Sydney Grammar School

2017 Assessment Examination

FORM VI

MATHEMATICS EXTENSION 2

Thursday 18th May 2017

General Instructions

- Writing time - 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Reference sheet
- Candidature - 73 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The ellipse $9 x^{2}+16 y^{2}=144$ has eccentricity $\begin{gathered}\sqrt{ } 7 \\ 4\end{gathered}$. What are the coordinates of its foci? $\mathbf{1}$
(A) $S(0, \sqrt{ } 7)$ and $S^{\prime}(0,-\sqrt{ } 7)$
(B) $S(\sqrt{ } 7,0)$ and $S^{\prime}(-\sqrt{ } 7,0)$
(C) $S(4 \sqrt{ } 7,0)$ and $S^{\prime}(-4 \sqrt{ } 7,0)$
(D) $S(0,4 \sqrt{ } 7)$ and $S^{\prime}(0,-4 \sqrt{ } 7)$

QUESTION TWO

What is the remainder when $P(z)=2 z^{3}-3 z^{2}+4 z-2$ is divided by $(z+i)$?
(A) $1-2 i$
(B) $1-6 i$
(C) $1+2 i$
(D) $1+6 i$

QUESTION THREE

Every point on a certain conic is twice as far from the line $x=4$ as from the point $(1,0)$. What is a possible equation of the conic?
(A) ${ }_{3}^{x^{2}}-\frac{y^{2}}{4}=1$
(B) ${ }_{4}^{x^{2}}-\frac{y^{2}}{3}=1$
(C) ${ }_{3}^{x^{2}}+{ }_{4}^{y^{2}}=1$
(D) $x_{4}^{x^{2}}+\frac{y^{2}}{3}=1$

QUESTION FOUR

Two of the zeroes of the polynomial $P(x)=x^{4}-4 x^{3}+9 x^{2}-16 x+20$ are $a+i b$ and $2 i b$, where a and b are real and $b \neq 0$. What is the value of a ?
(A) 2
(B) -2
(C) 4
(D) -4

QUESTION FIVE

Which of the following is equivalent to $\int_{a}^{b} x^{3} e^{2 x^{4}} d x$, where a and b are real constants?
(A) $\int_{a^{4}}^{b^{4}} e^{2 u} d u$
(B) $\frac{1}{8} \int_{a}^{b} e^{u} d u$
(C) $1 \int_{a^{4}}^{b^{4}} e^{2 u} d u$
(D) $\frac{1}{8} \int_{8 a^{3}}^{8 b^{3}} e^{u} d u$

QUESTION SIX

Let x metres be the displacement of a particle of mass 1000 kilograms from the origin on a straight path. The particle experiences a constant propelling force of 10000 newtons and a resistive force of magnitude $100 v^{2}$ newtons, where v is the velocity of the particle at time t seconds. What is the equation of motion of the particle?
(A) $\ddot{x}=10000-100 v^{2}$
(B) $\ddot{x}=10-0 \cdot 1 v^{2}$
(C) $\ddot{x}=10000-0 \cdot 1 v^{2}$
(D) $\ddot{x}=10-100 v^{2}$

QUESTION SEVEN

Let $x=\sin \theta-\cos \theta$ and $y=\frac{1}{2} \sin 2 \theta$. What is the correct expression for $\frac{d y}{d x}$?
(A) $\cos \theta-\sin \theta$
(B) $\sec \theta+\operatorname{cosec} \theta$
(C) $\sec \theta-\operatorname{cosec} \theta$
(D) $\cos \theta+\sin \theta$

QUESTION EIGHT

A hyperbola centred at the origin has a focus at $S(5,0)$ and a directrix $x=\begin{gathered}16 \\ 5\end{gathered}$. What is the eccentricity of the hyperbola?
(A) $\begin{aligned} & 4 \\ & 3\end{aligned}$
(B) $\begin{aligned} & 25 \\ & 16\end{aligned}$
(C) $\begin{array}{r}5 \\ 4\end{array}$
(D) 4

QUESTION NINE

QUESTION TEN

Consider the relation $a^{2} x^{2}+\left(1-a^{2}\right) y^{2}=b^{2}$, where a and b are non-zero real numbers.
Which of the following CANNOT be represented by the relation?
(A) a circle
(B) a parabola
(C) a hyperbola
(D) a pair of straight lines

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a)

The diagram shows a hyperbola with asymptotes $y=\begin{gathered}3 x \\ 2\end{gathered}$ and $y=-\begin{gathered}3 x \\ 2\end{gathered}$.
(i) Write an equation for the hyperbola.
(ii) Find the eccentricity of the hyperbola.
(iii) Write down the coordinates of both foci of the hyperbola.
(iv) Write down the equations of both directrices of the hyperbola.
(b) Consider the polynomial $P(x)=3 x^{3}-10 x^{2}+7 x+10$.
(i) Given that one zero of $P(x)$ is $2-i$, find the other two zeroes.
(ii) Hence express $P(x)$ as the product of a linear factor and a quadratic factor, both with real coefficients.
(c) The polynomial equation $2 x^{3}-9 x^{2}+12 x-4=0$ has a double root at $x=\alpha$.
(i) Find the value of α.
(ii) Find the remaining root.

SGS Assessment 2017 Form VI Mathematics Extension 2 Page 7 QUESTION ELEVEN (Continued)
(d)

The point $P\left(c p, \begin{array}{l}c \\ p\end{array}\right)$, where $p>0$, lies on the rectangular hyperbola $x y=c^{2}$ with focus $S(c \sqrt{ } 2, c \sqrt{ } 2)$. The point Q divides the interval $P S$ in the ratio 1:2.
(i) Show that the coordinates of Q are $\left(\begin{array}{cc}2 c p+c \sqrt{ } 2 & 2 c+c p \sqrt{ } 2 \\ 3\end{array}\right)$ 3p
(ii) Find the Cartesian equation of the locus of Q as P varies.
(a) When a polynomial $P(x)$ is divided by $(x-2)$ and $(x-3)$ the respective remainders are 4 and 3. Determine what the remainder must be when $P(x)$ is divided by $(x-2)(x-3)$.
(b) Barbara decides to go bungee jumping. This involves being tied to a bridge by an elastic cable of unstretched length d metres and falling vertically from rest from this point. After Barbara free falls d metres, she will be slowed down by the cable, which exerts a resistive force proportional to the distance greater than d that she has fallen.

If we take the origin at bridge level, x to be the distance fallen in metres and g to be the acceleration due to gravity in ms^{-2}, then Barbara's motion during her initial descent will be defined by:

$$
\ddot{x}= \begin{cases}g & \text { when } x \leq d \\ g-k(x-d) & \text { when } x>d\end{cases}
$$

Let Barbara's speed be $v \mathrm{~ms}^{-1}$.
(i) Find an expression for v^{2} at the instant when Barbara first passes $x=d$.
(ii) Hence show that $v^{2}=2 g x-k(x-d)^{2}$ for $x>d$.
(c) A ball is thrown vertically upwards with an initial velocity of $7 \sqrt{ } 6 \mathrm{~ms}^{-1}$. It is subject to gravity and air resistance. The acceleration of the ball is given by $\ddot{x}=-\left(9 \cdot 8+0 \cdot 1 v^{2}\right)$, where x metres is its vertical displacement from the point of launch and $v \mathrm{~ms}^{-1}$ is its velocity at time t seconds.
(i) Find an expression for time t as a function of velocity v.
(ii) Hence find the time taken for the ball to reach its maximum height. Give your answer correct to three significant figures.
(iii) Find an expression for vertical displacement x in terms of velocity v.
(iv) Hence find the maximum height reached. Give your answer in exact form.
(a) The rise and fall in sea level due to tides can be modelled with simple harmonic motion. On a certain day, a channel is 8 metres deep at 7 am when it is low tide, and 14 metres deep at 2 pm when it is high tide.
(i) Sketch a graph showing the depth of the water d at time t. Write an equation that models the depth of water d as a function of time t. Take the origin of time to correspond to the low tide at 7 am .
(ii) A ship must sail down the channel at some time between 7 am and 9 pm . If the ship requires a water depth of at least 12 metres, between what times of day can the ship pass safely through? Give your answer correct to the nearest minute.
(b) The roots of $2 x^{3}-9 x^{2}+8 x-2=0$ are α, β and γ.
(i) Find the value of $\alpha \beta \gamma$.
(ii) Hence find a simplified cubic polynomial equation with integer coefficients that has roots $\begin{gathered}\alpha \beta \\ \gamma\end{gathered}, \begin{gathered}\alpha \gamma \\ \beta\end{gathered}$, and ${ }_{\alpha}^{\beta \gamma}$.
(c) The equation $x^{3}-3 a x+b=0$, with real constants $a>0$ and $b \neq 0$, has three distinct real roots.
(i) Find the stationary points of $y=x^{3}-3 a x+b$ in terms of a and b and determine
their nature.
(ii) Hence show that $b^{2}<4 a^{3}$, explaining your reasoning carefully.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.
(a) Let $I_{n}=\int_{0}^{1} \begin{gathered}1 \\ \left(x^{2}+1\right)^{n}\end{gathered} d x$ for any integer $n \geq 1$.
(i) Show that $I_{n+1}=\frac{1}{2 n}\left[2^{-n}+(2 n-1) I_{n}\right]$.
(ii) Hence evaluate I_{3}.
(b)

Distinct points $P(a \cos \theta, b \sin \theta)$ and $Q(a \sec \theta, b \tan \theta)$ lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\begin{aligned} & x^{2} \\ & a^{2}\end{aligned}-\frac{y^{2}}{b^{2}}=1$ respectively, as shown, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. The points M and N are the feet of the perpendiculars from P and Q respectively to the x-axis.
(i) The line $P Q$ meets the x-axis at K. Show that $\begin{aligned} & K M \\ & K N\end{aligned}=\cos \theta$.
(ii) Hence find the coordinates of K.
(iii) Show that the tangent to the ellipse at P has equation $\begin{gathered}x \cos \theta \\ a\end{gathered}+\begin{gathered}y \sin \theta \\ b\end{gathered}=1$ and deduce that it passes through N.
(iv) The tangent to the hyperbola at Q has equation $\begin{gathered}x \sec \theta \\ a\end{gathered}-\begin{gathered}y \tan \theta \\ b\end{gathered}=1$ and passes through M. Do NOT prove this. Let T be the point of intersection of $P N$ and $Q M$.
(α) Show that T always lies on the same vertical line and state its equation.
(β) Where on this line can T lie? Justify your answer.
(γ) Suppose that θ is now in the second or third quadrant. Explain where T may lie.

Sydney Grammar School

2017
Assessment Examination
FORM VI
MATHEMATICS EXTENSION 2
Thursday 18th May 2017

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A \bigcirc
B \qquad
C

D
\square

Question Two

ABD \bigcirc

Question Three

A \bigcirc
B \bigcircD \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A
B \qquad
C

D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

AB

C

D \bigcirc

Question Eight

A \bigcirc
B \bigcirc
C

D \bigcirc

Question Nine

A \bigcirc
B \bigcirc
C

D \bigcirc

Question Ten

A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

EXTENSION 2 - SOLUTIONS
May Assessment 2017

QI.

$$
\begin{aligned}
& \frac{9 x^{2}}{144}+\frac{16 y^{2}}{144}=\frac{144}{144} \\
& \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \\
& a=4, e=\frac{\sqrt{7}}{4} \quad \therefore a e=\sqrt{7}
\end{aligned}
$$

$$
\therefore \text { Faci: }(\pm \sqrt{7}, 0)
$$

QR.

$$
\begin{align*}
p(-i) & =2(-i)^{3}-3(-i)^{2}+4(-i)-2 \\
& =2 i+3-4 i-2 \\
& =1-2 i \tag{A}
\end{align*}
$$

QB. $Q=\frac{1}{2} \quad \therefore$ ellipse
Focus: $(1,0)$ \& vertical directrix

Q4. Roots must be $a+i b, a-i b, 2 i b,-2 i b$
Sum of roots: $2 a=\frac{-(-4)}{1}$

$$
\therefore a=2
$$

A

Q5. $\int_{a}^{b} x^{3} e^{2 x^{4}} d x$
Let $u=x^{4}$

$$
d v=4 x^{3} d x
$$

$$
\begin{aligned}
& =\frac{1}{4} \int_{a}^{b} 4 x^{3} e^{2 x^{4}} d x \\
& =\frac{1}{4} \int_{a^{4}}^{b^{4}} e^{2 u} d u
\end{aligned}
$$

x	a	b
u	a^{4}	b^{4}

$Q 6$.

$$
\begin{aligned}
1000 \ddot{x} & =10000-100 v^{2} \\
\ddot{x} & =10-0.1 \mathrm{v}^{2}
\end{aligned}
$$

Q7. $\quad \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$

$$
\begin{align*}
& =\frac{\cos 2 \theta}{\cos \theta+\sin \theta} \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos \theta+\sin \theta} \\
& =\frac{(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)}{\cos \theta+\sin \theta} \\
& =\cos \theta-\sin \theta
\end{align*}
$$

Q8.

$$
\begin{align*}
& a e=5 \tag{1}\\
& \frac{a}{e}=\frac{16}{5} \tag{2}
\end{align*}
$$

$$
\text { (1) } \times(2): \begin{aligned}
a^{2} & =16 \\
a & =4 \\
\therefore e & =\frac{5}{4}
\end{aligned}
$$

Qq.

Q10. $a^{2} x^{2}+\left(1-a^{2}\right) y^{2}=b^{2}$
circle $y \quad a^{2}=1-a^{2}$

$$
\therefore a^{2}=\frac{1}{2}
$$

hyperbola $\quad 1-a^{2}<0$

$$
a^{2}>1
$$

straight lines $a^{2}=0 \rightarrow y= \pm b$

$$
a^{2}=1 \rightarrow x= \pm b
$$

(but a wo nos-zero anyway...)
\therefore parabola
B

QUESTION II:
a) i)

$$
\begin{aligned}
& a=2 \\
& b=3 \\
& \frac{x^{2}}{4}-\frac{y^{2}}{9}=1
\end{aligned}
$$

ii)

$$
\begin{aligned}
b^{2} & =a^{2}\left(e^{2}-1\right) \\
9 & =4\left(e^{2}-1\right) \\
e^{2} & =\frac{13}{4} \\
\therefore e & =\frac{\sqrt{13}}{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
a e & =2 \times \frac{\sqrt{13}}{2} \\
& =\sqrt{13}
\end{aligned}
$$

\therefore faci: $(\sqrt{13}, 0)$ and $(-\sqrt{13}, 0)$

$$
\text { iv) } \begin{aligned}
\frac{a}{e} & =\frac{2}{\sqrt{13}} \\
& =\frac{4}{\sqrt{13}}
\end{aligned}
$$

\therefore directrices: $x=\frac{4}{\sqrt{13}}$ or $x=-\frac{4}{\sqrt{13}}$

$$
\left[O R \quad x= \pm \frac{4 \sqrt{13}}{13}\right]
$$

b) $P(x)=3 x^{3}-10 x^{2}+7 x+10$
i) $\overline{2-i}=2+i$ must also be a zero

Let α be the third zero.

From sum of zeroes:

$$
\begin{aligned}
\alpha+2+i+2-i & =\frac{10}{3} \\
\therefore \alpha & =-\frac{2}{3}
\end{aligned}
$$

TOR, From product of zeroes:

$$
\begin{aligned}
\alpha(2+i)(2-i) & =-\frac{10}{3} \\
5 \alpha & =-\frac{10}{3} \\
\therefore \alpha & =-\frac{2}{3}
\end{aligned}
$$

ii)

$$
\begin{aligned}
P(x) & =3\left(x+\frac{2}{3}\right)(x-(2-1))(x-(2+i)) \\
& =(3 x+2)\left(x^{2}-4 x+5\right)
\end{aligned}
$$

c) i) Let $P(x)=2 x^{3}-9 x^{2}+12 x-4$

$$
\begin{aligned}
P^{\prime}(x) & =6 x^{2}-18 x+12 \\
& =6\left(x^{2}-3 x+2\right) \\
& =6(x-1)(x-2)
\end{aligned}
$$

$\therefore P^{\prime}(x)=0$ when $x=1$ or $x=2$
$P(1)=1 \quad \therefore x=1$ is not the double root
$P(2)=0 \quad \therefore x=2$ is the dewblerect

$$
\therefore \alpha=2
$$

ii) Let β be the ether root.

From sum of roots:

$$
\begin{aligned}
2+2+\beta & =\frac{9}{2} \\
\therefore \beta & =\frac{1}{2} \quad \therefore \text { the remaining root }
\end{aligned}
$$

$$
\text { is } x=\frac{1}{2}
$$

QR/, From product of roots:

$$
\begin{aligned}
2 \times 2 \times \beta & =\frac{4}{2} \\
\therefore \beta & =\frac{1}{2}
\end{aligned}
$$

d) 1)

$$
\begin{aligned}
& m=1, n=2 \\
& p\left(c p, \frac{c}{b}\right) \rightarrow\left(x_{1}, y_{1}\right) \\
& S(c \sqrt{2}, c \sqrt{2}) \rightarrow\left(x_{2}, y_{2}\right) \\
& x_{Q}=\frac{m x_{2}+n x_{1}}{m+n} \\
& \\
& =\frac{1 \times c \sqrt{2}+2 \times c p}{1+2} \\
& \\
& =\frac{c \sqrt{2}+2 c p}{3}=\frac{2 c p+c \sqrt{2}}{3} \\
& \begin{aligned}
& y_{Q}=\frac{m y_{2}+n y_{1}}{m+n}=\frac{1 \times c \sqrt{2}+2 \times \frac{c}{p}}{1+2} \times \frac{p}{p} \\
&=\frac{2 c+c p \sqrt{2}}{3 p} \\
& 3 p
\end{aligned} \\
& \left.=\frac{c p \sqrt{2}+2 c}{3}=\frac{2 c+c p \sqrt{2}}{3 p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{Q}=x_{p}+\frac{x_{s}-x_{p}}{3} \\
&=c p+\frac{c \sqrt{2}-c p}{3} \\
&=\frac{2 c p+c \sqrt{2}}{3} \\
& y_{Q}=y_{p}-\frac{y_{p}-y_{5}}{3} \\
&=\frac{c}{p}-\frac{c}{p}-c \sqrt{2} \\
& 3 \\
&=\frac{3 c-(c-c p \sqrt{2})}{3 p} \\
&=\frac{2 c+c p \sqrt{2}}{3 p}
\end{aligned}
$$

ii)

$$
\begin{align*}
& x=\frac{2 c p+c \sqrt{2}}{3} \quad \text { (from (i)) } \\
& p=\frac{3 x-c \sqrt{2}}{2 c} \tag{1}\\
& y=\frac{2 c+c p \sqrt{2}}{3 p} \\
& 3 y p-c p \sqrt{2}=2 c \\
& p=\frac{2 c}{3 y-c \sqrt{2}} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { (1) }=(2): \\
& \frac{3 x-c \sqrt{2}}{2 c}=\frac{2 c}{3 y-c \sqrt{2}} \\
& (3 x-c \sqrt{2})(3 y-c \sqrt{2})=4 c^{2}
\end{aligned}
$$

QUESTION 12:
a)

$$
\begin{align*}
P(x) & =Q(x) \times D(x)+R(x) \\
& =Q(x)(x-2)(x-3)+a x+b \\
P(2) & =4: \\
P(3) & =3: \tag{1}\\
& =2 a+b \\
3 & =3 a+b \tag{2}
\end{align*}
$$

(2) -(1):

$$
\begin{aligned}
& a=-1 \\
& 4=-2+b \\
& b=6
\end{aligned}
$$

subito (1):
\therefore the remainder is $-x+6$ (or $6-x$)
b) i) $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=g$

$$
\frac{1}{2} v^{2}=9^{x}+c
$$

when $x=0, v=0$:

$$
\begin{aligned}
0 & =0+c \rightarrow c=0 \\
\therefore \frac{1}{2} u^{2} & =g^{x} \\
v^{2} & =29^{x}
\end{aligned}
$$

(must show must show
call. of constant)
when $x=d$ i

$$
v^{2}=2 g d
$$

ii) $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=g-k(x-d) \quad[$ notice that this equation is also

$$
\begin{aligned}
\frac{1}{2} v^{2} & =g x-\frac{k(x-d)^{2}}{2}+c_{1} \\
v^{2} & =2 g x-k(x-d)^{2}+c_{2}
\end{aligned}
$$

when $x=d, \quad v^{2}=2 g d$

$$
\begin{aligned}
2 g d & =2 g d-k(d-d)^{2}+c_{2} \\
\therefore c_{2} & =0 \\
\therefore v^{2} & =2 g x-k(x-d)^{2} \text { as required. }
\end{aligned}
$$

c)

$$
\begin{aligned}
t & =0 \\
v & =7 \sqrt{6} \mathrm{~m} / \mathrm{s} \\
\ddot{x} & =-\left(9.8+0.1 v^{2}\right)
\end{aligned}
$$

i)

$$
\begin{aligned}
\frac{d v}{d t} & =-\left(9 \cdot 8+0.1 v^{2}\right) \\
\frac{d t}{d v} & =-\frac{1}{9.8+0.1 v^{2}} \\
t & =-10 \int \frac{1}{98+v^{2}} d v \\
& =-\frac{10}{\sqrt{98}} \tan ^{-1} \frac{v}{\sqrt{98}}+C
\end{aligned}
$$

when $t=0, v=7 \sqrt{6}$:

$$
\begin{aligned}
0 & =-\frac{10}{\sqrt{98}} \tan ^{-1} \sqrt{3}+C \\
\therefore C & =\frac{10}{\sqrt{98}} \times \frac{\pi}{3} \\
& =\frac{10 \pi}{21 \sqrt{2}} \\
\therefore t & =-\frac{10}{7 \sqrt{2}} \tan ^{-1} \frac{N}{7 \sqrt{2}}+\frac{10 \pi}{21 \sqrt{2}} \\
(\text { or } t & \left.=-\frac{5 \sqrt{2}}{7} \tan ^{-1} \frac{v}{7 \sqrt{2}}+\frac{5 \pi \sqrt{2}}{21}\right)
\end{aligned}
$$

ii) $t=$? when $v=0$:

$$
\begin{aligned}
t & =0+\frac{10 \pi}{21 \sqrt{2}} \\
& =1.06 \text { seconds (to 3sis.fig.) }
\end{aligned}
$$

iii)

$$
\begin{aligned}
u \frac{d v}{d x} & =-\left(9 \cdot 8+0.1 v^{2}\right) \\
\frac{d x}{d v} & =-\frac{v}{9.8+0.1 v^{2}} \\
x & =-\frac{10}{2} \int \frac{2 v}{98+v^{2}} d v \\
& =-5 \ln \left(98+v^{2}\right)+C
\end{aligned}
$$

when $x=0, y=7 \sqrt{6}$:

$$
\begin{aligned}
& 0=-5 \ln (98+294)+c \\
& \therefore c=5 \ln 392 \\
& x=-5 \ln \left(98+v^{2}\right)+5 \ln 392 \\
&
\end{aligned}
$$

iv) $x=$? when $v=0$:

$$
\begin{aligned}
x & =5 \ln \frac{392}{98} \\
& =5 \ln 4 \\
& =10 \ln 2 \quad \text { metres }
\end{aligned}
$$

QUESTION 13:

$$
\begin{aligned}
& a=3 \\
& T=2 \times 7 \quad T=\frac{2 \pi}{n} \\
& =14 \\
& 14=\frac{2 \pi}{n} \\
& \therefore n=\frac{\pi}{7} \\
& \therefore d=-3 \cos \frac{\pi}{7} t+11 \\
& 12=-3 \cos \frac{\pi}{7} t+11 \\
& \cos \frac{\pi}{7} t=-\frac{1}{3} \\
& \frac{\pi}{7} t=\pi-\cos ^{-1}\left(\frac{1}{3}\right) \quad \text { or } \pi+\cos ^{-1}\left(\frac{1}{3}\right) \\
& \therefore t=\frac{7}{\pi}\left(\pi-\cos ^{-1}\left(\frac{1}{3}\right)\right) \text { ar } \frac{7}{\pi}\left(\pi+\cos ^{-1}\left(\frac{1}{3}\right)\right) \\
& =4.2572 \ldots=9.7427 \ldots \\
& \doteqdot 4 \mathrm{~m} .15 \mathrm{~min} \\
& \doteqdot 9 \mathrm{hr} 45 \mathrm{~mm}
\end{aligned}
$$

ii)
\therefore it can pass through between 11:15am + 4:45 pm
b) i)

$$
\begin{aligned}
\alpha \beta \gamma & =-\frac{(-2)}{2} \\
& =1
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{\alpha \beta}{\gamma} & =\frac{\alpha \beta \gamma}{\gamma^{2}} & \frac{\alpha \gamma}{\beta} & =\frac{\alpha \beta \gamma}{\beta^{2}} \\
& =\frac{1}{\gamma^{2}} & & =\frac{1}{\beta^{2}}
\end{aligned}
$$

\therefore the required roots are $\frac{1}{\alpha^{2}}, \frac{1}{\beta^{2}}, \frac{1}{\gamma^{2}}$
\therefore replace x with $\frac{1}{\sqrt{x}}$:

$$
\begin{aligned}
& 2\left(\frac{1}{\sqrt{x}}\right)^{3}-9\left(\frac{1}{\sqrt{x}}\right)^{2}+8\left(\frac{1}{\sqrt{x}}\right)-2=0 \\
& 2-9 \sqrt{x}+8 x-2 x \sqrt{x}=0 \\
& (2+8 x)^{2}=[\sqrt{x}(2 x+9)]^{2} \\
& 4+32 x+64 x^{2}=4 x^{3}+36 x^{2}+81 x \\
& 4 x^{3}-28 x^{2}+49 x-4=0
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& y=x^{3}-3 a x+b \\
& \frac{d y}{d x}=3 x^{2}-3 a \\
& \frac{d^{2} y}{d x^{2}}=6 x
\end{aligned}
$$

St. points:

$$
\begin{aligned}
\frac{d y}{d x}=0 \quad \text { when } \quad 3 x^{2} & =3 a \\
x & = \pm \sqrt{a}
\end{aligned}
$$

When $x=\sqrt{a}$,

$$
\begin{aligned}
y & =a \sqrt{a}-3 a \sqrt{a}+b \\
& =-2 a \sqrt{a}+b \\
\frac{d^{2} y}{d x^{2}} & =6 \sqrt{a} \\
& >0 \therefore \text { minimum turning paint } \\
& \text { at }(\sqrt{a},-2 a \sqrt{a}+b)
\end{aligned}
$$

When $x=-\sqrt{a}$

$$
\begin{aligned}
& y=-a \sqrt{a}+3 a \sqrt{a}+b \\
&= 2 a \sqrt{a}+b \\
& \frac{d^{2} y}{d x^{2}}=-6 \sqrt{a} \\
&<0 \quad \therefore \text { maximum turning paint } \\
& \quad \text { at }(-\sqrt{a}, 2 a \sqrt{a}+b)
\end{aligned}
$$

ii) 3 distinct real roots
\therefore turning points must be on opposite sides of the x-axis.

$$
\begin{gathered}
\therefore y_{\max } x y_{\min }<0 \\
(2 a \sqrt{a}+b)(-2 a \sqrt{a}+b)<0 \\
b^{2}-4 a^{3}<0 \\
b^{2}<4 a^{3}
\end{gathered}
$$

QUESTION 14:
a) $I_{n}=\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{n}} d x$
i)

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} \frac{d}{d x}(x) \times\left(x^{2}+1\right)^{-n} d x \\
& =\left[x\left(x^{2}+1\right)^{-n}\right]_{0}^{1}-\int_{0}^{1} x \times-2 n x\left(x^{2}+1\right)^{-n-1} d x \\
& =2^{-n}+2 n \int_{0}^{1} \frac{x^{2}}{\left(x^{2}+1\right)^{n+1}} d x \\
& =2^{-n}+2 n \int_{0}^{1} \frac{x^{2}+1-1}{\left(x^{2}+1\right)^{n+1}} d x \\
& =2^{-n}+2 n \int_{0}^{1}\left(\frac{1}{\left(x^{2}+1\right)^{n}}-\frac{1}{\left(x^{2}+1\right)^{n+1}}\right) d x \\
& =2^{-n}+2 n\left[I_{n}-I_{n+1}\right] \\
2 n I_{n+1} & =2^{-n}+2 n I_{n}-I_{n} \\
\therefore I_{n+1} & =\frac{1}{2 n}\left[2^{-n}+(2 n-1) I_{n}\right]
\end{aligned}
$$

ii)

$$
\begin{aligned}
I_{1} & =\int_{0}^{1} \frac{1}{x^{2}+1} d x \\
& =\left[\tan ^{-1} x\right]_{0}^{1} \\
& =\frac{\pi}{4} \\
I_{3} & =\frac{1}{4}\left[2^{-2}+3 I_{2}\right] \\
& =\frac{1}{16}+\frac{3}{4}\left[\frac{1}{2}\left(2^{-1}+I_{1}\right)\right] \\
& =\frac{1}{16}+\frac{3}{16}+\frac{3}{8} \times \frac{\pi}{4} \\
& =\frac{8+3 \pi}{32}
\end{aligned}
$$

b)

NTS

b) i) Clearly $\triangle K P M \| \Delta K Q N$ (equiangular)

So $\frac{K M}{K N}=\frac{P M}{Q N}$ (matching side in similar Δ^{\prime} 's)

$$
\begin{aligned}
& =\frac{b \sin \theta}{b \tan \theta} \\
& =\cos \theta
\end{aligned}
$$

ii) Let $K=(k, 0)$, then:

$$
\begin{gathered}
k M=k N \cos \theta \\
a \cos \theta-k=(a \sec \theta-k) \cos \theta \\
a \cos \theta-k=a-k \cos \theta \\
a(\cos \theta-1)=k(1-\cos \theta) \\
\therefore k=-a \\
\therefore k(-a, 0)
\end{gathered}
$$

iii) Gradient of tangent at P :

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \\
& =\frac{b \cos \theta}{-a \sin \theta}
\end{aligned}
$$

Point-gradient formula:

$$
\begin{aligned}
& y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
& a y \sin \theta-a b \sin ^{2} \theta=-b x \cos \theta+a b \cos ^{2} \theta \\
& \frac{b x \cos \theta}{a b}+a y \sin \theta=\frac{a b}{a b}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \nu \\
& \therefore \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
\end{aligned}
$$

when $y=0$:

$$
\begin{aligned}
& \frac{x \cos \theta}{a}=1 \\
& \therefore x=a \sec \theta
\end{aligned}
$$

\therefore the tangent passes through $N(a \sec \theta, O)$
iv) $\alpha) \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$

- (1)

$$
\begin{equation*}
\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1 \tag{2}
\end{equation*}
$$

(1) $\div \cos \theta$

$$
\frac{x}{a}+\frac{y \tan \theta}{b}=\sec \theta-(1)^{*}
$$

(1) ${ }^{*}+$ (2):

$$
\begin{aligned}
\frac{x}{a}(1+\sec \theta) & =\sec \theta+1 \\
\frac{x}{a} & =1 \\
x & =a
\end{aligned}
$$ from given

information
(1) $\div \cos \theta: \frac{x}{a}+\frac{y \tan \theta}{b}=\sec \theta+(1)^{*}$

Sub into (1):

$$
\begin{aligned}
& \cos \theta+\frac{y \sin \theta}{b}=1 \\
& y=\frac{b(1-\cos \theta)}{\sin \theta} \\
&\left(a r \frac{b \sin \theta}{1+\cos \theta}\right) \\
& \therefore T\left(a, \frac{b(1-\cos \theta)}{\sin \theta}\right)
\end{aligned}
$$

so T always lies on the line $x=a$.
β)

$$
\begin{array}{rlrl}
y & =\frac{b(1-\cos \theta)}{\sin \theta} & \text { Let } t=\tan \frac{\theta}{2} \\
& =\frac{b\left(1-\frac{1-t^{2}}{1+t^{2}}\right)}{\frac{2 t}{1+t^{2}}} & \therefore \sin \theta=\frac{2 t}{1+t^{2}} \\
& =\frac{b\left(1+t^{2}-\left(1-t^{2}\right)\right)}{2 t} & \cos \theta=\frac{1-t^{2}}{1+t^{2}} \\
& =\frac{b \times 2 t^{2}}{2 t} \\
& =b t \\
& =b \tan \frac{\theta}{2} \\
& -1<\tan \frac{\theta}{2}<1 & \text { far }-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
\therefore & -b<b \tan \frac{\theta}{2}<b
\end{array}
$$

$\therefore T$ lies on the line $x=a$
where $-b<y<b$
BUT $y \neq 0$ since $P \neq Q$ are distinct points \therefore the range of y-values for T should exclude $y=0$]
8) The algebra above does not change, so T is still on the line $x=a$
for $\frac{\pi}{2}<\theta<\pi, \quad b<b \tan \frac{\theta}{2}<\infty$
\neq for $-\pi<\theta<-\frac{\pi}{2},-\infty<b \tan \frac{y}{2}<-b$
\therefore Tues on the line $x=a$ where $y<-b$ or $y>b$

