

SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2015

HSC Task \#2

Mathematics
 Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Leave your answers in the simplest exact form, unless otherwise stated
- Start each NEW question in a separate answer booklet.

Total Marks - 100
Section I
Pages 2-6
10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II Pages 7-13

90 marks

- Attempt Questions 11-16
- Allow about 1 hour and 45 minutes for this section

Examiner: P. Parker

Section I - Multiple Choice

10 Marks

Attempt question 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1 In the diagram below, the point z lies on a circle such that $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$.
Which of the following equations best represents the locus of z ?

(A) $\quad|z-i| \leq 2$
(B) $\quad|z-i|=2$
(C) $\quad|z-i| \leq \sqrt{2}$
(D) $\quad|z-i|=\sqrt{2}$

2 Consider the curve with equation $y=[p(x)]^{m}$, for integer m.
Which of the following statement best describes a feature of the curve of $y=[p(x)]^{m}$?
(A) The curve exhibits point symmetry about $(0,0)$.
(B) The x-intercepts of $y=p(x)$ correspond to stationary points on $y=[p(x)]^{m}$.
(C) The curve does not exist for values for which $p(x)<0$.
(D) The nature of the stationary points of $y=p(x)$ are preserved for $y=[p(x)]^{m}$.

3 Which of the following diagrams represents the locus of all points z such that $|z-i| \geq|z-1|$?
(A)

(B)

(C)

(D)

$4 \quad$ For the function $y=\tan ^{-1}\left(e^{2 x}\right)$, what is the range?
(A) $0 \leq y \leq \frac{\pi}{2}$
(B) $0<y \leq \frac{\pi}{2}$
(C) $0 \leq y<\frac{\pi}{2}$
(D) $0<y<\frac{\pi}{2}$

5 Consider the following two statements:
I: $\quad \int_{0}^{1} \frac{1}{1+x^{n+1}} d x>\int_{0}^{1} \frac{1}{1+x^{n+2}} d x \quad$ II: $\quad \int_{0}^{\frac{\pi}{4}} \sqrt{\sin 2 x} d x=\int_{0}^{\frac{\pi}{4}} \sqrt{\cos 2 x} d x$
Which of these statements are correct?
(A) Neither statement.
(B) Statement I only.
(C) Statement II only.
(D) Both statements.

6 Which of the following would best describe how the graph of the function $y=2^{x^{2}-4 x+3}$ can be obtained from the graph of $y=2^{x^{2}}$?
(A) A stretch parallel to the y-axis followed by a translation parallel to the y-axis.
(B) A translation parallel to the x-axis followed by a stretch parallel to the y-axis.
(C) A stretch parallel to the x-axis followed by a translation parallel to the x-axis.
(D) A translation parallel to the y-axis followed by a stretch parallel to the x-axis.
$7 \quad$ The diagram below shows the graph of the function $y=f(x)$.

Which of the following could be the graph of $y=\sqrt{f(x)}$?
(A)

(B)

(C)

(D)

8 Which of the following could be the derivative of $\ln \left[(x+y)^{2}\right]$ with respect to x, where y represents a differentiable function of x.
(A) $\frac{2\left(1+\frac{d y}{d x}\right)}{x+y}$
(B) $\quad 2(x+y)\left(1+\frac{d y}{d x}\right)$
(C) $\frac{2\left(1+\frac{d y}{d x}\right)}{(x+y)^{2}}$
(D) $\frac{1+\frac{d y}{d x}}{x+y}$

9 Which of the following is the same as $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{3} 2 x d x$?
(A) $\int_{0}^{\frac{\sqrt{3}}{2}}\left(1-u^{2}\right) d u$
(B) $\int_{0}^{\frac{\sqrt{3}}{2}}\left(u^{2}-1\right) d u$
(C) $\frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}}\left(1-u^{2}\right) d u$
(D) $\frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}}\left(u^{2}-1\right) d u$

10 Fifteen identical boxes are being sent to five distinct people.
How many different ways can the boxes get distributed if it is possible for people to get no boxes (e.g. all the boxes get lost)?
(A) $\frac{15!}{5!10!}$
(B) $\frac{19!}{4!15!}$
(C) $\frac{20!}{5!15!}$
(D) $\frac{21!}{5!16!}$

Section II

90 marks
 Attempt Questions 10-16
 Allow about 1 hour and 45 minutes for this section

Answer each question in a NEW writing booklet. Extra pages are available
In Questions 10-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW Writing Booklet
(a) Use the substitution $u=1+3 \tan x$ to find the exact value of $\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{1+3 \tan x}}{\cos ^{2} x} d x$
(b) Find $\int x \tan \left(x^{2}\right) d x$.
(c) Find $\int \frac{2 x-9}{2(x-3) \sqrt{x-3}} d x$
(d) Let $f(x)=\frac{6+6 x}{(2-x)\left(2+x^{2}\right)}$.
(i) Express $f(x)$ in the form $\frac{A}{2-x}+\frac{B x+C}{2+x^{2}}$
(ii) Show that $\int_{-1}^{1} f(x) d x=3 \ln 3$
(e) Find $\int x \sec ^{4} x \tan x d x$
(a) Sketch the region where the inequalities $-\frac{\pi}{2} \leq \arg (z-1-2 i) \leq \frac{\pi}{4}$, and $|z| \leq \sqrt{5}$ both hold.
(b) Suppose that $z=\sqrt{3}+i$ and $\omega=(\operatorname{cis} \theta) z$ where $-\pi<\theta \leq \pi$.

(i) Find the argument of z. 1
(ii) Find the value of θ if ω is purely imaginary and $\operatorname{Im} \omega>0$.
(iii) Find the value of $\arg (z+\omega)$ if ω is purely imaginary and $\operatorname{Im} \omega>0$.
(c) Let two non-zero complex numbers be z_{1} and z_{2}.

Let θ be the angle between the straight lines joining 0 to z_{1} and 0 to z_{2}.
(i) One possible expression for θ is $\theta=\arg z_{1}-\arg z_{2}$.

1
Write down another possible expression for θ in terms of $\arg z_{1}$ and $\arg z_{2}$.
(ii) Hence prove that $\operatorname{Im}\left(z_{1} \bar{z}_{2}\right)= \pm\left|z_{1}\right|\left|z_{2}\right| \sin \theta$
(iii) Hence find the area of the triangle whose vertices are $0,1+3 i$ and $-3+2 i$.
(d) The polynomial equation $x^{3}-3 x^{2}-x+2=0$ has roots α, β and γ.

Find the polynomial equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.
(a) The function f is a discontinuous function.

The diagram below shows the graph of $y=f(x)$.

Draw large (half page), separate sketches of each of the following:
(i) $y=f\left(\frac{x}{2}\right)$

1

2

2
(iv) $y=\tan ^{-1} f(x)$
(b) The equation of a curve is $2 x^{2}+3 x y+y^{2}=3$.

Find the equation of the tangent at the point $(2,-1)$.
(c) A sequence of numbers T_{n}, for integers $n \geq 1$, is defined below.

$$
T_{1}=2, T_{2}=-4 \text { and } T_{n}=2 T_{n-1}-4 T_{n-2} \text { for } n \geq 3
$$

Use mathematical induction to show that $T_{n}=(1+\sqrt{3} i)^{n}+(1-\sqrt{3} i)^{n}$ for $n \geq 1$.
(a) The graph of $y=f^{\prime}(x)$ is drawn below.

Given that $f(1)=2$ and $f(-1)=-2$, draw a sketch of $y=f(x)$.
Include any asymptotes if necessary.

(b) Let a and b be real numbers. Consider the cubic equation

$$
\begin{equation*}
x^{3}+2 b x^{2}-a^{2} x-b^{2}=0 \tag{*}
\end{equation*}
$$

(i) Show that if $x=1$ is a solution of (*) then $1-\sqrt{2} \leq b \leq 1+\sqrt{2}$
(ii) Show that there is no value of b for which $x=1$ is a repeated root of $(*)$.
(c) Find the six solutions of the equation $\sin \left(2 \cos ^{-1}\left(\cot \left(2 \tan ^{-1} x\right)\right)\right)=0$.
(d) Rekrap is selling raffle tickets for $\$ 1$ per ticket. In the queue for tickets, there are m people each with a single $\$ 1$ coin and n people with a single $\$ 2$ coin.
Each person in the queue wants to buy a single raffle ticket and each arrangement of people in the queue is equally likely to occur.
Initially Rekrap has no coins and a large supply of tickets. Rekrap stops selling tickets if he cannot give the required change.
(i) In the case $n=1$ and $m \geq 1$, find the probability that Rekrap is able to sell one ticket to each person in the queue.
(ii) By considering the first three people in the queue, show that the probability that Rekrap is able to sell one ticket to each person in the queue in the case $n=2$ and $m \geq 2$ is given by

$$
\frac{m-1}{m+1}
$$

(a) The polynomial $P(z)$ has equation $P(z)=z^{4}-2 z^{3}-z^{2}+2 z+10$.

Given that $z-2+i$ is a factor of $P(z)$, express $P(z)$ as a product of two quadratic factors with real coefficients
(b) A particular accounting firm has 15 CDs in a box. 12 of them have data on them and 3 of them are blank.
One of the staff members obtains a CD, at random, from the box and checks to see if there is any data on it and does not place it back in the box after verifying the actual contents of the CD.
Find the probability that the $13^{\text {th }}$ disk checked will be the $10^{\text {th }}$ disk that contains data.
(c) In the diagram below, the points X, Y, and Z lie on a circle. The chord $X Y$ is a
fixed chord of the circle and Z is any point such that $X Z Y$ is a major arc.
The chord $U X$ is a bisector of $\angle Z X Y$ and chord $V Y$ is a bisector of $\angle Z Y X$.

Prove that $U V$ is a chord of constant length, for any point Z on the major arc $X Z Y$.

Question 15 continues on page 12

Question 15 (continued)
(d) (i) Let $z=r(\cos \theta+i \sin \theta)$.

Prove that $z-\bar{z}=2 i r \sin \theta$.
(ii) Let m and n be positive integers.

When $x^{m}(1-x)^{n}$ is divided by $1+x^{2}$ the remainder is $a x+b$.
(1) By writing $x^{m}(1-x)^{n}$ in the form
$x^{m}(1-x)^{n}=A(x) Q(x)+R(x)$
show that $2 a i=i^{m}(1-i)^{n}-(-i)^{m}(1+i)^{n}$
(2) Hence, or otherwise, show that $a=(\sqrt{2})^{n} \sin \frac{(2 m-n) \pi}{4}$

End of Question 15

Please turn over

Question 16 (15 Marks) Start a NEW Writing Booklet
(a) Let $I=\int_{0}^{a} \frac{\cos x}{\sin x+\cos x} d x$ and $J=\int_{0}^{a} \frac{\sin x}{\sin x+\cos x} d x$, where $0 \leq a \leq \frac{3 \pi}{4}$.

Show that $2 I=a+\ln (\sin a+\cos a)$
(b) (i) Use the substitution $x=\frac{1}{t^{2}-1}$, where $t>1$, to show that, for $x>0$

$$
\int \frac{1}{\sqrt{x(x+1)}} d x=2 \ln (\sqrt{x}+\sqrt{x+1})+C
$$

(ii) Hence show that $\int_{\frac{1}{8}}^{\frac{9}{16}}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)^{2} d x=2 \ln \frac{5}{4}$.
(c) For any given function f, let $I=\int\left[f^{\prime}(x)\right]^{2}[f(x)]^{n} d x$, where n is a positive integer. Also, $f(x)$ also satisifies $f^{\prime \prime}(x)=k f^{\prime}(x) f(x)$ for some constant k.
(i) By using integration by parts, or otherwise, show that

$$
I=\frac{f^{\prime}(x)[f(x)]^{n+1}}{n+1}-\frac{k[f(x)]^{n+3}}{(n+1)(n+3)}+C, \text { for some constant } C
$$

(ii) Hence, or otherwise, find $\int \sec ^{2} x(\sec x+\tan x)^{6} d x$.

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

SYDNEYBOYS HIGH SCHOOL MoORE PARK, SURRY HILLS

2015

HSC Task \#2

Mathematics Extension 2

Suggested Solutions
 \&

Markers' Comments

QUESTION	Marker
$1-10$	-
11	PB
12	PB
13	AMG
14	AF
15	AMG
16	AF

Multiple Choice Answers

1. D
2. C
3. D
4. B
5. B
6. D
7. B
8. C
9. C
10. A

Solutions for Multiple Choice Y12 Ext 2 Task 22015
The mean score for this question was 6.32/10 Q1

Angle at centre $=\frac{\pi}{2}$
\therefore Angle at A is $\frac{\pi}{4}$

$$
\therefore O C=O A=1
$$

$\therefore C$ is i

$$
\begin{aligned}
& \therefore \quad A C=\sqrt{2} \\
& \therefore|z-i|=\sqrt{2}
\end{aligned}
$$

D

- Point symmetry \Rightarrow odd function
- $p(x)<0$ causer no problems for n an integer
- Consider $y=\left(x^{3}\right)^{2}$

For $y=x^{3}$, stationary point of inflexion at $x=0$
For $y=x^{6}$, minimum twining point at $x=0$
\therefore Nature not preserved.

- x intercepts of $\rho(x)$ are stationary points for $(p(x))^{m}$ B

A	7
B	66
C	2
D	41

Qu
A is $|z-i| \leqslant|z-1|$
B is $|z-i| \geqslant|z-1|$
C is $\quad|z+i| \leqslant|z-1|$ D is $|z+i| \geqslant|z-1|$ B
$0<e^{2 x}$
$\therefore 0<\tan ^{-1}\left(e^{2 x}\right)<\frac{\pi}{2}$
D

A	5
B	8
C	11
D	92

Q5
5. $x^{n+1}>x^{n+2}$ if $0<x<1$

$$
\therefore 1+x^{n+1}>1+x^{n+2}
$$

$$
\therefore \frac{1}{1+x^{n+1}}<\frac{1}{1+x^{n+2}}
$$

$$
\therefore \int_{0}^{1} \frac{d x}{1+x^{n+1}}<\int_{0}^{1} \frac{d x}{1+x^{n+2}}
$$

\therefore I is false.

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sqrt{\sin 2 x} d x \quad \text { Let }=\frac{\pi}{4}-x \\
= & \int_{\frac{\pi}{4}}^{0} \sqrt{\sin \left(\frac{\pi}{2}-2 u\right)}(-d u)_{I f} x=0, u=\frac{\pi}{4} \\
= & \int_{0}^{\frac{\pi}{4}} \sqrt{\cos 2 u} d u=-d x \\
= & \int_{0}^{\pi / 4} \sqrt{\cos ^{2} 2 x} d x
\end{aligned}
$$

\therefore II is true
c

A	21
B	24
C	46
D	25

$$
\text { 6. } \begin{aligned}
y & =2^{x^{2}-4 x+3} \\
& =2^{x^{2}-4 x+4-1} \\
& =2^{(x-2)^{2}} \cdot 2^{-1} \\
& =\frac{1}{2} \cdot 2^{(x-2)^{2}} \\
\therefore y & =2^{x^{2}-4 x+3}
\end{aligned}
$$

involves a translation of 2 units to the right and then shrinking $\therefore \quad B$

Q7
7. $y=\sqrt{f(x)}$ is not defined for $-1<x<0$ or for $x>1$ (assuming marking are 1 unit apart)

Q9

$$
\int_{\frac{\pi}{3}}^{\pi / 2} \cos ^{3} 2 x d x
$$

$$
=\int_{\pi / 3}^{\pi / 2} \cos ^{2} 2 x \cdot \cos 2 x d x
$$

$$
=\int_{\pi / 3}^{\pi / 2}\left(1-\sin ^{2} 2 x\right) \cdot \cos 2 x d x
$$

C is the only diagram where the function is not defined in these areas.
$=\frac{1}{2} \int_{0}^{\sqrt{3 / 2}}\left(u^{2}-1\right) d u$

Let $k=\sin 2 x$
$=\int_{\frac{\sqrt{3}}{2}}^{0}\left(1-u^{2}\right) \cdot \frac{1}{2} d u$

$$
\therefore d u=2 \cos 2 x d x
$$

$$
\text { If } f=\frac{\pi}{3} u=\frac{\sqrt{3}}{2}
$$

$$
x=\frac{\pi}{2} \quad u=0
$$

D

Q8

$$
\begin{aligned}
& \frac{d}{d x}\left(\ln (x+y)^{2}\right) \\
= & \frac{d}{d x}(2 \ln (x+y)) \\
= & 2 \cdot \frac{1}{x+y} \cdot\left(1+y^{\prime}\right)
\end{aligned}
$$

A

A	101
B	2
C	13
D	0

This situation can be thought of as having 15 items

$$
x \times \times x^{v} \ldots x
$$ and inserting 5 separators.

There are 16 positions for the first separator, 17 for the second ... 20 for the fifth.
\therefore There are $16 \times 17 \times \ldots \times 20$ ways to insert the separators. At the separators are indirtingishets divide by 5 !
\therefore Number of ways $=\frac{20!}{5!15!}$
$O R$
15 boxes and 5 separators.
$\therefore 20$! arrangements.
We divide by 15! ar the boxer are indistinguishable oo l by 5! a the separators are indistingseishable
$\therefore \frac{20!}{5!15!}$ ways
c

A	13
B	29
C	52
D	21

Question 11.

$$
\left(x^{2}\right)
$$

(a)

$$
\text { (2) } \begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{1+3 \tan x}}{\cos ^{2} x} d x \\
= & \frac{1}{3} \int_{1}^{4} \mu^{\frac{1}{2}} d u . \\
= & \frac{2}{9}\left[u^{3 / 2}\right]_{1}^{4} \\
= & \frac{2}{9}(8-1) \\
= & \frac{14}{9}
\end{aligned}
$$

let

$$
u=1+3 \tan x .
$$

$$
d x=3 \sec ^{2} x d x .
$$

$$
=\frac{3 d x}{\cos ^{2} x}
$$

ConnBuT
Well dare!
(b)

$$
\begin{aligned}
& \int x \tan \left(x^{2}\right) d x \\
= & \frac{1}{2} \int \tan x \cdot d x \\
= & \frac{1}{2} \int \frac{\sin x}{\cos x} \cdot d x . \\
= & -\frac{1}{2} \ln (\cos x)+c \\
= & -\frac{1}{2} \ln \left(\cos \left(x^{2}\right)\right)+c .
\end{aligned}
$$

$$
\text { Let } u=x^{2}
$$

$$
d u=2 x d x .
$$

COMMISNT

Thore seks saw this as a sebstituturi quertran gererally oftanied pullinaks.)

Q11 (conTD)
(C)

$$
\begin{aligned}
\int \frac{2 x-9 d x}{2(x-3) \sqrt{x-3}} & =\int \frac{2 x-6-3}{2(x-3) \sqrt{x-3}} \cdot d x \\
& =\int \frac{d x}{\sqrt{x-3}}-\frac{3}{2} \int \frac{d x}{(x-3) \sqrt{x-3}} \\
& =\int(x-3)^{-\frac{1}{2}} d x-\frac{3}{2} \int(x-3)^{-3 / 2} \cdot d x \\
& =2(x-3)^{\frac{1}{2}}+3(x-3)^{-\frac{1}{2}}+c \\
& =2 \sqrt{x-3}+\frac{3}{\sqrt{x-3}}+c
\end{aligned}
$$

on. $\left|\frac{2 x-3}{\sqrt{x-3}}+c\right|$
COMMEAT mocet oftained full macto.
(d). (') Let $6+6 x \equiv A\left(2+x^{2}\right)+(2-x)(B x+c)$

$$
\begin{gathered}
\text { if } x=2 \quad 6+12=6 A \\
\therefore A=3 \\
\text { if } x=0 \quad 6=2 A+2 C \\
\therefore 12=0 \\
\\
\text { if } x=1 \quad 12=3 A+B+C \\
12=9+B+0 \\
\therefore \quad B=3
\end{gathered}
$$

Q11" (d) (1) (COMTD)

$$
\therefore \frac{6+6 x}{(2-x)\left(2+x^{2}\right)}=\frac{3}{2-x}+\frac{3 x}{2+x^{2}}
$$

Hence.

$$
\begin{aligned}
\int_{-1}^{1} \frac{6+6 x}{(2-x)\left(2+x^{2}\right)} d x & =\int_{-1}^{1} \frac{3 d x}{2-x}+\int_{-1}^{1} \frac{3 x d x}{2+x^{2}} \\
& =-3[\ln [2-x]]_{-1}^{1}+0 \\
& =-3[\ln 1-\ln 3] \\
& =3 \ln 3 .
\end{aligned}
$$

Cоммілт * need to secognie that. $\frac{3 x}{2+x^{2}}$ is an odd pranction.

* Alternativiely $\int_{-1}^{1} \frac{3 x d x}{2+x^{2}}$

$$
\begin{aligned}
& =\frac{3}{2}\left[\ln \left(2+x^{2}\right)\right]_{-1}^{1} \\
& =\frac{3}{2}[\ln 3-\ln 3]^{-1} \\
& =0 .
\end{aligned}
$$

* Quection was succe dure.
$Q_{11}(C O M T D)$
(e).

$$
\begin{aligned}
\int x \sec ^{4} x \tan x \cdot d x & =\int x \sec ^{3} x \cdot \sec x \tan x d x \\
& =\int x \cdot \frac{d^{2}}{4 x}\left(\frac{\sec ^{4} x}{4}\right) d x \\
& =\frac{1}{4} x \sec ^{4} x-\frac{1}{4} \int \sec x d x \\
& =\frac{1}{4} x \sec ^{4} x-\frac{1}{4} \int\left(1+\tan ^{2} x\right) \sec ^{2} x \cdot d x \\
= & \frac{1}{4} x \sec ^{4} x-\frac{1}{4} \int \sec ^{2} x d x-\frac{1}{4} \int \sec ^{2} x \tan ^{2} x d x \\
= & \frac{1}{4} x \sec ^{4} x-\frac{1}{4} \tan x-\frac{1}{4} \times \frac{1}{3} \tan ^{3} x+c \\
= & \frac{1}{4} x \sec ^{4} x-\frac{1}{4} \tan x-\frac{1}{12} \tan ^{3} x+c
\end{aligned}
$$

Coumist * An alternative aftwoach. was to let $\int x \sec ^{4} x \tan x d x$

$$
\begin{aligned}
& \left.=\int x \tan ^{2} x+1\right) \sec ^{2} x \tan x d x \\
& =\int x \tan ^{3} x \sec ^{2} x d x+\int x \sec ^{2} x \tan x d x
\end{aligned}
$$

litis led to

$$
\frac{1}{4} x \tan ^{4} x+\frac{1}{2} x \tan ^{2} x-\frac{\tan x}{4}+\frac{x}{4}-\frac{1}{12} \tan ^{3} x+
$$

* This quertusi presed to defficult for mset studeats, given time constaints.

Question 12.

$$
(x 2)
$$

(a)

Commant
A signipieant number pailed A recogrive that $(1,2)$ lies on the vide.
(b) (1)

$$
\begin{aligned}
& \arg z=\tan ^{-1} \frac{1}{\sqrt{3}} \\
&=\frac{\pi}{6}
\end{aligned}
$$

(III),

Sivie a shanber

$$
\operatorname{cog}(z+w)=\frac{\pi}{6}+\frac{\pi}{6}
$$

OR.

$$
\begin{aligned}
z+w & =\sqrt{3}+i+0+2 i \\
& =\sqrt{3}+3 i \\
\therefore \arg (z+a) & =\tan ^{-1} \frac{3}{\sqrt{3}} \\
& =\tan ^{-1} \sqrt{3} \\
& =\frac{\pi}{3}
\end{aligned}
$$

Q12 (contro)
COMMSNT (b)
Parts (I) क (II) were soll dare.
(III) many thougit that

$$
\arg (z+w)=\arg z+\arg \omega .
$$

which is a senime miviake!
(C) (1) θ could the $\arg z_{1}-\arg z r$

$$
\text { OR arg } z_{2}-a g z_{1}
$$

Comminir $a g \frac{z^{2}}{z_{1}}$ was accefted altheugh the quention asked fr the ancuer in terns $M / \operatorname{ag} z_{1}$ and Ngz2.
(M let $\theta_{1}=\arg z_{1} \& \theta_{2}=\arg z_{2}$.

$$
\begin{equation*}
\therefore \theta= \pm\left(\theta_{1}-\theta_{2}\right) \text { OR } \mid \overline{\theta_{1}-\theta_{2}= \pm \theta} \tag{A}
\end{equation*}
$$

now $z_{1} \bar{z}_{2}=\left|z_{1}\right| \operatorname{is} \theta_{1} \times\left|z_{2}\right| \operatorname{is}-\theta_{2}$

$$
\begin{aligned}
& =\left|z_{1}\right|\left|z_{2}\right| \operatorname{cis}\left(\theta_{1}-\theta_{2}\right) \\
\therefore I_{m n}\left(z_{1}, \overline{z_{2}}\right) & =\left|z_{1}\right|\left|z_{2}\right| \sin \left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left|z_{1}\right|\left|z_{2}\right| \sin \left|\theta_{1}-\theta_{2}\right| \\
& = \pm\left|z_{1}\right|\left|z_{2}\right| \sin \theta \text { frem } A .
\end{aligned}
$$

(III) Areary triangle is $\frac{1}{2}\left|z_{1}\right|\left|z_{2}\right| \sin \theta$.

$$
=\frac{1}{2} I_{m}\left(z_{1} \bar{z}_{2}\right)
$$

UIV (CONTD)
new $(1+3 i)(\overline{-3+2 i})=(1+3 i)(-3-2 i)$.

$$
\begin{aligned}
& =3-11 i \\
d(-3+2 i)(\overline{1+3 i}) & =(-3+2 i)(1-3 i) \\
& =3+11 i
\end{aligned}
$$

$\therefore \operatorname{In}\left(z, \overline{\jmath_{2}}\right)$ is ± 11.
\therefore area y rivingle is $\frac{1}{2}|-11|$

$$
=\frac{11}{2} n^{2}
$$

Commisat (is sery fent ascmened this. curecty. Nout seimkly arewered as $\operatorname{ag} \frac{31}{3^{2}}$. which is net shat was nequied.
(iI) An underetanding of (I) whs seeded to get $\pm\left|z_{2}\right| 1 z^{2} \mid \operatorname{tin} \theta$. very peed pull mants.
(III) Q weatioin asked for "HErcis" net "Hzacce op othea wise".
(d) let $x=\frac{1}{x} \quad \therefore \quad x^{3}-3 x^{2}-x+2=0$

$$
\begin{aligned}
& \text { hecenes } \frac{\left(\frac{1}{x}\right)^{3}-3\left(\frac{1}{x}\right)^{2}-\left(\frac{1}{x}\right)+2=0}{\text { ie. }\left|2 x^{3}-x^{2}-3 x+1=0\right|}
\end{aligned}
$$

Coument smect obituined ffoll marks.

Ext 2 Assessment 22015

Question 13

(a) (i)

Comments: The main error was to graph $y=f(2 x)$.
(ii)

Note: The origin is an open point, not in the solution.
Comments: Many failed to indicate the origin as open, whilst others had the middle part of the curve above the axis.
(iii)

Comments: This was surprisingly poorly answered, by about half the candidates. They flipped y values, and had the asymptote at $x=-2$.
(iv)

Note: Asymptote at $y=\frac{\pi}{2}$, the open point is $\left(0, \frac{\pi}{2}\right)$.
Comments: Surprisingly well answered.
(b) $2 x^{2}+3 x y+y^{2}=3$

Differentiating implicitly

$$
\begin{aligned}
& 4 x+3 x y^{\prime}+3 y+2 y y^{\prime}=0 \\
& y^{\prime}=\frac{-4 x-3 y}{3 x+2 y} \\
& \text { At }(2,-1) \\
& y^{\prime}=-\frac{5}{4}
\end{aligned}
$$

Hence tangent:
$y-(-1)=-\frac{5}{4}(x-2)$
$5 x+4 y-6=0$

Comment: Many were careless in their differentiation, and some failed to give the equation of the tangent.
(c) [Excised from paper.]
$T_{1}=2, T_{2}=-4, T_{n}=2 T_{n-1}-4 T_{n-2}$
$p(n): T_{n}=(1+i \sqrt{3})^{n}+(1-i \sqrt{3})^{n}$
$p(1): \quad L H S=2$
$R H S=(1+i \sqrt{3})^{1}+(1-i \sqrt{3})^{1}$

$$
=2=L H S
$$

$p(2): L H S=-4$

$$
\begin{aligned}
\text { RHS } & =(1+i \sqrt{3})^{2}+(1-i \sqrt{3})^{2} \\
& =-4=\text { LHS }
\end{aligned}
$$

Thus the proposition is true for $n=1, \quad n=2$.
$p(k)$: Assume $T_{k}=(1+i \sqrt{3})^{k}+(1-i \sqrt{3})^{k}$ is true for all positive integers less than or equal to k.

Required to Prove that this implies $p(k+1)$ is true.
ie $\quad T_{k+1}=(1+i \sqrt{3})^{k+1}+(1-i \sqrt{3})^{k+1}$

$$
L H S=2 T_{k}-4 T_{k-1}
$$

$$
\begin{aligned}
& \quad=2\left[(1+i \sqrt{3})^{k}+(1-i \sqrt{3})^{k}\right]-4\left[(1+i \sqrt{3})^{k-1}+(1-i \sqrt{3})^{k-1}\right] \\
& =2\left[(1+i \sqrt{3})(1+i \sqrt{3})^{k-1}+(1-i \sqrt{3})(1-i \sqrt{3})^{k-1}\right]-4\left[(1+i \sqrt{3})^{k-1}+(1-i \sqrt{3})^{k-1}\right] \\
& =(1+i \sqrt{3})^{k-1}[2(1+i \sqrt{3})-4]+(1-i \sqrt{3})^{k-1}[2(1-i \sqrt{3})-4] \\
& =(1+i \sqrt{3})^{k-1}\left[2(1+i \sqrt{3})+(1+i \sqrt{3})^{2}+(1-i \sqrt{3})^{2}\right]+ \\
& \quad(1-i \sqrt{3})^{k-1}\left[2(1-i \sqrt{3})+(1+i \sqrt{3})^{2}+(1-i \sqrt{3})^{2}\right] \\
& ==(1+i \sqrt{3})^{k+1}+(1-i \sqrt{3})^{k+1}+2\left[(1+i \sqrt{3})^{k}+(1-i \sqrt{3})^{k}\right]+(1+i \sqrt{3})^{k-1}(1-i \sqrt{3})^{2}+ \\
& \quad \quad(1-i \sqrt{3})^{k-1}(1+i \sqrt{3})^{2} \\
& ==(1+i \sqrt{3})^{k+1}+(1-i \sqrt{3})^{k+1}+2\left[(1+i \sqrt{3})^{k}+(1-i \sqrt{3})^{k}\right]-2(1+i \sqrt{3})^{k}-2(1-i \sqrt{3})^{k}
\end{aligned}
$$

Thus $p(k+1)$ is true if the proposition is true for $n=k$, and for all positive integers less than k. Hence the proposition is true for all positive n.

Question 14
a)

COMMENT:
Successful students considered the asymptotes and the nature of the stationary point.
b) i) Let $P(x)=x^{3}+2 b x^{2}-a^{2} x-b^{2}$ where $a d$ are real

$$
\begin{align*}
& P(1)=(1)^{3}+2 b(1)^{2}-a^{2}(1)-b^{2}=0 \\
& 1+2 b-a^{2}-b^{2}=0 \\
& 1+2 b-b^{2}=a \tag{1}\\
& 1+2 b-b^{2} \geqslant 0 \\
& b^{2}-2 b+1 \leqslant 1+1 \\
&(b-1)^{2} \leqslant 2 \\
&-\sqrt{2} \leqslant b-1 \leqslant \sqrt{2} \\
& 1-\sqrt{2} \leqslant b \leqslant 1+\sqrt{2}
\end{align*}
$$

$$
1+2 b-b^{2} \geqslant 0 \quad \text { since a is real }
$$

ii)

$$
\begin{gather*}
p^{\prime}(x)=3 x^{2}+4 b x-a^{2} \\
p^{\prime}(1)=3(1)^{2}+4 b(1)-a^{2}=0 \\
3+4 b=a^{2} \tag{2}
\end{gather*}
$$

sub (1) into (2)

$$
\begin{aligned}
& 3+4 b=1+2 b-b^{2} \\
& b^{2}+2 b+2=0 \\
& b^{2}+2 b+1=-1 \\
& (b+1)^{2}=-1
\end{aligned}
$$

\therefore No real value of b for which $x=1$ is a repeated root

COMMENT:
(i) Students had trouble in getting an inequality from the equation
(ii) Many students failed to link a^{2} with what was found. in previous part.
c) METHOD i

$$
\begin{aligned}
& \sin \left(2 \cos ^{-1}\left(\cot \left(2 \tan ^{-1} x\right)\right)\right)=0 \\
& 2 \cos ^{-1}\left(\cot \left(2 \tan ^{-1} x\right)\right)=0, \pi, 2 \pi, \ldots \\
& \cos \left(\cot \left(2 \tan ^{-1} x\right)\right)=0, \frac{\pi}{2}, \pi \\
& \cot \left(2 \tan ^{-1} x\right)=\cos 0, \cos \frac{\pi}{2}, \cos \pi \\
& =1,0,-1 \\
& 2 \tan ^{-1} x=\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{2},-\frac{\pi}{2}, \frac{3 \pi}{4},-\frac{\pi}{4}, \cdots \\
& \tan ^{-1} x=\frac{\pi}{8},-\frac{3 \pi}{8}, \frac{\pi}{4},-\frac{\pi}{4}, \frac{3 \pi}{8},-\frac{\pi}{8} x-\frac{\pi}{2} \tan ^{-1} \theta<\frac{\pi}{2} \\
& x \\
& x=\tan \frac{\pi}{8}, \tan \left(-\frac{3 \pi}{8}\right) \tan \frac{\pi}{4}, \tan \left(-\frac{\pi}{4}, \tan \frac{3 \pi}{8}, \tan \left(-\frac{\pi}{8}\right)\right. \\
& x=\sqrt{2}-1,-\sqrt{2}-1,1,-1, \sqrt{2}+1,-\sqrt{2}+1 .
\end{aligned}
$$

METHOD 2

$$
\begin{aligned}
\text { let } \alpha & =\tan ^{-1} x \quad,-\frac{\pi}{2}<x<\frac{\pi}{2} \\
\tan \alpha & =x \\
\cot (2 \alpha) & =\frac{1}{\tan 2 x} \\
& =\frac{1}{\left(\frac{2 \tan x}{1-\tan ^{2} \alpha}\right)} \\
& =\frac{1-x^{2}}{2 x}
\end{aligned}
$$

let $\beta=\cos ^{-1}\left(\frac{1-x^{2}}{2 x}\right), \quad 0 \leq \beta \leq \pi$

$$
\cos \beta=\frac{1-x^{2}}{2 x}
$$

$$
\begin{aligned}
& \frac{2 x}{\sqrt{(2 x)^{2}-\left(1-x^{2}\right)^{2}}}=\sqrt{1-x^{2}}=\sqrt{8 x^{2}-\left(1-2 x^{2}+x^{4}\right)} \\
& =x^{2}-1
\end{aligned}
$$

$$
\sin 2 \beta=2 \sin \beta \cos \beta
$$

$$
\begin{aligned}
& \sin 2 \beta=\frac{2 \sqrt{6 x^{2}-x^{4}-1}}{2 x} \cdot \frac{1-x^{2}}{2 x} \\
& =\frac{2(1-x)(1+x) \sqrt{6 x^{2}-x^{4}-1}}{4 x^{2}} \\
& \sin 2 \beta=0 \\
& \frac{2(1-x)(1+x) \sqrt{6 x^{2}-x^{4}-1}}{4 x^{2}}=0 \\
& x= \pm 1 \text { or } 6 x^{2}-x^{4}-1=0 \\
& x^{4}-6 x^{2}+9=-1+9 \\
& \left(x^{2}-3\right)^{2}=8 \\
& x^{2}-3= \pm 2 \sqrt{2} \\
& x^{2}=3 \pm 2 \sqrt{2} \\
& x= \pm \sqrt{3 \pm 2 \sqrt{2}}
\end{aligned}
$$

Note: $\sqrt{3+2 \sqrt{2}}=1+\sqrt{2}$

$$
\sqrt{3-2 \sqrt{2}}=\sqrt{2}-1
$$

COMMENT:
Students found more success using METHOD i as long as they considered enough values for $\sin \theta=0$
The algebra encountered in METHOD 2 meant many students stopped short of finding the irrational solutions.
d) i) $\frac{m}{m+1}$ (m must be fit st).
ii) $\frac{m}{m+2} \times \frac{m-1}{m+1}+\frac{m}{m+2} \times \frac{2}{m+1} \times \frac{m-1}{m} \quad$ (m first second $0=$ first third)

$$
\begin{aligned}
& =\frac{\lambda(m-1)}{(m+2)(m+1)}(m+2) \\
& =\frac{m-1}{m+1}
\end{aligned}
$$

Comment:
Students who didn't use factorials had much more success in simplifying the algesia.
the complement could also have been used.
i)

$$
\begin{aligned}
& 1-\frac{1}{m+1} \\
= & \frac{m+1-1}{m+1} \\
= & m+1
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& 1-\left(\frac{2}{m+2}+\frac{m}{m+2} \times \frac{2}{m+1} \times \frac{1}{m}\right) \\
= & 1-\frac{2}{(m+2)(m+1) m}(m(m+1)+m) \\
= & 1-\frac{2}{(m+2)(m+1) m}\left(m^{2}+m+m\right) \\
= & 1-\frac{2}{(m+2)(m+1) m}\left(m^{2}+2 m\right) \\
= & 1-\frac{2}{(m+2)(m+1) m}(m(m+2)) \\
= & 1-\frac{2}{m+1} \\
= & \frac{m+1-2}{m+1} \\
= & \frac{m-1}{m+1}
\end{aligned}
$$

Question 15

(a) $\quad P(z)=z^{4}-2 z^{3}-z^{2}+2 z+10$
$z-(2-i)$ is a factor.
$\therefore 2-i$ is a root.
$\therefore 2+i$ is a root (Conjugate Root Theorem)
$\therefore z-(2+i)$ is a factor, and so is

$$
\begin{aligned}
& (z-(2-i))(z-(2+i)) . \\
& =z^{2}-z((2+i)+(2-i))+(2+i)(2-i) . \\
& =z^{2}-4 z+5
\end{aligned}
$$

By long division:

$$
\begin{gathered}
\frac{z^{2}+2 z+2}{z^{2}-4 z+5} \begin{array}{c}
z^{4}-2 z^{3}-z^{2}+2 z+10 \\
z^{4}-4 z^{3}+5 z^{2} \\
2 z^{3}-6 z^{2}+2 z \\
2 z^{3}-8 z^{2}+10 z \\
2 z^{2}-8 z+10 \\
2 z^{2}-8 z+10 \\
0 \\
\therefore P(z)=\left(z^{2}-4 z+5\right)\left(z^{2}+2 z+2\right)
\end{array} \\
\text { and }
\end{gathered}
$$

Comment: There is some confusion as to what is a factor and what is a root.
Having established the conjugate root, most successful candidates used long division. Many found the other roots by inspection, or by the factor theorem, but several failed in the attempt.
(b) The $13^{\text {th }}$ disk chosen is the $10^{\text {th }}$ disk with data.

Thus the 3 blank disks have already been selected.
Hence the last three are data disks.
The probability of this is the same as the first three being data disks.

$$
\begin{aligned}
p & =\frac{12}{15} \times \frac{11}{14} \times \frac{10}{13} \\
& =\frac{44}{91}
\end{aligned}
$$

(c)

Let $\angle U X Y=\angle U X Z=\alpha$
Let $\angle V Y X=\angle V Y Z=\beta$
Now $\angle U Y Z=\angle U X Z=\alpha$ (Standing on same arc)
And $\angle V X Z=\angle V Y Z=\beta \quad$ (ditto)
In $\triangle Z Y X$, let $\angle Y Z X=\gamma$

$$
\gamma=180^{\circ}-2(\alpha+\beta) \text { (angle sum of triangle) }
$$

Now since $X Y$ is fixed, so is the angle γ (angle at the circumference).

$$
\begin{aligned}
\therefore & 2(\alpha+\beta)=180^{\circ}-\gamma \quad \text { (constant) } \\
& (\alpha+\beta)=90^{\circ}-\frac{\gamma}{2} \quad(\text { constant })
\end{aligned}
$$

But $U V$ subtends $\alpha+\beta$ at X, and at Y.
Since the angle is constant, so $U V$ is of constant length.
Comment: Very few seemed to be aware of the theorem used in this solution.
Of those who attempted a solution, many tried to used similar triangles, but there is no reason for the enlargement ratio to be constant. They were given half marks.
(d)
(i)

$$
\begin{aligned}
& z=r(\cos \theta+i \sin \theta) \\
& \begin{aligned}
z-\bar{z} & =r(\cos \theta+i \sin \theta)-r(\cos \theta-i \sin \theta) \\
& =r(2 i \sin \theta) \\
& =2 i r \sin \theta
\end{aligned}
\end{aligned}
$$

Comment: Most candidates got this question right.
(ii) (1)

$$
\begin{aligned}
& x^{m}(1-x)^{n}=A(x) Q(x)+R(x) \\
& x^{m}(1-x)^{n}=\left(1+x^{2}\right) Q(x)+(a x+b)
\end{aligned}
$$

The division transformation is an identity.
That is, it is true for all values of x.
Let $x=i \quad i^{m}(1-i)^{n}=\left(1-i^{2}\right) Q(i)+(a i+b)$

$$
\therefore i^{m}(1-i)^{n}=a i+b \quad \operatorname{Eqn}(1)
$$

Let $x=-i \quad i^{m}(1+i)^{n}=\left(1-(-i)^{2}\right) Q(i)-a i+b$

$$
\therefore i^{m}(1+i)^{n}=-a i+b \quad \operatorname{Eqn}(2)
$$

(1)-(2): $\quad 2 a i=i^{m}(1-i)^{n}-(-i)^{m}(1+i)^{n}$

Comment: Few candidates attempted this question, about half of whom got it right. The rest chose their substituted values poorly.
(2) Note that $\overline{i^{m}(1-i)^{n}}=(-i)^{m}(1+i)^{n}$

Thus from above $2 a i=2 i r \sin \theta$

$$
\begin{aligned}
& \text { Now } \begin{aligned}
\arg \left(i^{m}\right) & =\frac{m \pi}{2} \\
\arg (1-i)^{n} & =-\frac{n \pi}{4} \\
\arg \left(i^{m}\right)(1-i)^{n} & =\frac{m \pi}{2}-\frac{n \pi}{4} \\
& =\frac{(2 m-n) \pi}{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now }\left|i^{m}(1-i)^{n}\right|=\left|i^{m}\right| \times\left|(1-i)^{n}\right| \\
& =1 \times(\sqrt{2})^{n}
\end{aligned}
$$

Hence $a=(\sqrt{2})^{n} \sin \frac{(2 m-n) \pi}{4}$

Comment: Very few attempted this, of whom some were successful, having noticed the conjugate relationship.

Question 15
a)

$$
I=\int_{0}^{a} \frac{\cos x}{\sin x+\cos x} d x \quad \int=\int_{0}^{a} \frac{\sin x}{\sin x+\cos x} d x
$$

$$
I+J=\int_{0}^{a} \frac{\sin x+\cos x}{\sin x+\cos x} d x
$$

where $0 \leqslant a \leqslant \frac{3 \pi}{4}$

$$
=\int_{0}^{a} d x
$$

$$
=[x]_{0}^{a}
$$

$$
=a-0
$$

$$
\begin{equation*}
I+J=a \tag{1}
\end{equation*}
$$

$$
\begin{align*}
I-J & =\int_{0}^{a} \frac{\cos x-\sin x}{\sin x+\cos x} d x \\
& =[\ln (\sin x+\cos x)]_{0}^{a} \\
& =\ln (\sin a+\cos a)-\ln (\sin (0+\cos 0) \\
I-J & =\ln (\sin a+\cos a) \tag{2}
\end{align*}
$$

(1) +2

$$
2 I=a+\ln (\sin a+\cos a)
$$

COMMENT
Some student's breve looking to apply the result $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ which would be useful when $a=\frac{\pi}{2}$.
That would thoolve ignoring I. Students who did ignore, scored poorly.
b) i)

$$
\begin{aligned}
& \frac{-2}{t^{2}-1} \equiv \frac{A}{t-1}+\frac{B}{t+1} \\
& -2 \equiv A(t+1)+B(t-1)
\end{aligned}
$$

when $t=1$

$$
-2=2 \mathrm{~A}
$$

$$
\begin{aligned}
A & =-1 \\
\frac{-2}{t^{2}-1} & =-\frac{1}{t-1}+\frac{1}{t+1}
\end{aligned}
$$

$$
\begin{aligned}
I & =\int\left(-\frac{1}{t-1}+\frac{1}{t+1}\right) d t \\
& =-\ln (t-1)+\ln (t+1)+C
\end{aligned}
$$

when $t=-1$

$$
-2=-2 \beta
$$

$$
B=1
$$

$$
\begin{aligned}
& I=\int \frac{d x}{\sqrt{x(x+1)}} \\
& x=\frac{1}{t^{2}-1} \\
& x=\left(t^{2}-1\right)^{-1} \\
& \frac{d x}{d t}=-\left(t^{2}-1\right)^{-2} \cdot 2 t \\
& d x=-\frac{2 t}{\left(t^{2}-1\right)^{2}} \\
& I=\int \frac{1}{\sqrt{\left(\frac{1}{t^{2}-1}\right)\left(\frac{1}{t^{2}+1}+1\right)}} \cdot \frac{-2 t d t}{\left(t^{2}-1\right)^{2}} \\
& =\int \frac{-2 t d t}{\left(t^{2}-1\right)^{2} \sqrt{\frac{1+t^{2}-1}{\left(t^{2}-1\right)^{2}}}} \\
& =\int \frac{-2 t d t}{\left(t^{2}-1\right)^{2} \sqrt{\frac{t^{2}}{\left(t^{2}-1\right)^{2}}}} \\
& =\int \frac{-2 t d t}{\left(t^{2}-1\right)^{2} \cdot \frac{t}{t^{2}-1}} \\
& \text { since } t>1, \sqrt{t^{2}}=t, \sqrt{\left(t^{2}-1\right)^{2}}=\left(t^{2}-1\right) \\
& =\int \frac{-2 d t}{t^{2}-1} \\
& \text { partial fractions }
\end{aligned}
$$

$$
\begin{aligned}
& =\ln \left(\frac{t+1}{t-1}\right)+C \\
& \quad \begin{array}{r}
x=\frac{1}{t^{2}-1} \\
t^{2}-1
\end{array}=\frac{1}{x} \\
& t^{2}=\frac{1}{x}+1 \\
& t^{2}=\frac{x+1}{x} \\
& t=\frac{\sqrt{x+1}}{\sqrt{x}} \\
& =\ln \left(\frac{\sqrt{x+1}}{\sqrt{x+1}}+1\right. \\
& =\ln \left(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{x}} \times \frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}\right)+C \\
& =\ln \left(\frac{\sqrt{x+1}+\sqrt{x})}{x+1}\right)+C \\
& =2 \ln (\sqrt{x}+\sqrt{x+1})+C
\end{aligned}
$$

ii)

$$
\text { ii) } \left.\begin{array}{rl}
& \int_{\frac{1}{8}}^{\frac{9}{16}}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)^{2} d x \\
= & \int_{\frac{1}{8}}^{\frac{9}{16}}\left(\frac{1}{x}-\frac{2}{\sqrt{x(x+1)}}+\frac{1}{x+1}\right) d x \\
= & {[\ln x-2(2 \ln (\sqrt{x}+\sqrt{x+1}))+\ln (x+1)]_{\frac{1}{8}}^{\frac{9}{6}}} \\
= & \ln \left(\frac{9}{16}\right)-4 \ln \left(\sqrt{\frac{9}{16}}+\sqrt{\frac{9}{16}+1}\right)+\ln \left(\frac{9}{16}+1\right)-\left(\ln \left(\frac{1}{8}\right)-4 \ln \left(\sqrt{\frac{1}{8}}+\sqrt{\frac{1}{8}+1}\right)+\ln \left(\frac{1}{8}+1\right)\right) \\
= & \ln \left(\frac { 9 } { \frac { 1 } { 6 } \times \frac { 2 5 } { 1 6 } } \left(\frac{1}{8} \times \frac{9}{8}\right.\right.
\end{array}\right)+4 \ln \left(\frac{\frac{1}{2 \sqrt{2}}+\frac{3}{2 \sqrt{2}}}{\frac{3}{4}+\frac{5}{4}}\right) .
$$

$$
\begin{aligned}
& =2 \ln \left(\frac{5}{2}\right)+2 \ln \left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =2 \ln \left(\frac{5}{2}\right)+2 \ln \left(\frac{1}{2}\right) \\
& =2 \ln \left(\frac{5}{2} \times \frac{1}{2}\right) \\
& =2 \ln \left(\frac{5}{4}\right)
\end{aligned}
$$

COMmENTS:
i) There is a lot of algebra. Since the question asks us to show THIT T much came needs to be taken and aft steps shown ie. when rationalising the denominator inside the logarithm
Note: If we did not have to use the substitution given it would be quite simple to complete the square on $x(x+1)$ and use a standard integral.
ii) Again, as this question was a SHow that students meed to show how the expression simplified to be avianded full mains.
Some students struggled to see how part (i) could be used.
c) i)

$$
\begin{aligned}
I & =\int\left[f^{\prime}(x)\right]^{2}[f(x)]^{n} d x \\
& =\int f^{\prime}(x) \cdot f^{\prime}(x)[f(x)]^{n} d x
\end{aligned}
$$

$$
\begin{aligned}
& u=f^{\prime}(x) \\
& u^{\prime}=f^{\prime \prime}(x) \searrow r^{\prime}=f^{\prime}(x)[f(x)]^{n} \\
& \sigma^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& I=\frac{f^{\prime}(x)[f(x)]}{n+1}-\frac{1}{n+1} \int f^{\prime \prime}(x)[f(x)]^{n+1} d x+c_{1}^{n+1} \\
& I=\frac{f^{\prime}(x)[f(x)]^{n+1}}{n+1}-\frac{1}{n+1} \int k f^{\prime}(x) f(x)[f(x)]^{n+1} d x+c_{1}
\end{aligned}
$$

$$
\begin{aligned}
I & =\frac{f^{\prime}(x)[f(x)]^{n+1}}{n+1}-\frac{k}{n+1} \int f^{\prime}(x)[f(x)]^{n+2} d x+C_{1} \\
& =\frac{f^{\prime}(x)[f(x)]^{n+1}}{n+1}-\frac{k}{(n+1)} \frac{[f(x)]^{n+3}}{(n+3)}+C_{2} \\
& =\frac{f^{\prime}(x)[f(x)]^{n+1}}{n+1}-\frac{k[f(x)]^{n+3}}{(n+1)(n+3)}+C_{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(x) & =\sec x+\tan x \\
f^{\prime}(x) & =\sec x \tan x+\sec ^{2} x \\
& =\sec x(\sec x+\tan x)
\end{aligned}
$$

$$
f^{\prime \prime}(x)=\frac{\sec x \tan x(\sec x+\tan x)+\sec x\left(\sec x \tan x+\sec ^{2} x\right)}{2}
$$

$$
=\sec ^{2} x \tan x+\sec x \tan ^{2} x+\sec ^{2} x \tan x+\sec ^{3} x
$$

$$
=\sec ^{3} x+2 \sec ^{2} x \tan x+\sec x \tan ^{2} x
$$

$$
\begin{aligned}
k f^{\prime}(x) f(x) & =k[\sec x(\sec x+\tan x)](\sec x+\tan x) \\
& =k \sec x(\sec x+\tan x)^{2} \\
& =k \sec x\left(\sec ^{2} x+2 \sec x \tan x+\tan ^{2} x\right) \\
& =k\left[\sec ^{3} x+2 \sec ^{2} x \tan x+\sec x \tan ^{2} x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore k=1 \\
& \quad\left[f^{\prime}(x)\right]^{2}=\sec ^{2} x(\sec x+\tan x)^{2} \\
& \int \sec ^{2} x(\sec x+\tan x)^{6} d x \\
& =\int \sec ^{2} x(\sec x+\tan x)^{2}(\sec x+\tan x)^{4} d x \\
& = \\
& \frac{\sec x(\sec x+\tan x)^{6}}{5}-\frac{1(\sec x+\tan x)^{7}}{5 \times 7}+C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sec x(\sec x+\tan x)^{6}}{5}-\frac{(\sec x+\tan x)^{7}}{35}+C \\
& =\frac{(\sec x+\tan x)^{6}}{35}(7 \sec x-(\sec x+\tan x))+C \\
& =\frac{(\sec x+\tan x)^{6}(6 \sec x-\tan x)}{35}
\end{aligned}
$$

COMmENTS:
i) many students fried to integrate $[f(x)]^{n}$ instead of $f^{\prime}(x)[f(x)]^{n}$.
ii) No student checked if $f^{\prime \prime}(x)=k f^{\prime}(x) f(x)$ could be satisfied. If $\left[f^{\prime}(x)\right]^{2}$ was not considered the wrong value of n was chosen.

Overall, there were very few attempts at this question.

