SYDNEY GRAMMAR SCHOOL

2017 Assessment Examination

FORM VI

MATHEMATICS EXTENSION 2

Thursday 18th May 2017

General Instructions

- Writing time 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total — 70 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 60 Marks

- Questions 11–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Reference sheet
- Candidature 73 boys

Examiner LRP

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The ellipse $9x^2 + 16y^2 = 144$ has eccentricity $\frac{\sqrt{7}}{4}$. What are the coordinates of its foci? **1**

- (A) $S(0,\sqrt{7})$ and $S'(0,-\sqrt{7})$
- (B) $S(\sqrt{7}, 0)$ and $S'(-\sqrt{7}, 0)$
- (C) $S(4\sqrt{7},0)$ and $S'(-4\sqrt{7},0)$
- (D) $S(0, 4\sqrt{7})$ and $S'(0, -4\sqrt{7})$

QUESTION TWO

What is the remainder when $P(z) = 2z^3 - 3z^2 + 4z - 2$ is divided by (z + i)?

(A) 1 - 2i(B) 1 - 6i(C) 1 + 2i(D) 1 + 6i

QUESTION THREE

Every point on a certain conic is twice as far from the line x = 4 as from the point (1, 0). **1** What is a possible equation of the conic?

(A)
$$\frac{x^2}{3} - \frac{y^2}{4} = 1$$

(B) $\frac{x^2}{4} - \frac{y^2}{3} = 1$
(C) $\frac{x^2}{3} + \frac{y^2}{4} = 1$
(D) $\frac{x^2}{4} + \frac{y^2}{3} = 1$

Examination continues next page ...

QUESTION FOUR

Two of the zeroes of the polynomial $P(x) = x^4 - 4x^3 + 9x^2 - 16x + 20$ are a + ib and 2ib, **1** where a and b are real and $b \neq 0$. What is the value of a?

- (A) 2(B) -2
- (C) 4
- (D) −4

QUESTION FIVE

Which of the following is equivalent to $\int_{a}^{b} x^{3} e^{2x^{4}} dx$, where *a* and *b* are real constants? **1**

(A)
$$\int_{a^4}^{b^4} e^{2u} du$$

(B) $\frac{1}{8} \int_{a}^{b} e^{u} du$
(C) $\frac{1}{4} \int_{a^4}^{b^4} e^{2u} du$
(D) $\frac{1}{8} \int_{8a^3}^{8b^3} e^{u} du$

QUESTION SIX

Let x metres be the displacement of a particle of mass 1000 kilograms from the origin on a straight path. The particle experiences a constant propelling force of 10 000 newtons and a resistive force of magnitude $100v^2$ newtons, where v is the velocity of the particle at time t seconds. What is the equation of motion of the particle?

- (A) $\ddot{x} = 10\,000 100v^2$
- (B) $\ddot{x} = 10 0.1v^2$
- (C) $\ddot{x} = 10\,000 0.1v^2$
- (D) $\ddot{x} = 10 100v^2$

QUESTION SEVEN

Let $x = \sin \theta - \cos \theta$ and $y = \frac{1}{2} \sin 2\theta$. What is the correct expression for $\frac{dy}{dx}$? 1

- (A) $\cos\theta \sin\theta$
- (B) $\sec \theta + \csc \theta$
- (C) $\sec \theta \csc \theta$
- (D) $\cos\theta + \sin\theta$

QUESTION EIGHT

A hyperbola centred at the origin has a focus at S(5,0) and a directrix $x = \frac{16}{5}$. What is the eccentricity of the hyperbola?

(A) $\begin{array}{c} 4\\ 3\\ (B) \\ \begin{array}{c} 25\\ 16\\ (C) \\ 4\\ (D) \end{array}$

Examination continues next page

QUESTION NINE

QUESTION TEN

Consider the relation $a^2x^2 + (1 - a^2)y^2 = b^2$, where a and b are non-zero real numbers. **1** Which of the following CANNOT be represented by the relation?

- (A) a circle
- $(\mathbf{B})\,$ a parabola
- (C) a hyperbola
- (D) a pair of straight lines

End of Section I

Examination continues overleaf

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

(a)

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

Marks

The diagram shows a hyperbola with asymptotes $y = \frac{3x}{2}$ and $y = -\frac{3x}{2}$.

(i) Write an equation for the hyperbola.	1
(ii) Find the eccentricity of the hyperbola.	1
(iii) Write down the coordinates of both foci of the hyperbola.	1
(iv) Write down the equations of both directrices of the hyperbola.	1
(b) Consider the polynomial $P(x) = 3x^3 - 10x^2 + 7x + 10$.	
(i) Given that one zero of $P(x)$ is $2-i$, find the other two zeroes.	2
(ii) Hence express $P(x)$ as the product of a linear factor and a quadratic factor, both with real coefficients.	2
(c) The polynomial equation $2x^3 - 9x^2 + 12x - 4 = 0$ has a double root at $x = \alpha$.	
(i) Find the value of α .	2
(ii) Find the remaining root.	1

Examination continues next page ...

QUESTION ELEVEN (Continued)

(d)

The point $P\left(cp, \frac{c}{p}\right)$, where p > 0, lies on the rectangular hyperbola $xy = c^2$ with focus $S\left(c\sqrt{2}, c\sqrt{2}\right)$. The point Q divides the interval PS in the ratio 1:2.

(i) Show that the coordinates of
$$Q$$
 are $\begin{pmatrix} 2cp + c\sqrt{2}, \ 2c + cp\sqrt{2} \\ 3, \ 3p \end{pmatrix}$. 2

(ii) Find the Cartesian equation of the locus of Q as P varies.

 $\mathbf{2}$

QUESTION TWELVE (15 marks) Use a separate writing booklet.

- (a) When a polynomial P(x) is divided by (x-2) and (x-3) the respective remainders are **3** and **3**. Determine what the remainder must be when P(x) is divided by (x-2)(x-3).
- (b) Barbara decides to go bungee jumping. This involves being tied to a bridge by an elastic cable of unstretched length d metres and falling vertically from rest from this point. After Barbara free falls d metres, she will be slowed down by the cable, which exerts a resistive force proportional to the distance greater than d that she has fallen.

If we take the origin at bridge level, x to be the distance fallen in metres and g to be the acceleration due to gravity in ms⁻², then Barbara's motion during her initial descent will be defined by:

$$\ddot{x} = \begin{cases} g & \text{when } x \le d \\ g - k(x - d) & \text{when } x > d \end{cases}$$

Let Barbara's speed be $v \,\mathrm{ms}^{-1}$.

- (i) Find an expression for v^2 at the instant when Barbara first passes x = d. 2
- (ii) Hence show that $v^2 = 2gx k(x-d)^2$ for x > d.
- (c) A ball is thrown vertically upwards with an initial velocity of $7\sqrt{6} \text{ ms}^{-1}$. It is subject to gravity and air resistance. The acceleration of the ball is given by $\ddot{x} = -(9\cdot8 + 0\cdot1v^2)$, where x metres is its vertical displacement from the point of launch and $v \text{ ms}^{-1}$ is its velocity at time t seconds.
 - (i) Find an expression for time t as a function of velocity v. **3**
 - (ii) Hence find the time taken for the ball to reach its maximum height. Give your 1 answer correct to three significant figures.
 - (iii) Find an expression for vertical displacement x in terms of velocity v.
 - (iv) Hence find the maximum height reached. Give your answer in exact form.

Marks

 $\mathbf{2}$

3

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

- (a) The rise and fall in sea level due to tides can be modelled with simple harmonic motion. On a certain day, a channel is 8 metres deep at 7 am when it is low tide, and 14 metres deep at 2 pm when it is high tide.
 - (i) Sketch a graph showing the depth of the water d at time t. Write an equation **3** that models the depth of water d as a function of time t. Take the origin of time to correspond to the low tide at 7 am.

Marks

1

2

- (ii) A ship must sail down the channel at some time between 7 am and 9 pm. If the ship requires a water depth of at least 12 metres, between what times of day can the ship pass safely through? Give your answer correct to the nearest minute.
- (b) The roots of $2x^3 9x^2 + 8x 2 = 0$ are α , β and γ .
 - (i) Find the value of $\alpha\beta\gamma$.
 - (ii) Hence find a simplified cubic polynomial equation with integer coefficients that **3** has roots $\frac{\alpha\beta}{\gamma}$, $\frac{\alpha\gamma}{\beta}$, and $\frac{\beta\gamma}{\alpha}$.
- (c) The equation $x^3 3ax + b = 0$, with real constants a > 0 and $b \neq 0$, has three distinct real roots.
 - (i) Find the stationary points of $y = x^3 3ax + b$ in terms of a and b and determine **3** their nature.
 - (ii) Hence show that $b^2 < 4a^3$, explaining your reasoning carefully.

Examination continues overleaf ...

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

(a) Let $I_n = \int_0^1 \frac{1}{(x^2 + 1)^n} dx$ for any integer $n \ge 1$.

(i) Show that
$$I_{n+1} = \frac{1}{2n} \left[2^{-n} + (2n-1) I_n \right].$$
 4

(ii) Hence evaluate I_3 .

(b)

Distinct points $P(a\cos\theta, b\sin\theta)$ and $Q(a\sec\theta, b\tan\theta)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ respectively, as shown, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. The points M and N are the feet of the perpendiculars from P and Q respectively to the x-axis.

- (i) The line PQ meets the x-axis at K. Show that $\frac{KM}{KN} = \cos \theta$. 1
- (ii) Hence find the coordinates of K.
- (iii) Show that the tangent to the ellipse at P has equation $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$ and **3** deduce that it passes through N.
- (iv) The tangent to the hyperbola at Q has equation $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$ and passes through M. Do NOT prove this. Let T be the point of intersection of PN and QM.
 - (α) Show that T always lies on the same vertical line and state its equation. 1
 - (β) Where on this line can T lie? Justify your answer.
 - (γ) Suppose that θ is now in the second or third quadrant. Explain where T = 1 may lie.

End of Section II

END OF EXAMINATION

Marks

 $\mathbf{2}$

 $\mathbf{2}$

SYDNEY GRAMMAR SCHOOL

2017 Assessment Examination FORM VI MATHEMATICS EXTENSION 2 Thursday 18th May 2017

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One			
A 🔿	В ()	С ()	D ()
Question 7	Гwo		
A 🔿	В ()	С ()	D ()
Question 7	Гhree		
A 🔿	В ()	С ()	D ()
Question I	Four		
A 🔿	В ()	С ()	D ()
Question 1	Five		
A 🔿	В ()	С ()	D ()
Question S	Six		
A 🔿	В ()	С ()	D ()
Question Seven			
A 🔿	В ()	С ()	D ()
Question 1	Eight		
A 🔿	В ()	С ()	D ()
Question I	Vine		
A 🔾	В ()	С ()	D ()
Question 7	Гen		
A 🔿	В ()	$C \bigcirc$	D ()

EXTENSION 2 - SOLUTIONS
May Assessment 2017
Q1.
$$\frac{9x^2 + 1Gy^2 = 144}{144}$$

 $\frac{x^2}{144} + \frac{y^2}{144} = 1$
 $\frac{x^2}{16} + \frac{y^2}{9} = 1$
 $a=4, q = \frac{\sqrt{7}}{4} + \frac{1}{144} = \sqrt{7}$
 $\therefore Foci: (\pm\sqrt{7}, 0)$
B
Q2. $P(-i) = 2(-i)^3 - 3(-i)^2 + 4(-i) - 2$
 $= 2i + 3 - 4i - 2$
 $= 1 - 2i$

Q3. R=2 : ellipse

Q4. Roots must be at ib,
$$a - ib$$
, $2ib$, $-2ib$
Sum of roots: $2a = -\frac{(-4)}{1}$

:.a=2

Α

I

Q5.
$$\int_{a}^{b} x^{3} e^{2x^{4}} dx \qquad \text{Let } u = x^{4}$$
$$du = 4x^{3} dx$$
$$= \frac{1}{4} \int_{a}^{b} 4x^{3} e^{2x^{4}} dx \qquad \frac{x}{u} | \frac{a}{a^{4}} | \frac{b}{b^{4}} | \frac{a}{2^{2}} | \frac{a}{du} | \frac{a}{a^{4}} | \frac{b}{b^{4}} | \frac{a}{b^{4}} | \frac{a}{$$

(1) × (2) :
$$a^2 = 16$$

 $a = 4$
 $e = \frac{5}{4}$
()

Q10. $a^2 x^2 + (1 - a^2)y^2 = b^2$ circle V a2=1-a2 $a^2 = \frac{1}{2}$ hyperbola / 1-02+0 $a^2 > 1$ straight lines $a^2 = 0 \rightarrow y = \pm b$ (but a whon-zero $a^2 = 1 \rightarrow x = \pm b$ anyway...) B parabola

Q9.

QUESTION 11:

a) i)
$$a = 2$$

 $b = 3$

$$\frac{x^{2} - y^{2}}{4} = 1$$
ii) $b^{2} = a^{2}(e^{2} - 1)$
 $q = 4(e^{2} - 1)$
 $e^{2} = \frac{13}{4}$
 $\therefore e = \frac{\sqrt{13}}{2}$
iii) $ae = 2 \times \frac{\sqrt{13}}{2}$
 $= \sqrt{13}$
i.i. fact: $(\sqrt{13}, 0)$ and $(-\sqrt{13}, 0)$
iv) $\frac{a}{e} = \frac{2}{\sqrt{13}}$
 $= \frac{4}{\sqrt{13}}$
 $\therefore directrices: x = \frac{4}{\sqrt{13}}$ or $x = -\frac{4}{\sqrt{13}}$
i.i. $directrices: x = \frac{4}{\sqrt{13}}$

b)
$$P(x) = 3x^{3} - 10x^{2} + 7x + 10$$

i) $2-i = 2+i$ must also be a zero
Let x be the third zero.
From Sum of zeroes:
 $x + 2+i + 2-i = \frac{10}{3}$
 $\therefore x = -\frac{2}{3}$
 $ax + 2+i + 2-i = \frac{10}{3}$
 $ax + 2+i + 2-i = \frac{10}{3}$
 $ax = -\frac{2}{3}$
 $ax = -\frac{10}{3}$
 $ax = -\frac{2}{3}$
ii) $P(x) = 3(x + \frac{2}{3})(x - (2-i))(x + (2+i))$
 $= (3x + 2)(x^{2} - 4x + 5)$
c) i) Let $P(x) = 2x^{3} - 9x^{2} + 12x - 4t$
 $P'(x) = 6x^{2} - 18x + 12$
 $= 6(x^{2} - 3x + 2)$
 $= 6(x - 1)(x - 2)$
 $\therefore P'(x) = 0$ when $x = 1 \text{ or } x = 2$
 $P(1) = 1$ is x = 1 is not the dauble real
 $P(2) = 0$ is $x = 2$ is the dauble real
 $\therefore x = 2$

ii) Let
$$\beta$$
 be the other root.
From sum of roots:
 $2+2+\beta = \frac{9}{2}$
 $\beta = \frac{1}{2}$ wheremaining root
is $x = \frac{1}{2}$
 $c\beta_{j}$ From product of roots:
 $2 \times 2 \times \beta = \frac{9}{2}$
 $\beta = \frac{1}{2}$
 $\beta = \frac{$

G

$$x_{q} = x_{p} + \frac{x_{s} - x_{p}}{3}$$
$$= cp + \frac{c\sqrt{2} - cp}{3}$$
$$= 2cp + c\sqrt{2}$$
$$= 3$$

$$y_{q} = y_{p} - \frac{y_{p} - y_{s}}{3}$$
$$= \frac{c}{p} - \frac{c}{p - c\sqrt{2}}$$
$$= 3c - (c - cp\sqrt{2})$$
$$= \frac{2c + cp\sqrt{2}}{3p}$$

ii)
$$x = \frac{2cp + c\sqrt{2}}{3}$$
 (from (i))
 $p = \frac{3x - c\sqrt{2}}{2c}$ (from (ii))

$$y = \frac{2c + cp\sqrt{2}}{3p}$$

3yp - cpvz = 2c

$$p = \frac{2c}{3y - c\sqrt{2}} \qquad (2)$$

(1) = (2) $\frac{3x - c\sqrt{2}}{2c} = \frac{2c}{3y - c\sqrt{2}} V$ $(3x - c\sqrt{2})(3y - c\sqrt{2}) = 4c^{2}$

QUESTION 12: $P(x) = Q(x) \times D(x) + R(x)$ $\alpha)$ = Q(x)(x-2)(x-3) + ax + bP(2) = 4:4 = 2atb \bigcirc P(3)=3 : 3 = 3a+b 2 a = -1 2-0: Subinte 0: 4 = -2 + bb = 6(or G - x) : the remainder is -x+6 $\frac{d}{dx}\left(\frac{1}{2}-t^2\right) = 9$ b) i) $\frac{1}{2}U^2 = qx + C$ when x=0, u=0: $0=0+C \rightarrow C=0$ $\frac{1}{2}v^2 = gx$ (must shew calc. of constant) $v^2 = 2gx$ when $x = d^{i}$ $v^2 = 2gd$. ii) $\frac{d}{dx}(\frac{1}{2}v^2) = g - k(x-d)$ [notice that this equation is also $\frac{1}{2}v^2 = gx - k(x-d)^2 + C_1$ valid when x = d $v^{2} = 2gx - k(x-d)^{2} + C_{2}$

when
$$x = d$$
, $w^2 = 2gd^{-1}$
 $2gd^2 = 2gd^2 - k(d-d)^2 + C_2$
 $\therefore C_2 = 0$
 $\therefore U^2 = 2gx^2 - k(x-d)^2$ as required.
C) $t = 0$
 $w^2 = 7/6 m/s$
 1^2
 $1^2 = -(9 \cdot 8 + 0 \cdot 1 \cdot v^2)$
 $1^3 = -(9 \cdot 8 + 0 \cdot 1 \cdot v^2)$
 $1^4 = -(9 \cdot 8 + 0 \cdot 1 \cdot v^2)$
 $1^4 = -10 \int \frac{1}{98} + 0 \cdot 1 \cdot v^2$
 $t = -10 \int \frac{1}{98} + 0 \cdot 1 \cdot v^2$
 $t = -10 \int \frac{1}{98} + 0 \cdot 1 \cdot v^2$
 $when (= 0, v) = 7/6$:
 $0 = -\frac{10}{\sqrt{98}} + 1 \cdot \frac{10}{7\sqrt{9}} + C$
 $\frac{10}{\sqrt{198}} + 1 \cdot \frac{10}{7\sqrt{2}} + \frac{10}{21\sqrt{2}}$
 $\frac{10}{\sqrt{12}} + 1 \cdot \frac{10}{7\sqrt{2}} + \frac{10}{21\sqrt{2}}$
 $\frac{10}{\sqrt{12}} + 1 \cdot \frac{10}{7\sqrt{2}} + \frac{57\sqrt{2}}{21}$

ii)
$$t = ?$$
 when $dr = 0$:

$$t = 0 + \frac{10T}{21/2}$$

$$= 1.06 \text{ seconds} (\text{trassis}(R_{3}))$$
iii) $dravel{drav}} t travel{trav} t t t t t t travelt t} t t t t travel t tr$

QUESTION 13: a) i) dA

$$a = 3$$

$$T = 2 \times 7$$

$$T = \frac{2 \pi}{n}$$

$$= 14$$

$$14 = 2 \pi$$

$$14 = \frac{211}{n}$$

$$in = \frac{\pi}{7}$$

 $d = -3\cos \pi t + 11$

ii)
$$12 = -3\cos \frac{\pi}{7}t + 11$$

 $\cos \frac{\pi}{7}t = -\frac{1}{3}$
 $\frac{\pi}{7}t = \pi - \cos^{-1}(\frac{1}{3})$ or $\pi + \cos^{-1}(\frac{1}{3})$
 $\therefore t = \frac{\pi}{7}(\pi - \cos^{-1}(\frac{1}{3}))$ or $\frac{\pi}{7}(\pi + \cos^{-1}(\frac{1}{3}))$
 $= 4 \cdot 2572...$
 $= 9 \cdot 7427...$
 $= 9 \ln 45 \min$

init can pass through between 11:15am + 4:45pm

b) i)
$$\forall \beta \delta = -\frac{(-2)}{2}$$

i) $\frac{\partial \beta}{\partial t} = \frac{\partial \beta \delta}{\partial t^2}$ $\frac{\partial \delta}{\partial t} = \frac{\partial \beta t}{\partial t^2}$ $\frac{\beta t}{\partial t} = \frac{\partial \beta t}{\partial t^2}$
 $= \frac{1}{\delta^2}$ $= \frac{1}{\beta^2}$ $= \frac{1}{\delta^2}$ $= \frac{1}{\delta^2}$
i. the required roots are $\frac{1}{\delta^2}, \frac{1}{\beta^2}, \frac{1}{\delta^2}$
i. replace x with $\frac{1}{\sqrt{x}}$ i
 $2(\frac{1}{\sqrt{x}})^3 - 9(\frac{1}{\sqrt{x}})^2 + 8(\frac{1}{\sqrt{x}}) - 2 = 0$
 $2 - 9\sqrt{x} + 8x - 2x\sqrt{x} = 0$
 $(2 + 8x)^2 = [\sqrt{x}(2x + 9)]^2$
 $4 + 32x + 64x^2 = 4x^3 + 36x^2 + 81x$
 $4x^3 - 28x^2 + 49x - 4 = 0$

c) i)
$$y = x^3 - 3ax + b$$

 $dy = 3x^2 - 3a$
 $dx^2 = 6x$
St. paints:
 $dy = 0$ when $3x^2 = 3a$
 $x = \pm\sqrt{a}$
When $x = \sqrt{a}$, $y = a\sqrt{a} - 3a\sqrt{a} + b$
 $= -2a\sqrt{a} + b$
 $dx^2 = 6\sqrt{a}$
 $x = -2a\sqrt{a} + b$
 $dx^2 = 6\sqrt{a}$
 $x = -2a\sqrt{a} + b$
 $dx^2 = 6\sqrt{a}$
 $x = -\sqrt{a}$ $y = -a\sqrt{a} + 3a\sqrt{a} + b$
 $= 2a\sqrt{a} + b$
 $dx^2 = -6\sqrt{a}$
 $x = -\sqrt{a}$ $y = -a\sqrt{a} + 3a\sqrt{a} + b$
 $= 2a\sqrt{a} + b$
 $dx^2 = -6\sqrt{a}$
 $x = -\sqrt{a}$ $y = -a\sqrt{a} + 3a\sqrt{a} + b$
 $= 2a\sqrt{a} + b$
 $dx^2 = -6\sqrt{a}$
 $x = -\sqrt{a}$ $y = -a\sqrt{a} + 3a\sqrt{a} + b$
 $dx^2 = -6\sqrt{a}$
 $x = -\sqrt{a}$ $x = -6\sqrt{a}$
 $x = -\sqrt{a}$ $x = -6\sqrt{a}$
 $x = -\sqrt{a}$ $x = -6\sqrt{a}$
 $(-\sqrt{a}, 2a\sqrt{a} + b)$
i) $3 = distinct + real + reats$
 $\therefore turning points must be an apposite
sides of the $x - axis$.
 $\therefore y = -4a^3 + co$
 $b^2 - 4a^3 + co$
 $b^2 - 4a^3 + co$$

QUESTION 14:
a)
$$I_n = \int_0^1 \frac{1}{(x^2+1)^n} dx$$

i) $I_n = \int_0^1 \frac{d}{dx} (x) \times (x^2+1)^{-h} dx$
 $= \left[x (x^2+1)^{-h} \right]_0^1 - \int_0^1 x \times -2nx (x^2+1)^{-n-1} dx$
 $= 2^{-n} + 2n \int_0^1 \frac{x^2}{(x^2+1)^{n+1}} dx$
 $= 2^{-n} + 2n \int_0^1 \frac{x^{2+1-1}}{(x^{2+1})^{n+1}} dx$
 $= 2^{-n} + 2n \int_0^1 (\frac{x^{2+1-1}}{(x^{2+1})^{n-1}} dx$
 $= 2^{-n} + 2n \int_0^1 (\frac{1}{(x^{2+1})^n} - \frac{1}{(x^{2+1})^{n+1}}) dx$
 $= 2^{-h} + 2n \left[I_n - I_{n+1} \right]$
 $2n I_{n+1} = 2^{-n} + 2n I_n - I_n$
 $\therefore I_{n+1} = \frac{1}{2n} \left[2^{-n} + (2n-1) I_n \right]$
ii) $I_1 = \int_0^1 \frac{1}{x^{2+1}} dx$
 $= \frac{1}{16} + \frac{3}{16} \left[\frac{1}{2} (2^{-1} + I_1) \right]$
 $= \frac{1}{16} + \frac{3}{8} \times \frac{\pi}{4}$
 $= \frac{8 + 3\pi}{32}$

lc 6) NTS 4 A Q(asee0, btan 0) (accord, bsind) P J. N (asero, c) x K (k,0) (acoso, \bigcirc 6

b) i) Clearly AKPM III AKRN (equipagular)
So KM = PM (malanay side in similar A's)
= bsin 9
= cos 9
ii) Let
$$k = (k, 0)$$
, then:
 $KM = kN cos 0$
 $acos 9 - k = (asc 0 - k) cos 0$
 $acos 9 - k = a - kcos 0$
 $a(cos 0 - i) = k(1 - cos 0)$
 $\therefore k = -a$
 $\therefore k(-a, 0)$
iii) Gradient of tangent of P:
 $dy = dy$
 dz
 dz

when
$$y = 0$$
:

$$\frac{x - asec}{a} = 1$$

$$\therefore x = a \sec \theta$$

$$\therefore the tangent passes through N(asec $\theta, 0$)
$$iv_{1}(x) \xrightarrow{x - cs} \theta + y \sin \theta = 1$$

$$\frac{a}{b} =$$$$

B)
$$y = b(1 - \cos \theta)$$
 Let $f = \tan \theta$
 $\sin \theta$
 $= b(1 - \frac{1 - t^2}{1 + t^2})$
 $\frac{2t}{1 + t^2}$
 $\frac{2t}{1$