SYDNEY GIRLS HIGH SCHOOL

2006 HSC Assessment Task 3

June 7, 2006

MATHEMATICS Extension 2

Year 12

Time allowed: 90 minutes

Topics: Polynomials, Integration

DIRECTIONS TO CANDIDATES:

- Attempt all questions
- Questions are not of equal value
- There are 19 questions with part marks shown in brackets
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work
- Board approved calculators may be used
- Write on one side of the paper only

SGHS Mathematics Extension 2 - Task 3 - June 2006

- 1. Solve the equation $4x^3 24x^2 + 23x + 18 = 0$ given the roots are in Arithmetic Progression [4]
- 2. Given 1+i is a root of $P(x) = x^3 + x^2 4x + 6$, factorise P(x) over the real field. [4]
- 3. a) If P(x) has a root α of multiplicity m, show that P'(x) has a root α of multiplicity (m-1).
 - b) Given $P(x) = 8x^4 20x^3 18x^2 + 81x 54$ has a triple root, solve for x over the real field and sketch the polynomial. [8]
- 4. Given $P(x) = x^3 7x^2 + 18x 7$ has roots α, β, γ , find
 - a) The values of $i(\alpha^2 + \beta^2 + \gamma^2)$ $i(\alpha^3 + \beta^3 + \gamma^3)$ $i(\alpha^4 + \beta^4 + \gamma^4)$
 - b) The polynomial equation with roots

$$i)\frac{1}{\alpha},\frac{1}{\beta},\frac{1}{\gamma}$$

 $ii)\alpha^2,\beta^2,\gamma^2$

5. If one root of the equation $x^3 + \alpha x^2 + bx + c = 0$ is equal to the sum of the other two

[7]

roots, show that $a^3 - 4ab + 8c = 0$ [6]

In Questions 6 - 14, find the following integrals

6.
$$\int \frac{2x+4}{x^2+4} dx$$
 [3]

7.
$$\int \frac{1}{\sec^2 x} dx$$
 [3]

$$8. \int \frac{dx}{x(\log_e x)^3}$$
 [3]

$$9. \int \frac{xdx}{\sqrt{6x-x^2}}$$

10.
$$\int \cos^5 x \cdot \sin^2 x \cdot dx$$
 [4]

11. $\int \frac{dx}{5+4\cos x}$ [4]

12. $\int \frac{dx}{x^2 \sqrt{x^2+9}}$ [6]

13. $\int \frac{e^{2x} \cdot dx}{e^x+1}$ [4]

14. $\int \sqrt{\frac{4+x}{4-x} \cdot dx}$ [6]

15. a) Simplify $\sin(A+B) + \sin(A-B)$
b) Use the result in part a) to find $\int \sin 5x \cdot \cos 3x \cdot dx$ [4]

16. a) Show $\int_0^x f(x) \cdot dx = \int_0^x f(a-x) \cdot dx$
b) Evaluate $\int_0^x \frac{\sin 2x}{\cos 2x + \sin 2x} \cdot dx$ [5]

17. a) Express $\frac{10}{(x^2-1)(x^2+4)}$ in partial fractions
b) Find $\int \frac{10 \cdot dx}{(x^2-1)(x^2+4)}$ [7]

18. When a monic cubic polynomial $A(x)$ is divided by $x^2 + x + 1$, the remainder is $2x + 3$. When $A(x)$ is divided by $x(x + 3)$, the remainder is $5(x + 1)$. Find the equation of $A(x)$. [6]

19. Given $I_n = \int (1 - \sqrt{x})^n dx$,
a) Show that $I_n = \frac{1}{n+2} [x(1-\sqrt{x})^n] + \frac{n}{n+2} I_{n-1}$
b) Hence evaluate $\int_0^x (1-\sqrt{x})^n dx$ [10]

---end of exam----