SAINT IGNATIUS’ COLLEGE

2003

GENERAL MATHEMATICS

Year 12 HSC

ASSESSMENT TASK 3

Time allowed: $\mathbf{5 0}$ minutes

Directions to Students

- There are two sections, Trigonometry and Probability.
- There are four separate sheets of paper, all questions are to be answered in the spaces on the paper.
- Questions are on both sides of the paper.
- Show all working, marks will be awarded for working.
- Diagrams are not drawn to scale.
- Clearly write your name and teachers name on each page.
- On the following pages you will find a formula sheet.

Section 1 Trigonometry

1.The Leaning Tower of Pisa was built to 56 metres high but leans 5.2 metres from the perpendicular. Find the angle the Tower makes with the horizontal ground.

5.2 m
\qquad
\qquad
2. The angle of elevation of the top of a tree from a point P on the ground is 30°. The point P is 28 metres from the base of the tree. Find the height of the tree.

\qquad
\qquad
\qquad
\qquad
3. Radar equipment in a tower 30 m above sea level detects an object at sea at an angle of depression of 8°. If the base of the tower is at sea level, how far, to the nearest metre, is the object from the base of the tower?
\qquad
\qquad
\qquad
\qquad
4. i) Using the sine rule, find the size of angle θ to the nearest degree.

Note θ is in this bottom corner.
\qquad
\qquad
\qquad
\qquad
ii) Hence apply the sine rule to find the length of x to the nearest metre.
\qquad
\qquad
\qquad
5. A radial survey of a tract of land is shown.

NOT TO SCALE
i. Show that $\angle \mathrm{JOK}$ is 99°
ii. Find the area of triangle JOK to the nearest square metre.
iii. Use the cosine rule to find the length of the boundary JK. Give your answer to the nearest metre.
\qquad
\qquad
\qquad

Section 2 Probability

1.i) What is the probability of throwing a 3 on a normal die?
ii) Calculate the number of times you would expect to throw a 3 in 100 rolls of the die.
2. A toaster produced by 3B electricals has a 73% chance of remaining fault free through its warranty period. Two toasters are selected at random
i) Complete the following tree diagram by displaying the correct probability on each branch.
(1 mark)

ii) What is the probability that both toasters are faulty?
iii) What is the probability at least one toaster is faulty?
3. The numbers $2,3,4$ are written on separate cards and placed in a box. Two cards are selected at random and used the form a 2 digit number. The first card drawn represents the tens the second card the units.
a) Draw a tree diagram to represent this information.
(2 marks)
b) What is the probability that the number formed is:
i) 23
ii) divisible by two
4. A basket ball team of 7 players are lining up for a photo. They will be sitting in one row.
i) In how many different ways can the team be arranged in the row?
\qquad
\qquad
ii) John is one of the team members. What is the probability that he will be sitting in the middle of the row?
\qquad
5. A batch of sniffer dogs is trained by customs to smell drugs in suitcases. Before they are used at airports they must pass a test. The results of that test are shown in the two-way table below.

	Detected	Not detected	Total
No of bags with drugs	24	1	25
No. of bags without drugs	11	164	175
Total	35	165	

i) How many bags did the sniffer dogs examine?
ii) Based on the above results, what is the probability that the dogs will not detect a bag carrying drugs? \qquad
6. A debating team of 3 is to be chosen from 8 people.
i) In how many ways can this team be chosen?
ii) In how many ways can the chosen team then be ordered as speakers?
\qquad
\qquad
\qquad

