sqrt{2}$ $x = \pm \sqrt{3} \pm 2\sqrt{2}$ Note: 13+252 = 1+52 13-252 = 52-1 COMMENT: Students found more success using METHOD 1 as long as_ they considered enough values for $\sin \theta = 0$ The algebra encountered in METHOD 2 meant many students stopped short of finding the irrational solutions. $(d)(i) = \frac{m}{mt}$ (m must be first) ····· ii) $\frac{m}{m+2} \times \frac{m-1}{m+1} + \frac{m}{m+2} \times \frac{2}{m+1} \times \frac{m-1}{m}$ (m first & second on first & third) $= \frac{\lambda_{1}(m-1)}{(m+2)(m+1)\lambda_{1}} \left(\frac{m+2}{m+2} \right)$ $= \frac{m-1}{m+1}$

COMMENT : Students who didn't use factorials had much more success in simplifying the algebra. The complement could also have been used. i) $1 - \frac{1}{m+1}$ $= \frac{m+l-l}{m+l}$ · · · · · · · $\frac{11}{11} - \left(\frac{2}{m+2} + \frac{m}{m+2} \times \frac{2}{m+7} \times \frac{1}{m}\right)$ $= \int -\frac{2}{(m+2)(m+1)m} \left(m(m+1) + m \right)$ = $\int -\frac{2}{(m+2)(m+1)m} \left(m^2 + m + m \right)$ = $\int -\frac{2}{(m+2)(m+1)m} \left(m^2 + 2m \right)$ = $\int -\frac{2}{(m+2)(m+1)m} \left(m(m+2) \right)$ = $\int -\frac{2}{(m+2)(m+1)m} \left(m(m+2) \right)$ • • - • • • • $= 1 - \frac{2}{m+1}$ • • • • • • • • • · · · · · · · and the second $\frac{m+1-2}{m+1}$ • • • • • • • • • ···· · · · · · · · · · and a second e de la compansión de la c

Question 15

(a)
$$P(z) = z^4 - 2z^3 - z^2 + 2z + 10$$

 $z - (2-i)_{is a factor.}$
 $\therefore 2-i is a root.$
 $\therefore 2+i is a root (Conjugate Root Theorem)$
 $\therefore z - (2+i)_{is a factor, and so is}$
 $(z - (2-i))(z - (2+i)).$
 $= z^2 - z((2+i) + (2-i)) + (2+i)(2-i)$
 $= z^2 - 4z + 5$

By long division:

$$\frac{z^{2}+2z+2}{z^{2}-4z+5}z^{4}-2z^{3}-z^{2}+2z+10}$$

$$z^{4}-4z^{3}+5z^{2}$$

$$2z^{3}-6z^{2}+2z$$

$$2z^{3}-8z^{2}+10z$$

$$2z^{2}-8z+10$$

$$0$$

$$\therefore P(z) = (z^{2}-4z+5)(z^{2}+2z+2)$$

Comment: There is some confusion as to what is a factor and what is a root.

Having established the conjugate root, most successful candidates used long division. Many found the other roots by inspection, or by the factor theorem, but several failed in the attempt.

 (b) The 13th disk chosen is the 10th disk with data. Thus the 3 blank disks have already been selected. Hence the last three are data disks. The probability of this is the same as the first three being data disks.

$$p = \frac{12}{15} \times \frac{11}{14} \times \frac{10}{13}$$
$$= \frac{44}{91}$$

Let $\angle UXY = \angle UXZ = \alpha$ Let $\angle VYX = \angle VYZ = \beta$

Now $\angle UYZ = \angle UXZ = \alpha$ (Standing on same arc) And $\angle VXZ = \angle VYZ = \beta$ (ditto)

In $\triangle ZYX$, let $\angle YZX = \gamma$

 $\gamma = 180^{\circ} - 2(\alpha + \beta)$ (angle sum of triangle)

Now since XY is fixed, so is the angle γ (angle at the circumference).

$$\therefore 2(\alpha + \beta) = 180^{\circ} - \gamma \quad \text{(constant)}$$
$$(\alpha + \beta) = 90^{\circ} - \frac{\gamma}{2} \quad \text{(constant)}$$

But *UV* subtends $\alpha + \beta$ at *X*, and at *Y*. Since the angle is constant, so *UV* is of constant length.

Comment: Very few seemed to be aware of the theorem used in this solution.

Of those who attempted a solution, many tried to used similar triangles, but there is no reason for the enlargement ratio to be constant. They were given half marks.

(d) (i)
$$z = r(\cos\theta + i\sin\theta)$$

 $z - \overline{z} = r(\cos\theta + i\sin\theta) - r(\cos\theta - i\sin\theta)$
 $= r(2i\sin\theta)$
 $= 2ir\sin\theta$

Comment: Most candidates got this question right.

(ii) (1)

$$x^{m}(1-x)^{n} = A(x)Q(x) + R(x)$$

 $x^{m}(1-x)^{n} = (1+x^{2})Q(x) + (ax+b)$

The division transformation is an identity. That is, it is true for all values of x.

Let
$$x = i$$

 $i^{m} (1-i)^{n} = (1-i^{2})Q(i) + (ai + b)$
 $\therefore i^{m} (1-i)^{n} = ai + b$ Eqn(1)
Let $x = -i$
 $i^{m} (1+i)^{n} = (1-(-i)^{2})Q(i) - ai + b$
 $\therefore i^{m} (1+i)^{n} = -ai + b$ Eqn(2)
(1)-(2):
 $2ai = i^{m} (1-i)^{n} - (-i)^{m} (1+i)^{n}$

Comment: Few candidates attempted this question, about half of whom got it right. The rest chose their substituted values poorly.

(2) Note that
$$\overline{i^m (1-i)^n} = (-i)^m (1+i)^n$$

Thus from above $2ai = 2ir\sin\theta$

Now
$$\arg(i^m) = \frac{m\pi}{2}$$

 $\arg(1-i)^n = -\frac{n\pi}{4}$
 $\arg(i^m)(1-i)^n = \frac{m\pi}{2} - \frac{n\pi}{4}$
 $= \frac{(2m-n)\pi}{4}$
Now $|i^m(1-i)^n| = |i^m| \times |(1-i)^n|$
 $= 1 \times (\sqrt{2})^n$
Hence $a = (\sqrt{2})^n \sin \frac{(2m-n)\pi}{4}$

Comment: Very few attempted this, of whom some were successful, having noticed the conjugate relationship.

Question 15 a) $I = \int_{0}^{a} \frac{\cos n}{\sin x + \cos x} dx$ $J = \int_{0}^{\frac{\alpha}{5mn+\cos x}} dx$ where OSasst $I + J = \int_{0}^{\frac{s}{\sin x + \cos x}} dx$ $=\int dx$ $= [x]^{q}$ = a - 0 $I+J=\alpha$ $I - J = \int_{0}^{\frac{Q}{\cos n - \sin n}} \frac{\cos n - \sin n}{\sin n + \cos n} dx$ $= \left[ln(sinx+cosx) \right]^{\alpha}$ $= \ln(\sin \alpha + \cos \alpha) - \ln(\sin \alpha + \cos \alpha)$ $T - J = \ln(\sin \alpha + \cos \alpha)$ (2) () + (2)2I = a + la (sina + casa) COMMENT Some students were looking to apply the result of f/x) du = of f(a-n) dx which would be useful when $a = \frac{\pi}{2}$. That would involve ignoring J. Students who did ignore) scored poorly.

b) i) $I = \int \frac{dx}{\sqrt{x(x+1)}}$ $\mathcal{H} = \frac{1}{t^2 - 1}$ $\chi = (t^2 - 1)^{-1}$ $dx = -(t^2-1)^2 2t$ $dx = -\frac{2t}{(t^2-1)^2}$ $I = \int \frac{1}{\sqrt{\left(\frac{1}{t^2-1}\right)\left(\frac{1}{t^2-1}+1\right)}} \cdot \frac{-2tolt}{(t^2-1)^2}$ $= \int \frac{-2t dt}{(t^2-1)^2 \sqrt{\frac{1+t^2-1}{(t^2-1)^2}}}$ $= \int \frac{-2t dt}{(t^2-1)^2} \sqrt{\frac{t^2}{(t^2-1)^2}}$ since $t \neq 1$, $\int t^2 = t$, $\int (t^2 - 1)^2 = (t^2 - 1)$ $\int \frac{-2t dt}{(t^2-1)^2 t}$ $= \int \frac{-2dt}{t^2-1}$ PARMAL FRACTIONS $\frac{-2}{t^2-1} = \frac{A}{t-1} + \frac{B}{t+1}$ -2 = A(t+1) + B(t-1)when t=1 when t=-1 -2 = 2A-2 = -2BA = -1B=1 $\frac{2}{t^2 - 1} = \frac{-1}{t - 1} + \frac{1}{t + 1}$ $I = \int \left(\frac{1}{t-1} + \frac{1}{t+1} \right) dt$ $= -\ln(t-1) + \ln(t+1) + C$

 $x = \overline{t^2 - 1}$ $= \ln \left(\frac{t+1}{t-1}\right) + C$ $e^2 - l = \frac{l}{\chi}$ $t' = \frac{1}{2} t + 1$ $t = \frac{n+1}{n}$ $t = \sqrt{2+1}$ $= \ln \left(\frac{\sqrt{2+1}}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}} \right) + C$ = $ln\left(\frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} - \sqrt{x}}, \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}\right) + C$ $= \ln \left(\frac{\sqrt{x+1} + \sqrt{x}}{x+1 - x} \right) + C$ = 2 ln (vx + vx+1) + C ii) $\int_{1}^{1} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+i}}\right)^{2} dx$ $= \int_{1}^{\overline{le}} \left(\frac{1}{x} - \frac{2}{\sqrt{x(n+1)}} + \frac{1}{x+1} \right) dx$ $= \left[\ln x - 2 \left(2 \ln \left(\sqrt{x} + \sqrt{x} + 1 \right) \right) + \ln \left(x + 1 \right) \right]_{\frac{1}{8}}^{\frac{1}{16}}$ = $\ln \left(\frac{1}{16} \right) - 4 \ln \left(\sqrt{\frac{9}{16}} + \sqrt{\frac{9}{16}} + 1 \right) + \ln \left(\frac{9}{16} + 1 \right) - \left(\ln \left(\frac{1}{8} \right) - 4 \ln \left(\sqrt{\frac{1}{8}} + \sqrt{\frac{1}{8}} + 1 \right) + \ln \left(\frac{1}{8} + 1 \right) \right)$ $= \ln \left(\frac{\frac{1}{76} \times \frac{25}{76}}{\frac{1}{8} \times \frac{9}{8}} \right) + 4 \ln \left(\frac{\frac{1}{252} + \frac{3}{252}}{\frac{3}{4} + \frac{5}{4}} \right)$ $= \ln\left(\frac{25}{4}\right) + 4\ln\left(\frac{272}{2}\right)$ = $\ln\left(\frac{5}{2}\right)^{2} + 4\ln\left(\frac{1}{\sqrt{2}}\right)$

 $= 2\ln\left(\frac{5}{2}\right) + 2\ln\left(\frac{1}{\sqrt{2}}\right)^2$ $= 2 \ln \left(\frac{5}{2}\right) + 2 \ln \left(\frac{1}{2}\right)$ $= 2\ln\left(\frac{5}{2}\times\frac{1}{2}\right)$ $= 2 \ln \left(\frac{5}{4}\right)$ COMMENTS: i) There is a lot of algebra. Since the question asks us to SHOW THAT much care needs to be taken and all steps shown it when rationalising the denominator iside the logarithm Note: If we did not have to use the substitution given it would be quite simple to complete the square on x(x+1) and use a standard integral. 11) Again as this question was a SHOW THAT students needed to show how the expression simplified to be awanded full marks. Some students struggled to see how part(i) could be used. $Z = \int \left[f'(x) \right]^2 \left[f(x) \right]^n dx$ = $\int f'(x) \cdot f'(x) \left[f(x) \right]^n dx$ c) i) $u = f'(x) \qquad v' = f'(x) [f(x)]^{n}$ $u' = f''(x) = \frac{[f(x)]^{n+1}}{n+1}$ n+1 $I = \frac{f'(x)[f(x)]}{n+1} - \frac{1}{n+1} \int f'(x)[f(x)] dx + C,$ $I = \frac{f'(x)[f(x)]}{n+1} - \frac{1}{n+1} \int k f'(x)f(x) [f(x)] dx + C,$

 $\frac{T = f'(x)[f(x)]}{n+1} - \frac{k}{n+1} \int f'(x)[f(x)] dx + C,$ $= \frac{f'[n][f(x)]}{n+1} - k [f(n)]^{n+3} + C_2$ $= \frac{f'[n][f(x)]}{n+1} (n+1) (n+3)$ $= \frac{f'(x)[f(x)]^{n+1}}{n+1} - \frac{k[f(x)]}{(n+1)(n+3)} + C_2$ f/x) = secx + tanx <u>(i)</u> f"(x) = secrtanx + sec2x = Secx (secx + tanx) f"(x) = secx tanx (secretanx) + secx (secx tanx + sec2x) = secxtann+ secxtan x + secxtanx + sec3x = sec³n + 2sec²x tan x + sec x tan x kf'(x)f(x)=k[secx(secx+tanx)](secx+tanx) = k secx (secx + tanx) = k secx (sec²x + 2secxtanx + tan²x) = k[sec³x + 2sec²n tan x + secxtan²x] : k=1 $\left[f'(x)\right]^2 = \sec^2 x \left(\sec x + \tan x\right)^2$ Sech (sec n + tamz) dr $= \int \sec^{2} x (\sec x + \tan x)^{2} (\sec x + \tan x)^{4} dx$ = $\sec x (\sec x + \tan x)^{6} - 1 \cdot (\sec x + \tan x)^{7} + C$ $\frac{5}{5} = \frac{5 \times 7}{5 \times 7}$

 $= \frac{\sec x (\sec x + \tan x)^{6}}{5} - \frac{(\sec x + \tan x)^{7}}{35} + C$ $= \frac{(\sec x + \tan x)^{6}}{35} (7\sec x - (\sec x + \tan x)) + C$ $= \frac{(\sec x + \tan x)^{6}}{35} (6\sec x - \tan x) + C$ $= \frac{(\sec x + \tan x)^{6}}{35} (6\sec x - \tan x) + C$ COMMENTS: i) Many students fried to htegrate [f(x)] "instead of f'(x)[f(x)]" COMMENTS: ii) No student checked if f''(x) = k f'(x) f(x) could be satisfied. If $[f'(x)]^2$ was not considered the wrong value of n was chosen. Overall, there were very few attempts at this question. ····· •••- •· · · · ·