North Sydney Boys HIGH SCHOOL

2010 HSC ASSESSMENT TASK 4

Mathematics

Extension 1

General Instructions

- Working time - 58 minutes
- Write on the lined paper in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:

(Please tick or highlight)
O Mr Ireland
O Mr Lowe
O Mr Rezcallah
O Mr Barrett
O Mr Trenwith
O Mr Weiss

Student Number: \qquad
(To be used by the exam markers only.)

Question No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total	Total $\%$
Mark	$\overline{6}$	$\overline{10}$	$\overline{6}$	$\overline{9}$	$\overline{14}$	$\overline{5}$	$\overline{50}$	$\overline{100}$

Question 1 (6 marks)

A particle moves linearly so that its displacement x metres from the origin O is given by $x=\sqrt{3} \cos 3 t-\sin 3 t$.
(i) Show that the equation can be expressed as $x=2 \cos \left(3 t+\frac{\pi}{6}\right)$. $\quad 2$
(ii) Show that the motion is simple harmonic. $\mathbf{2}$
(iii) Find the time at which the particle first passes through the origin. $\mathbf{2}$

Question 2 (10 marks)

When a particle moves along the x-axis with velocity v at time t, its acceleration is given by $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

The velocity $v \mathrm{~ms}^{-1}$ of a particle moving in simple harmonic motion along the x axis is given by the expression $v^{2}=28+24 x-4 x^{2}$.
(i) Between which two points is the particle oscillating? 2
(ii) What is the amplitude of the motion? 1
(iii) Find the acceleration in terms of x. 2
(iv) What is the centre of the motion? $\quad \mathbf{1}$
(v) Find the period of the oscillation. 2
(vi) If the particle starts from the position furthest to the right, find the displacement function in terms of t.

Question 3 (6 marks)

The velocity of a particle moving in a straight line at position x is given by $v=2 e^{-x}$. The particle is initially at the origin.
(i) Show that the acceleration at position x is given by $a=-4 e^{-2 x}$. 2
(ii) What is the initial acceleration? 1
(iii) Find the displacement function giving x at time t.

Question 4 (9 marks)

(a) $(1+\sqrt{3})^{4}=a+b \sqrt{3}$, where a, b are integers. By expansion, find a and b. 3
(b) Find the value of n such that when $(1+x)^{n}$ is expanded in ascending powers of x, the coefficient of x^{4} is twice the coefficient of x^{3}.
(c) Find the exact value of the coefficient of x^{12} in the expansion of

$$
\left(2 x-\frac{1}{x^{2}}\right)^{30}
$$

Question 5 (14 marks)

(a) Isaac calculates that he will need $\$ 1000000$ if he is to retire in 20 years' time and maintain his present lifestyle. He decides to invest a fixed amount $\$ P$ at the beginning of each quarter in an investment account that pays interest at an annual rate of 8% compounding quarterly.
Let A_{n} be the amount in dollars in Isaac's investment account at the end of the $n^{\text {th }}$ quarter.
(i) Show that $A_{2}=\$ P \times\left(1.02+1.02^{2}\right)$
(ii) Find a similar expression for the value of his investment after 20 years and hence calculate the value of P needed to realise the amount of $\$ 1000000$ needed for his retirement. (Show all appropriate working).
(b) Mr Wu decides to borrow $\$ 250000$ to buy a unit. Interest is calculated monthly on the balance still owing, at a rate of 6% per annum. The loan is to be repaid at the end of 15 years with equal monthly repayments of $\$ M$. Let A_{n} be the amount owing after the $n^{\text {th }}$ repayment.
(i) Show that $A_{60}=250000(1.005)^{60}-M\left(1+1.005+\cdots+1.005^{59}\right)$
(ii) Find the value of M, showing all appropriate working.
(iii) Hence calculate the amount still owing after 5 years of payment at this rate.
(iv) At the end of five years the interest rate is increased to $7 \cdot 2 \%$ per annum and Mr Wu changes his payments to $\$ 2400$ per month.
How many months are required to pay off the remainder of the loan?

Question 6 (5 marks)

(a) By considering the expansion of the identity $(1+x)^{6}(1+x)^{6} \equiv(1+x)^{12}$, show that

$$
\begin{equation*}
\sum_{k=0}^{6}\binom{6}{k}^{2}=\binom{12}{6} \tag{3}
\end{equation*}
$$

(b) Solve the inequality $x^{4}+4 x^{3}+6 x^{2}+4 x+1 \leq x^{3}+3 x^{2}+3 x+1$

QI
(i)

$$
\begin{aligned}
x & =\sqrt{3} \cos 3 t-\sin 3 t \\
& =2\left(\frac{\sqrt{3}}{2} \cos 3 t-\frac{1}{2} \sin 3 t\right) \\
& =2 \cos (3 t+\alpha)
\end{aligned}
$$

where $\cos \alpha=\frac{\sqrt{3}}{2}, \quad \sin \alpha=\frac{1}{2} \quad \therefore \alpha=\frac{\pi}{6}$

$$
\therefore x=2 \cos \left(3 t+\frac{\pi}{6}\right)
$$

(ii)

$$
\begin{aligned}
& \dot{x}=-6 \sin \left(3 t+\frac{\pi}{6}\right) \\
& \ddot{x}=-18 \cos \left(3 t+\frac{\pi}{6}\right)
\end{aligned}
$$

But $x=2 \cos \left(3 t+\frac{\pi}{6}\right)$

$$
\therefore \ddot{x}=-9 x
$$

This is of form $\ddot{x}=-n^{2} x$
\therefore motion is S.H.M.
(iii) At $t=0, x=2 \cos \frac{\pi}{6}=\sqrt{3}$
and $v=-6 \sin \frac{\pi}{6}=-3 \mathrm{~m} / \mathrm{s}$
So at $t=0$ the particle is moving towards the origin.
At $x=0$ we have $\cos \left(3 t+\frac{\pi}{6}\right)=0$

$$
\begin{aligned}
& \therefore \quad 3 t+\frac{\pi}{6}=\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots \\
& \therefore \quad t=\frac{\pi}{9}, \frac{4 \pi}{9}, \cdots
\end{aligned}
$$

So first through origin at $t=\frac{\pi}{9}$ secs.

Q2
(i)

$$
\begin{aligned}
v^{2} & =28+24 x-4 x^{2} \\
& =4\left(7+6 x-x^{2}\right) \\
& =4(7-x)(1+x)
\end{aligned}
$$

Since $v^{2} \geqslant 0, \quad \therefore \quad 4(7-x)(1+x) \geqslant 0$

$$
\therefore \quad-1 \leq x \leq 7
$$

(ii) amplitude $=\frac{7-(-1)}{2}=4$
(iii)

$$
\begin{aligned}
\ddot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(14+12 x-2 x^{2}\right) \\
& =12-4 x \\
\ddot{x} & =-4(x-3)
\end{aligned}
$$

(iv) Centre of motion is $x=3$
(v) $\quad T=\frac{2 \pi}{n}$.

Now $\quad \ddot{x}=-n^{2}(x-3) \quad \therefore n=2$

$$
\therefore T=\frac{2 \pi}{2}=\pi \text { seconds. }
$$

(vi)

$$
\begin{aligned}
x & =3+4 \cos (2 t+\alpha) \\
\text { At } \quad t & =0, x=7 \\
\therefore 7 & =3+4 \cos \alpha \\
\cos \alpha & =1 \\
\alpha & =0 \\
\therefore \quad x & =3+4 \cos 2 t
\end{aligned}
$$

$$
\begin{aligned}
& 2010 \text { y } 12 \text { Ext. } \\
& \text { (i) } \quad v=2 e^{-x} \\
& a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
&=\frac{d}{d x}\left(\frac{1}{2} \cdot 4 \cdot e^{-2 x}\right) \\
&=-2 \cdot 2 e^{-2 x} \\
& \therefore a=-4 e^{-2 x}
\end{aligned}
$$

(ii) When $t=0, x=0$

$$
\begin{aligned}
\therefore a & =-4 e^{0} \\
& =-4
\end{aligned}
$$

\therefore initial acceleration is -4 units.
(iii)

$$
\begin{aligned}
\frac{d x}{d t} & =2 e^{-x} \\
\therefore \frac{d t}{d x} & =\frac{e^{x}}{2} \\
t & =\frac{1}{2} e^{x}+C
\end{aligned}
$$

When $t=0, x=0$

$$
\begin{aligned}
& \therefore \quad 0=\frac{1}{2} e^{0}+C \\
& \therefore \quad t=-\frac{1}{2} \\
& 2 t=e^{x}-1 \\
& e^{x}=2 t+1 \\
& x=\ln (2 t+1)
\end{aligned}
$$

$$
6
$$

4
(a)

$$
\begin{aligned}
(1+\sqrt{3})^{4} & =1^{4}+4 \cdot 1^{3} \cdot \sqrt{3}+6 \cdot 1^{2} \cdot(\sqrt{3})^{2}+4 \cdot 1 \cdot(\sqrt{3})^{3}+(\sqrt{3})^{4} \\
& =1+4 \sqrt{3}+18+12 \sqrt{3}+9 \\
& =28+16 \sqrt{3}
\end{aligned}
$$

$$
\therefore \quad a=28
$$

$$
b=16
$$

(students who only write $28+16 \sqrt{3} \quad b=16 \quad$ with out $a=28, b=16$ get 2 marks)
(b) Coefficient of x^{4} is ${ }^{n} C_{4}$, coeff. of x^{3} is ${ }^{n} C_{3}$ students who

$$
\begin{aligned}
\therefore{ }^{n} C_{4} & =2 \cdot{ }^{n} C_{3} \\
\frac{n!}{(n-4)!4!} & =2 \cdot \frac{n!}{(n-3)!3!} \\
n-3 & =2 \cdot 4 \\
n & =11
\end{aligned}
$$

$$
2^{n} c_{4}={ }^{n} c_{3}
$$

$$
\text { and } n=5 \text { get }
$$ only 1 mar.

(Achuerked).

Check: ${ }^{11} C_{4}=2 x{ }^{11} C_{3} \cdot V$ works.
(c) The general term in $(a+b)^{n}$ is $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

Thus general term in $\left(2 x-\frac{1}{x^{2}}\right)^{30}$

$$
\begin{aligned}
& \text { equals }{ }^{30} C_{r}(2 x)^{30-r}\left(-\frac{1}{x^{2}}\right)^{r} \\
& ={ }^{30} C_{r} \cdot 2^{30-r} \cdot(-1)^{r} \cdot x^{30-r} \cdot x^{-2 r} \\
& ={ }^{30} C_{r} \cdot 2^{30-r} \cdot(-1)^{r} \cdot x^{30-3 r}
\end{aligned}
$$

We want $x^{12} \quad \therefore \quad 30-3 r=12$

$$
\therefore r=6
$$

\therefore coefficient desired is $30 C_{6} \cdot 2^{24}=9.96 \times 10^{24}$ ${ }^{30} C_{12}(2 x)^{30-12}(-1)^{12}\left(x^{-2}\right)^{12}$ gets no marks !!
2 NP method: $7^{\text {th }}$ term from expansion. and ${ }^{30} C_{6} 2^{24}$

5 (a) 0.08 p.a. $\equiv 0.02$ per quarter
(i) After 1 quarter:

$$
\begin{aligned}
A_{1} & =P+P(0.02) \\
& =P(1.02)
\end{aligned}
$$

After 2 quarters:

$$
\begin{aligned}
A_{2} & =A_{1}(1.02)+P(1.02) \\
& =P(1.02)(1.02)+P(1.02) \\
& =P\left(1.02^{2}+1.02\right), \text { as required. }
\end{aligned}
$$

* To get the marks the derivation (ie the process) must be shown
(ii) Similarly, after 20 years $(=80$ quarters $)$,

$$
\begin{aligned}
& A_{80}= P\left(1.02^{80}+1.02^{79}+\cdots+1.02^{2}+1.02\right) \\
&=P\left(1.02^{1}+1.02^{2}+\cdots \cdot+1.02^{80}\right)
\end{aligned} \underbrace{\begin{array}{l}
n=802
\end{array}}_{\left.\begin{array}{l}
a=1.02 \\
r
\end{array}\right)} \begin{aligned}
n=S_{80} & =\frac{1.02\left(1.02^{80}-1\right)}{1.02-1} \\
& =51\left(1.02^{80}-1\right)
\end{aligned}
$$

So if we want $A_{80}=1.000000$,

$$
\text { then } P=\frac{1000000}{51\left(1.02^{80}-1\right)}
$$

$$
\therefore P=\$ 5059.52 \text { (nearest cent). }
$$

5 (b)
(i)

$$
\text { (i) } \begin{aligned}
& A_{1}=250000(1.005)-M \\
& A_{2}=A_{1}(1.005)-M \\
&=[250000(1.005)-M](1.005)-M \\
&=250000(1.005)^{2}-M(1+1.005) \\
& \vdots \\
& \therefore A_{60}=250000(1.005)^{60}-M(1+1.005+\cdots+1.005) \\
& \text { as required }
\end{aligned}
$$

(ii) 15 years $=180$ month, $\therefore A_{180}=0$

$$
\begin{gathered}
\therefore 250000(1.005)^{180}-m \underbrace{\left(1+1.005+\cdots+1.005^{179}\right)}_{a \text { G.P. with } a=1, r=1.005}=0 \\
\therefore S_{180}=\frac{1\left(1.005^{180}-1\right)}{1.005-1} \\
\therefore M=250000(1.005)^{180} \times \frac{0.005}{1.005^{180}-1}
\end{gathered}
$$

(iii) Amount still owing after 5 years

$$
\begin{aligned}
=A_{60} & =250000(1.005)^{60}-2109.64\left[\frac{1.005-1}{6.005-1}\right] \\
& =\$ 190022.89
\end{aligned}
$$

5 (b) continued
(iv) 7.2% pa. $=0.6 \%$ per month.

We must pay off $\$ 190022.89$ given

$$
r=0.006, m=\$ 2400:-
$$

Suppose it is paid off after n months, then

$$
\begin{aligned}
190022.89(1.006)^{n} & -2400\left(1.006^{n}-1\right) \\
\therefore 190022.89(1.006)^{n} & =0 \\
\therefore 1.006^{n} & =\frac{400000\left(1.006^{n}-1\right)=0}{400000-190022.89} \\
& =\frac{400000}{209977.11} \\
n \log _{10} 1.006 & =\log _{10} \frac{400000}{209977.11} \\
n & =\frac{\log _{10}\left(\frac{400000}{209977.11}\right)}{\log _{10} 1.006} \\
& \doteq 107.7
\end{aligned}
$$

ie. 108 months are required.

6
(a) The coefficient of x^{6} in $(1+x)^{12}$ is ${ }^{12} C_{6}=\binom{12}{6}$
The coefficient of x^{6} in $(1+x)^{6} \cdot(1+x)^{6}$ is

$$
\begin{aligned}
& { }^{6} C_{0} \cdot{ }^{6} C_{6}+{ }^{6} C_{1} \cdot{ }^{6} C_{5}+{ }^{6} C_{2} \cdot{ }^{6} C_{4}+{ }^{6} C_{3} \cdot{ }^{6} C_{3} \\
& +{ }^{6} C_{4} \cdot{ }^{6} C_{2}+{ }^{6} C_{5} \cdot{ }^{6} C_{1}+{ }^{6} C_{6} \cdot{ }^{6} C_{0} \\
& =\left({ }^{6} C_{0}\right)^{2}+\left({ }^{6} C_{1}\right)^{2}+\left({ }^{6} C_{2}\right){ }^{2}+\left({ }^{6} C_{3}\right)^{2} \\
& \left.+\left({ }^{6} C_{4}\right)^{2}+\left({ }^{6} C_{5}\right)\right)^{2}+\left({ }^{6} C_{6}\right)^{2} \\
& = \\
& \sum_{k=0}^{6}\left({ }^{6} C_{k}\right)^{2} .
\end{aligned}
$$

Hence $\sum_{k=0}^{6}\binom{6}{k}^{2}=\binom{12}{6}$
(b)

$$
\begin{aligned}
& x^{4}+4 x^{3}+6 x^{2}+4 x+1 \leqslant x^{3}+3 x^{2}+3 x+1 \\
& \therefore \quad(1+x)^{4} \leqslant(1+x)^{3}
\end{aligned}
$$

ie. $\quad(x+1)^{4} \leqslant(x+1)^{3}$

$$
\therefore-1 \leqslant x \leqslant 0
$$

