

FORM VI

MATHEMATICS EXTENSION 2

Thursday 15th May 2014

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 55 Marks

- All questions may be attempted.

Section I-7 Marks

- Questions 1-7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 48 Marks

- Questions 8-11 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Candidature - 79 boys
Examiner
RCF

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The remainder when $P(z)=z^{3}-3 z^{2}+5 z-i$ is divided by $(z-2 i)$ is:
(A) $12-3 i$
(B) $12+i$
(C) $6-3 i$
(D) $6+i$

QUESTION TWO

A hyperbola is defined parametrically by the equations $x=3 \sec \theta$ and $y=\tan \theta$.
Its eccentricity is:
(A) $\frac{2 \sqrt{2}}{3}$
(B) 3
(C) $\frac{\sqrt{10}}{3}$
(D) $\sqrt{3}$

QUESTION THREE

An object moves horizontally with velocity v at time t seconds as shown on the graph above. At which time does the object first return to its initial position?
(A) 2 s
(B) 4 s
(C) 6 s
(D) 8 s

QUESTION FOUR

A particle is moving in simple harmonic motion along a straight line such that

$$
v^{2}=4\left(2+10 x-x^{2}\right)
$$

where v is the velocity and x is the displacement. The period T and centre x_{0} are:
(A) $\quad T=\pi$ and $x_{0}=5$
(B) $\quad T=2 \pi$ and $x_{0}=-5$
(C) $\quad T=\pi$ and $x_{0}=-5$
(D) $\quad T=2 \pi$ and $x_{0}=5$

QUESTION FIVE

Given the hyperbola $\frac{3 x^{2}}{2}-\frac{2 y^{2}}{3}=1$, the gradient of the normal at the point $\left(1, \frac{\sqrt{3}}{2}\right)$ is:
(A) $\frac{3 \sqrt{3}}{2}$
(B) $-2 \sqrt{3}$
(C) $-\frac{2 \sqrt{3}}{9}$
(D) $-\frac{3 \sqrt{3}}{2}$

QUESTION SIX

A cannonball is fired on level ground with a given initial velocity. During its subsequent motion it behaves as a projectile accelerating under gravity but experiencing negligible air resistance.

Which of the following statements about its subsequent motion is INCORRECT?
(A) At its maximum height the cannonball has velocity equal to the horizontal component of its initial velocity.
(B) The same range would be achieved using the complementary angle of projection.
(C) When it lands, the cannonball hits the ground with the same speed as it initially left the cannon.
(D) At its maximum height the cannonball experiences zero acceleration.

QUESTION SEVEN

It is known that the three roots of the cubic equation $x^{3}+2 x^{2}+4 x+8=0$ form a geometric progression. The second term in this geometric progression is:
(A) 2
(B) $\quad-2 i$
(C) $\quad-2$
(D) $2 i$
\qquad

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION EIGHT (12 marks) Use a separate writing booklet. Marks
(a) The equation $z^{3}-7 z^{2}+17 z-15=0$ has a root $2+i$.
(i) Explain why $2-i$ is also a root of the equation.
(ii) Find the third root of the equation.
(b) The ellipse \mathcal{E} has equation $3 x^{2}+4 y^{2}=12$.
(i) Show that the eccentricity of \mathcal{E} is $\frac{1}{2}$.
(ii) Find the coordinates of the foci S and S^{\prime}.
(iii) Find the equations of the two directrices.
(iv) Sketch \mathcal{E}, clearly showing its x and y intercepts, foci and directrices.
(v) Find the equation of the tangent to \mathcal{E} at the point $\left(1, \frac{3}{2}\right)$.
(c) Find the values of k for which the polynomial $P(x)=x^{3}+4 x^{2}-3 x+k$ has a double zero.

QUESTION NINE (12 marks) Use a separate writing booklet.
(a) Suppose that $P(x)=x^{3}+a x^{2}+b x+8$, where a and b are real.
(i) Show $P(4 i)=(8-16 a)+(4 b-64) i$
(ii) When $P(x)$ is divided by $x^{2}+16$, the remainder is $40-11 x$.

Find the values of a and b.
(b) (i) The equation $x^{3}-4 x+6=0$ has roots α, β and γ. Find a polynomial equation with integer co-efficients that has roots α^{2}, β^{2} and γ^{2}.
(ii) Hence, or otherwise, find the value of $\alpha^{-2}+\beta^{-2}+\gamma^{-2}$.
(c) A truck of mass 2000 kilograms driving along a straight road is propelled by a constant driving force from the engine of 1250 Newtons and experiences a resistive force of magnitude $2 v^{2}$ where v metres per second is the truck's velocity. The truck started from rest.
(i) Show that $\ddot{x}=\frac{625-v^{2}}{1000}$.
(ii) The truck approaches a maximum speed U. Find the value of U, giving your answer in metres per second.
(iii) Find the distance it has travelled when it reaches a speed of $\frac{U}{2}$. Give your answer correct to the nearest metre.

(a) The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are on opposite branches of the rectangular hyperbola $x y=c^{2}$, where $c>0$.
(i) Show that the equation of the chord $P Q$ is $x+p q y=c(p+q)$.
(ii) The equation of the tangent at P is $x+p^{2} y=2 c p$. Show that the tangents at P and Q intersect at the point $T\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$.
(iii) The chord $P Q$ passes through the fixed point $(0, c)$. Describe the locus of T, including any restrictions.
(b) Let $P(z)=3 z^{8}-10 z^{4}+3$ and suppose that ω is a root of $P(z)=0$.
(i) Show that $i \omega$ and $\frac{1}{\omega}$ are also roots of $P(z)=0$.
(ii) Show that $z=\sqrt[4]{3}$ is a root of $P(z)=0$.
(iii) Hence find all the roots of $P(z)=0$.

SGS Assessment 2014 Form VI Mathematics Extension 2. . Page 7
QUESTION ELEVEN (12 marks) Use a separate writing booklet. Marks
(a) A ball of mass 4 kilograms is thrown vertically upwards from the ground with an initial speed of 12 metres per second. The ball is subject to a downwards gravitational force of magnitude 40 Newtons and air resistance of $\frac{v^{2}}{5}$ Newtons in the opposite direction to the velocity v metres per second.
(i) If we take the origin at ground level and upwards as the positive direction then the acceleration, until the ball reaches its highest point, is given by

$$
\ddot{y}=-10-\frac{v^{2}}{20}
$$

where y metres is its height. (Do NOT prove this.)
(α) Use the fact that $\ddot{y}=v \frac{d v}{d y}$, to show that, while the ball is rising,

$$
v^{2}=344 e^{-\frac{y}{10}}-200
$$

(β) Hence find the maximum height reached in exact form.
(ii) For the subsequent downwards motion, take downwards as the positive direction and define a new origin at the maximum height.
(α) Find the acceleration for the downwards motion.
(β) Hence find the speed at which the ball returns to the ground. Give your answer in metres per second, correct to two decimal places.
\qquad
QUESTION ELEVEN (Continued)
(b)

The point $P(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
The line through P perpendicular to the x-axis meets the asymptotes of the hyperbola $y=\frac{b x}{a}$ and $y=-\frac{b x}{a}$ at $A(a \sec \theta, b \sec \theta)$ and $B(a \sec \theta,-b \sec \theta)$ respectively.
A second line through P, with gradient $\tan \alpha$, meets the hyperbola again at Q and meets the asymptotes at C and D as shown. The asymptote $y=\frac{b x}{a}$ makes a fixed angle β with the positive x-axis at the origin.
(i) Show that $A P \times P B=b^{2}$.
(ii) Use the sine rule in $\triangle A C P$ to show that $C P=\frac{A P \cos \beta}{\sin (\alpha-\beta)}$.

Also show that $P D=\frac{P B \cos \beta}{\sin (\alpha+\beta)}$.
(iii) It follows from part (ii) that $C P \times P D$ is independent of θ. Consequently its value does not dependent upon the choice of P. Hence deduce that $C P=Q D$.

SGS Assessment 2014 Form VI Mathematics Extension 2. . Page 9

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2014
Assessment Examination FORM VI

MATHEMATICS EXTENSION 2
Thursday 15th May 2014

Candidate number:

Question One

A
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B

$\mathrm{C} \bigcirc$
D \bigcirc

Question Three
AB
C
D

Question Four

A

B \bigcirc
C

D

Question Five

A
BD \bigcirc

Question Six
A \bigcirc
BCD

Question Seven

A
B

D \bigcirc

- Each question has only one correct answer.

MUIT-CHOLE (I MARK EACH) $\frac{4 U \text { MAY ASSESSMENT }}{2014}$
(1)

$$
\begin{array}{rlrl}
P(z) & =z^{3}-3 z^{2}+5 z-i & \text { (5) } \frac{3 x^{2}}{2}-\frac{2 y^{2}}{3}=1 \\
P(2 i) & =(2 i)^{3}-3(2 i)^{2}+5(2 i)-i & \text { offinx } & 3 x-\frac{4 y}{3} \frac{d y}{d x}=0 \\
& =-8 i+12+10 i-i & & \tag{B}\\
& =12+i & \text { (B) } & \\
& & \frac{d y}{}=\frac{9 x}{1}
\end{array}
$$

(2) $x=3 \sec \theta \quad y=\tan \theta$

$$
\frac{x^{2}}{3^{2}}-y^{2}=1
$$

$$
\therefore a=3, b=1
$$

$$
\begin{aligned}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& e^{2}=1+b^{2}
\end{aligned}
$$

$$
e^{2}=1+b^{2} / a^{a}
$$

(6) Onl inconed slatements

$$
\begin{align*}
& e^{2}=1+1 / 9 \tag{c}\\
& e=\sqrt{10}
\end{align*}
$$ is(1). Cannonbal

$$
e=\frac{\sqrt{10}}{3}
$$ expenences constant acceleration due to grant for enture motion.

graph represents dipplacement heme back to stacing pout when area above and below axis equal ie fust @ \$5 (B)
(4)

$$
\begin{aligned}
& \begin{aligned}
& v^{2}=4\left(2+10 x-x^{2}\right) \\
& \ddot{x}=\frac{d}{d x}\left(2 v^{2}\right)=\frac{d}{d x}\left(4+20 x-x^{2}\right) \\
&=20-4 x \\
&=-4(x-5) \\
& \begin{aligned}
\therefore n^{2} & =4 \\
n & =2 \\
T & =\frac{2 \pi}{h}
\end{aligned}=\pi s
\end{aligned}
\end{aligned}
$$

(A) Roots in G.P.
Let root be $\frac{a}{t}$, a \& at

$$
\begin{aligned}
& \sum \alpha \beta \gamma=-\frac{8}{1} \\
& \therefore a^{3}=-8 \\
& \therefore a=(-2)
\end{aligned}
$$

second tem is (-2) (C)
(8) a) $z^{3}-7 z^{2}+17 z-15=0$
(i) Since the equation has REN CO-ETMGENTS
am complex loots appear in CONSVGGIE PARS.
(ii)

$$
\begin{array}{rlrl}
\sum \alpha \alpha & =(2+i)(2-i)+\alpha \\
& =4+\alpha & \text { or } \left.\quad \sum \alpha \beta\right) & =\frac{-(-15)}{1} \\
& =\frac{-(-7)}{1} & & \ddots(2+i)(2-i) \alpha=15 \\
& \therefore \alpha=3
\end{array}
$$

b) $3 x^{2}+4 y^{2}=12$
(i) $(\div 12)$

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& \therefore e^{2}=1-\frac{b^{2}}{a^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
a^{2}=4 & a=2 \\
b^{2}=3 & b=\sqrt{3}
\end{array}
$$

(i) Foci $S * S^{\prime}$ are (ae, 0) and ($-a, 0$) in $(1,0)$ and $(-1,0)$
(iii) Duretrices $x= \pm a / e$ $= \pm 2 / \sqrt{2}$

$$
\begin{aligned}
= & =1-3 / 4 \\
z^{2} & =1 / 1
\end{aligned}
$$

$$
e^{2}=\frac{1}{4}
$$

$$
e=1 / 2 \quad(e>0)
$$

$$
\begin{gathered}
\text { Egn } \\
y-3=-2(x-1) \\
2 y-3=1-x \\
x+2 y-4=0 .
\end{gathered}
$$

$$
\text { व) } \begin{aligned}
P(x) & =x^{3}+4 x^{2}-3 x+k \\
P^{\prime}(x) & =3 x^{2}+8 x-3 \\
& =(3 x-1)(x+3) \\
P^{\prime}(x) & =0 \Rightarrow x=1 / 0 \text { or }(-3) \\
P(3) & =\left(\frac{1}{3}\right)^{3}+4+\left(\frac{1}{3}\right)^{2}-3\left(\frac{1}{3}\right)+k \\
& =\frac{1+4}{27}-1+k \\
& =\frac{27 k+1+12-27}{27} \quad \text { If } P(-1 \\
& =\frac{27 k-14}{27 .} \\
P(3) & =0 \quad k=\frac{14}{27} .
\end{aligned}
$$

(9)

$$
P(x)=x^{3}+a x^{2}+b x+8
$$

a) (i)

$$
\text { k } \begin{aligned}
P(-3)= & (-3)^{3}+4(-3)^{2}-3(3)+k \\
& =-27+36+9+k \\
& =18+k \\
\text { If } P(3)=0, k & =(-18)
\end{aligned}
$$

b) (i) $P(x)=x^{3}-4 x+6=0$ has loots α, β, γ

Ign ant lats $\alpha^{2} \beta^{2}, \gamma^{2}$ requiso, replaying x wat \sqrt{x}

$$
\begin{gathered}
P(\sqrt{x})=(\sqrt{x})^{3}-4(\sqrt{x})+6 \\
=\sqrt{x}(x-4)+6 \\
\therefore \sqrt{x}(x-4)+6=0 \\
\sqrt{x}(x-4)=-6 \\
(s q) \\
x(x-4)^{2}=36 \\
x\left(x^{2}-8 x+16\right)=36 \\
x^{3}-8 x^{2}+16 x-36=0 \\
\text { has wot } \alpha^{2} p^{2} p^{2} \gamma^{2}
\end{gathered}
$$

(ii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=\frac{\beta^{2} \gamma^{2}+\alpha^{2} \gamma^{2}+\alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2} \gamma^{2}}$
$=\sum_{1 \alpha \beta} \alpha \alpha \gamma=\frac{1 / 1}{-(-3 \alpha)}$
Attemature Aphrocherfomag NEN ens with wats $\frac{1}{\alpha^{2}}, \frac{1}{\beta^{2}}, \frac{1}{1^{2}}$
2) Use $x^{3}-8 x^{2}+16 x-36=0$ and replace x ant $\frac{1}{x}$

$$
\frac{1}{x^{3}} \frac{8}{x^{2}}+\frac{16}{x^{2}}-\frac{36}{x^{3}}=0
$$

$$
\left(\times x^{3}\right)
$$

$$
\begin{aligned}
& \left(x x^{3}\right) \\
& 1-8 x+16 x^{2}-36 x^{3}=0 \\
& 1-3-14 x^{2}+8 x-1=0
\end{aligned}
$$

$36 x^{3}-16 x^{2}+8 x-1=0 \quad$ Henri) $\Sigma \alpha=-\frac{b}{9}=16=4 / 9$
p) Use orijpud $x^{3}-4 x+6=0$ and replace x with $\frac{1}{\sqrt{x}}$

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{x}}\right)^{3}-4(\sqrt[1]{\sqrt{x}})+6=0 \\
& \times x^{3 / 2} \\
& 1-4 x+6 x^{3 / 2}=0 \\
& 6 x^{3 / 2}=4 x-1 \\
& (59)(59) \\
& 36 x^{3}=16 x^{2}-8 x+1 \\
& 2\left(x^{3}-16 x^{2}+8 x-1=0\right.
\end{aligned}
$$

$36 x^{3}-16 x^{2}+8 x-1=0$ as before
c)

(ii) Max Speed $\ddot{x}=0 \quad \therefore 625-V^{2}=0$

$$
\begin{aligned}
& U^{2}=625 \\
& U=25 \mathrm{~m} / \mathrm{s}
\end{aligned} \quad(v>0)
$$

$500 \ln \left(\frac{3}{3}\right)=D$
Distance Travelled is approx. 144 metres

$$
\begin{aligned}
& 1250-2 v^{2}=2000 \ddot{x} / \text { sHoal } \\
& \ddot{x}=\frac{2\left(625-v^{2}\right)}{2000}
\end{aligned}
$$

$$
\ddot{x}=\frac{625-v^{2}}{1000}
$$

$500 \ln \left(\frac{4}{3}\right)=D$

$$
\begin{aligned}
& \text { (iii) } \\
& v \frac{d v}{d x}=625-v^{2} \\
& \begin{array}{l}
\left.\int_{0}^{\frac{1}{2}} \frac{2 v}{625-v^{2}} d v=\int_{0}^{1000} \frac{1}{500} d x / \text { when } \quad \begin{array}{l}
v=0 \quad x=0 \\
v=v / 2 \\
\text { wm } \\
0
\end{array}\right]=D . \\
l_{0}^{0 / 2}=[x]^{D}
\end{array} \\
& \begin{array}{l}
\left.\int_{0}^{\frac{1}{2}} \frac{2 v}{625-v^{2}} d v=\int_{0}^{1000} \frac{1}{500} d x / \text { when } \quad \begin{array}{l}
v=0 \quad x=0 \\
v=v / 2 \\
\text { th } \\
0
\end{array}\right]=D . \\
l_{0}^{0 / 2}=[x]^{D}
\end{array} \\
& \begin{array}{l}
\left.\int_{0}^{\frac{1}{2}} \frac{2 v}{625-v^{2}} d v=\int_{0}^{1000} \frac{1}{500} d x / \text { when } \quad \begin{array}{l}
v=0 \quad x=0 \\
v=v / 2 \\
\text { th } \\
0
\end{array}\right]=D . \\
l_{0}^{0 / 2}=[x]^{D}
\end{array} \\
& {\left[-\ln \left(625-v^{2}\right)\right]_{0}^{0 / 2}=\left[\frac{x}{500}\right]_{0}^{D} /} \\
& -\ln \left(625-\frac{625}{4}\right)-\left(-\ln (225)=\frac{D}{500}\right. \\
& \ln \left(\frac{625}{625(3 / 4)}\right)=\frac{D}{500} \\
& -\ln \left(625-\frac{62}{4}\right)-(-\ln 627)=\frac{1}{500}
\end{aligned}
$$

Athematre approach wifg reappocols and indefinite integation

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{625-v^{2}}{1000 v} \\
& \frac{d x}{d v}=\frac{1000 \mathrm{v}}{625-v^{2}} \\
& \int d r \int d v \\
& x=-500 \ln \left(625-v^{2}\right)+C \\
& v=0 \quad x=0 \quad 0=-500 \ln 625+c \\
& C=500 \mathrm{~m} 625 \\
& x=500 \ln \left(\frac{625}{625-v^{2}}\right) \\
& V=\frac{V}{2}=\frac{25}{2}=500 \ln \left(\frac{625}{625} \times \frac{1}{3 / 4}\right) \\
& =500 \mathrm{~m} \frac{3}{3} \\
& \div 144 \mathrm{~m}
\end{aligned}
$$

(10)

$$
\text { a) } \begin{aligned}
(i) m_{P Q} & =\frac{c-c p}{c q-c p} \\
& =\frac{c(p-q)}{c(q-p)}(p \neq q) \\
& =-\frac{1}{p q}
\end{aligned}
$$

\therefore Eqn of chood $y-\frac{c}{p}=-\frac{1}{p q}(x-c p)$

$$
\begin{aligned}
& 1 / p q-c q=-x+c p \text { sian } \\
& p q y-1 .
\end{aligned}
$$

(i) Tanget at P at $Q \quad x+q^{2} y=2 c q$ (2)
Solve scutherend (1) $+(2)$
sub into (1)

$$
\begin{aligned}
& p+q \\
x & =2 c p-p^{2}\left(\frac{2 c}{p+q}\right) \\
x & =\frac{2 c p(p+q)-2 c p^{2}}{(p+q)} \\
& =\frac{2 c p}{p+q} \\
\therefore T & \left(\frac{2 c q q}{p+q}, \frac{2 c}{p+q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 c p-p^{2} y=2 c q-q^{2} y \\
& 2 c p-2 c q=\left(p^{2}-q^{2}\right) y \\
& \frac{2 c(p-q)}{(p-q)(p+q)}=y \quad p \neq q \text { since dolinet } \\
& \therefore y=\frac{2 c}{p+q}
\end{aligned}
$$

(iii) If choid $P Q$ pases through (O, C) then $O+p q C=c(p+q)$

$$
\begin{aligned}
& T\left(\frac{\partial c(p+q)}{(p+q)}, \frac{\partial c}{p+q}\right) \\
& =T\left(2 c, \frac{2 c}{p q}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& P(z)=3 z^{8}-10 z^{4}+3 \\
& P(\omega)=0 \quad=3 \omega^{8}-10 \omega^{4}+3=0 \\
&\text { (i) } \left.\begin{array}{rl}
P(i \omega) & =3(i \omega)^{8}-10(i \omega)^{4}+3 \\
& =3 \omega^{8}-10 \omega^{4}+3 \\
& =0
\end{array} \quad V_{\text {sind }} \text { (since } i^{8}=i^{4}=1\right)
\end{aligned}
$$

\therefore iw a voot of $P(z)=0$

$$
\begin{aligned}
P(\omega) & =3(\nu)^{8}-10\left(\omega^{4}\right)+3 \\
& =\frac{3}{\omega^{8}}-\frac{10}{\omega^{4}}+3
\end{aligned}
$$

$$
\begin{gathered}
=\frac{3}{\omega^{8}}-\frac{10}{\omega}+3 \\
\omega^{8} \times P\left(\frac{\nu}{\omega}\right)=3-10 \omega^{4}+3 \omega^{8}
\end{gathered}
$$

$$
=0
$$

but $\omega \neq 0$ since $P(0)=3$ hence O not a soln
$\therefore P(⿲)=0 \quad \therefore \quad / 4$ a woot of $P(z)=0$
(i)

$$
\begin{aligned}
P\left(3^{4}\right) & =3\left(3^{4}\right)^{8}-10\left(3^{4}\right)^{4}+3 \\
& =3 \times 3^{2}-10 \times 3+3 \\
& =27-30+3 \\
& =0
\end{aligned}
$$

$\therefore+\sqrt{3}$ is a wot of $P(z)=0$
since $P(z)$ has even symmety, $z=-\sqrt{3}$ a 100 t

fiom (i) $z=\frac{1}{4 \sqrt{3}}$ a $\sqrt{\text { vott }}$, abo $z=\frac{-1}{\sqrt{3}}$
abo $z=\frac{i}{\sqrt{3}}$ and $z=\frac{-i}{\sqrt{3}}$
Hence eugtt noto are $\pm \sqrt{3}, \pm \sqrt{3} i v, \pm \frac{1}{\sqrt{3}}, \pm \frac{i}{4 \sqrt{3}}$
(II)
(i) Ennof miston
y (4) $\begin{array}{rl}4 y & =-40-v^{2} \\ y & y\end{array}$

$$
\begin{aligned}
& y=-10-\frac{v^{2}}{20}(G \text { iven }) \\
& (\alpha) v \frac{d v}{d y}=-\left(\frac{200+v^{2}}{20}\right)
\end{aligned}
$$

$$
\int \frac{2 v}{200+v^{2}} d v=\int-\frac{d y}{10}
$$

$$
\ln \left(200+v^{2}\right)=-\frac{y}{10}+c
$$

when $y=0 \quad v=12$.

$$
\begin{aligned}
\therefore & v=12 \\
\therefore & \ln 344=0+c \\
\therefore & \ln \left(200+v^{2}\right)-\ln 344=-y \\
& \ln \frac{200+v^{2}}{344}=-y \\
& \frac{200+v^{2}}{344}=e^{-y / 10} \\
& \quad r^{2}-244 e^{-y_{10}}-2
\end{aligned}
$$

344
$\frac{v^{2}=344 e^{-x_{10}}-200}{V=0}$
(β) Maxthenge

$$
\begin{aligned}
\therefore=344 e^{-y_{10}} & =200 \\
e^{-y_{10}} & =\frac{200}{344} \\
e^{\psi_{0}} & =\frac{344}{200} \\
& =\frac{43}{25}
\end{aligned}
$$

iij DOWMNARD

Egn of motion \downarrow
(凶)

$$
\begin{aligned}
& \text { no motion } \downarrow \\
& 4 y^{2}=40-v^{2} / 5 \\
& y^{\prime \prime}=10-v^{2} / 20
\end{aligned}
$$

(β)

$$
\begin{aligned}
& v \frac{d v}{d y}=\frac{200-v^{2}}{20} \\
& \int_{20}^{v}-\frac{2 v}{20-v^{2}} d v=\int_{0}^{10 \mathrm{~m}}-\frac{d y}{10} \quad \text { whatad } y=0 \quad v=0 \\
& \text { at ground } y=10 \mathrm{~lm} \frac{43}{25} \text {, spees } V \\
& {\left[\ln \left(200-v^{2}\right)\right]_{0}^{v_{0}^{0}}=\left[-\frac{y}{10}\right]_{0}^{10 \ln 250} \quad \sqrt{200}} \\
& \ln \left(200-V^{2}\right)-\ln 200=-\ln \frac{43}{25} \\
& \ln \left(200-V^{2}\right)=\ln 200-\ln 43 / 25 \\
& =\ln \left(\frac{5000}{43}\right) \\
& \therefore 200-V^{2}=\frac{5000}{43} \\
& V^{2}=\frac{8600}{43}-\frac{5000}{43} \\
& =\frac{3600}{43}
\end{aligned}
$$

hence

$$
\begin{aligned}
V & =\frac{60}{\frac{63}{43}} \mathrm{~m} / \mathrm{s} \cdot \sqrt{43}(V>0) \\
& =9.15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b)
(ii) Coninder $\triangle A C P$

$$
\begin{aligned}
& \text { inder } \triangle A C P \text { (Extenor } \angle, \\
& \angle A C P=\alpha-\beta \text {. } \triangle C A R) \\
& \angle C A P=B+\pi / \text { (Adpaed) }
\end{aligned}
$$

$\angle C A P=\beta+\frac{\pi}{2}$. (Adiavet A^{α}
Usig sine mle

$$
\frac{A P}{\sin (\angle A C P)}=\frac{C P}{\sin (\angle C A P)}
$$

$\therefore A P=C P \quad \sin \alpha \sin \left(\beta+\frac{\pi}{2}\right)=\cos \beta$.
trannlating sine aure o bof b/ $\%^{\frac{\pi}{2}}$

$$
\begin{aligned}
& \sin (\alpha-\beta) \sin \left(\beta+\frac{1}{2}\right) \\
& \frac{A P}{\sin (\alpha-\beta)}=\frac{C P}{\cos \beta}
\end{aligned}
$$

$$
\therefore C P=\frac{A P \cos \beta}{\sin (\alpha-\beta)}
$$

similaity in $\triangle P D B$
$\angle P B D=\frac{\pi}{2} \rho$. (Ande (ANT)
Usy sie tule

$$
\begin{aligned}
& \frac{P D}{\sin (\angle P P D)}=\frac{P B}{\sin (\angle P D B)} \sqrt{\text { siow }} \\
& \frac{P D}{\sin \left(\frac{1 / 2}{\alpha}-\beta\right)}=\frac{P B}{\sin (\alpha+\beta)} \\
& P D=\frac{P B \cos \beta}{\sin (\alpha+\beta)}
\end{aligned}
$$

$$
\begin{aligned}
& A P=y_{A}-y_{P} \\
& =b \sec \theta-b \tan \theta \\
& =b(\sec \theta-\tan \theta) \\
& P B=y_{p}-y_{B} \\
& \begin{array}{l}
=y_{p}-y_{B} \\
=b \tan \theta-(-b \sec \theta)
\end{array} \\
& =b(\tan \theta+\sec \theta) \\
& \therefore A P \times P B=b(\sec \theta-\tan \theta) \times b(\tan \theta+\sec \theta) /_{\text {stan }} \\
& \begin{array}{l}
=b^{2}\left(\sec ^{2} \theta-t^{2} \theta\right) \\
=b^{2}
\end{array}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& C P \times P D= \frac{A P \cos \beta}{\sin (\alpha-\beta)} \times \frac{P B \cos \beta}{\sin (\alpha+\beta)} \\
&= \frac{A P \times P B \cos ^{2} \beta}{\sin (\alpha-\beta) \sin (\alpha+\beta)} \\
&= \frac{b^{2} \cos ^{2} \beta}{\sin (\alpha-\beta)(\alpha+\beta) \quad \text { on } \beta \text { conitants }} \\
& \text { Since product doent depend unan choie of } \beta
\end{aligned}
$$

since product doest 4 depend upon choive of P.

$$
\begin{aligned}
C P \times P D & =C Q \times Q D \\
C P \times(P Q+Q D) & =(C P+P Q) \times Q D \\
C P \times P Q+C P \times Q D & =C P \times Q D+P Q \times Q D \\
\therefore C P & =Q D
\end{aligned}
$$

