MATHEMATICS (EXTENSION 1)
 2011 HSC Course Assessment Task 4

General instructions

- Working time -50 min .
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

Class (please \boldsymbol{V})12M3A - Mr Lam12M3B - Mr Weiss
12M3C - Mr Lin12M4A - Mr Fletcher/Mrs Collins12M4B - Mr Ireland12M4C - Mrs Collins/Mr Rezcallah /Mr Lin

Marker's use only.

QUESTION	$\boxed{1}$	$\boxed{2}$	$\overline{3}$	Total	$\%$
MARKS	$\overline{10}$	$\overline{11}$	$\overline{12}$	$\overline{33}$	

Question 1 (10 Marks)
(a) The acceleration of a particle moving on the x axis is given by $\ddot{x}=4 x+2$ where x is its displacement from the origin after t seconds. Initially, the particle was at the origin and had a velocity of $1 \mathrm{~ms}^{-1}$.
i. Show that its velocity at any position x is $v=2 x+1$.
ii. Find the time taken by the particle to reach a velocity of $9 \mathrm{~ms}^{-1}$.
(b) Find the term independent of x in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{12}$.
(c) By referring to the expansion of $(1+x)^{n}$, show that

$$
2\binom{n}{2}+6\binom{n}{3}+12\binom{n}{4}+\cdots+n(n-1)\binom{n}{n}=n(n-1) 2^{n-2}
$$

by differentiating and substituting an appropriate value for x.

Question 2 (11 Marks) Commence a NEW page.
(a) Given

$$
(1+x)^{10}(1-x)^{10}=\left(1-x^{2}\right)^{10}
$$

and

$$
\binom{n}{r}=\binom{n}{n-r}
$$

find the value of

$$
\left[\binom{10}{0}\right]^{2}-\left[\binom{10}{1}\right]^{2}+\left[\binom{10}{2}\right]^{2}-\left[\binom{10}{3}\right]^{2}+\cdots+\left[\binom{10}{10}\right]^{2}
$$

(b) Mr Lim borrows $\$ 420000$ to purchase an apartment. The interest rate is 7.2% p.a. reducible, and the loan is to be repaid in equal monthly repayments over 30 years, with interest calculated monthly. Let A_{n} be the amount owing after the n-th repayment.
i. By writing expressions for A_{1} and A_{2} or otherwise, show that the amount of each monthly repayment is $\$ 2850.91$.
ii. Due to a new wave of financial turmoils, the bank drops the interest rate to 6% p.a. reducible after 12 months of the loan commencing. Find the new monthly repayment, correct to the nearest cent. The period of the original loan remains at 30 years.

Question 3 (12 Marks)
(a) A particle is moving in simple harmonic motion about a fixed point O on a straight line. At time t seconds, its displacement x metres is given by

$$
x=\cos 2 t-\sin 2 t
$$

i. Express x in terms of $R \cos (2 t+\alpha)$ for some $R>0$ and $0<\alpha<\frac{\pi}{2}$.
ii. Find the amplitude and period of the motion.
iii. Find the initial position of the particle.
iv. Hence or otherwise, find the time when the particle first returns to its initial position.
(b) A particle if projected from a fixed point O on a horizontal plane at an angle of elevation α with speed V metres per second.

After time t, the horizontal and vertical components of its velocity are

$$
\dot{x}=V \cos \alpha \quad \dot{y}=V \sin \alpha-g t
$$

i. Show that the position $P(x, y)$ of the particle at any time as it moves along its path is given by

$$
y=x \tan \alpha-\frac{g x^{2}}{2 V^{2}}\left(1+\tan ^{2} \alpha\right)
$$

ii. If the particle is projected from the origin at an angle of 30°, find the speed required for it to just clear a vertical wall 4 m high and 12 m away from the origin. Give your answer correct to 2 decimal places, and take $g=10 \mathrm{~ms}^{-2}$.

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Suggested Solutions

Question 1

(a)
i. (2 marks)
$\begin{array}{ll}\checkmark & \text { [1] for finding } v^{2}=4 x^{2}+4 x+1 . \\ \checkmark & {[1] \text { for justifying why } v=2 x+1 .}\end{array}$

$$
\begin{gathered}
\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=4 x+2 \\
\therefore \frac{1}{2} v^{2}=\int 4 x+2 d x \\
=2 x^{2}+2 x+C \\
v^{2}=4 x^{2}+4 x+D
\end{gathered}
$$

When $t=0, x=0$ and $v=+1$

$$
\begin{gathered}
\therefore 1=D \\
\therefore v^{2}=4 x^{2}+4 x+1
\end{gathered}
$$

As v is initially positive,

$$
\therefore v=\sqrt{(2 x+1)^{2}}=2 x+1
$$

ii. (3 marks)
\checkmark [1] for $t=\frac{1}{2} \ln (2 x+1)$.
$\checkmark \quad[2]$ for substituting $v=9$ and obtaining $t=\ln 3$.

$$
\begin{gathered}
v=9=2 x+1 \\
\therefore 2 x=8 \\
x=4 \\
\frac{d x}{d t}=2 x+1 \\
\frac{d x}{2 x+1}=1 d t
\end{gathered}
$$

Integrating both sides,

$$
\frac{1}{2} \log _{e}(2 x+1)=t+C
$$

When $t=0, x=0$,

$$
\begin{gathered}
\frac{1}{2} \log _{e} 1=0+C \\
\therefore C=0 \\
\therefore t=\frac{1}{2} \log _{e}(2 x+1)
\end{gathered}
$$

When $v=9, x=4$ (from the start of this part)

$$
\begin{gathered}
\therefore 4=\frac{1}{2}\left(e^{2 t}-1\right) \\
8=e^{2 t}-1 \\
e^{2 t}=9 \\
e^{t}=3 \\
\therefore t=\log _{e} 3
\end{gathered}
$$

(b) (2 marks)
[1] for obtaining the typical term in the expansion, $T_{k}=\binom{12}{k}\left(x^{2}\right)^{12-k}\left(x^{-1}\right)^{k}$.
$\checkmark \quad[1]$ for $T_{8}=\binom{12}{8}(=495)$.

$$
\left(x^{2}+\frac{1}{x}\right)^{12}
$$

A typical term in this expansion is

$$
\begin{aligned}
T_{k} & =\binom{12}{k}\left(x^{2}\right)^{12-k}\left(x^{-1}\right)^{k} \\
& =\binom{12}{k} x^{24-2 k} x^{-k} \\
& =\binom{12}{k} x^{24-3 k}
\end{aligned}
$$

The term independent of x occurs when

$$
\begin{gathered}
24-3 k=0 \\
\therefore 3 k=24 \\
k=8
\end{gathered}
$$

$$
\therefore T_{8}=\binom{12}{8}=495
$$

(c) (3 marks)
$\checkmark \quad$ [2] for differentiating correctly (twice)
$\checkmark \quad[1]$ for substituting $x=1$ correctly.
$(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}$

Differentiating,

$$
\begin{aligned}
& n(1+x)^{n-1} \\
= & \binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2} \\
& \quad+4\binom{n}{4} x^{3}+\cdots+n\binom{n}{n} x^{n-1}
\end{aligned}
$$

Differentiating again,

$$
\begin{aligned}
& n(n-1)(1+x)^{n-2} \\
= & 2\binom{n}{2} x+3 \times 2\binom{n}{3} x+4 \times 3\binom{n}{4} x^{2} \\
& +\cdots+n(n-1)\binom{n}{n} x^{n-2}
\end{aligned}
$$

Substituting $x=1$,

$$
\begin{aligned}
& n(n-1) 2^{n-2} \\
= & 2\binom{n}{2}+6\binom{n}{3}+12\binom{n}{4} \\
& \quad+\cdots+n(n-1)\binom{n}{n}
\end{aligned}
$$

Question 2

(a) (3 marks)
$\checkmark \quad[1]$ for recognising x^{10} is the required term.
$\checkmark \quad$ [1] for using $\binom{n}{k}=\binom{n}{n-k}$ on the left to simplify expression.
$\checkmark \quad[1]$ for -252 . Relevant working must be shown to obtain [3].

$$
\begin{gathered}
\underbrace{(1+x)^{10}}_{T_{k}} \underbrace{(1-x)^{10}}_{T_{r}}=\underbrace{\left(1-x^{2}\right)^{10}}_{T_{m}} \\
T_{k}=\binom{10}{k} x^{k} \quad T_{r}=\binom{10}{r}(-1)^{r} x^{r} \\
T_{m}=\binom{10}{m}(-1)^{m}\left(x^{2}\right)^{m} \\
=\binom{10}{m}(-1)^{m} x^{2 m} \\
x^{k} x^{r}=x^{2 m}=x^{10}
\end{gathered}
$$

As the expansion results in a polynomial of degree 20, yet the expansion only contains $\binom{10}{j}$, hence find the term with x^{10}

$$
\begin{aligned}
T_{k} \times T_{r} & =\binom{10}{k}\binom{10}{r} x^{k}(-1)^{r} x^{r} \\
& =\binom{10}{k}\binom{10}{r} x^{k+r}(-1)^{r}
\end{aligned}
$$

On the right,

$$
\begin{gathered}
2 m=10 \\
\therefore m=5 \\
\therefore T_{5}=\binom{10}{5}(-1)^{5} x^{10}=-\binom{10}{5} x^{10} \\
=-252 x^{10}
\end{gathered}
$$

On the left, the term with x^{10} occurs when

$$
\therefore k+r=10
$$

k	r
10	0
9	1
\vdots	\vdots
0	10

The term with x^{10} on the left is thus

$$
\begin{aligned}
& \binom{10}{0}\binom{10}{10}+(-1)\binom{10}{1}\binom{10}{9} \\
& \quad+\binom{10}{2}\binom{10}{8}+(-1)\binom{10}{3}\binom{10}{7} \\
& \quad+\cdots+(-1)\binom{10}{9}\binom{10}{1}+\binom{10}{10}\binom{10}{0}
\end{aligned}
$$

By symmetry,

$$
\binom{10}{0}=\binom{10}{10} \quad\binom{10}{1}=\binom{10}{9}
$$

Hence

$$
\begin{aligned}
{\left[\binom{10}{0}\right]^{2} } & -\left[\binom{10}{1}\right]^{2}+\left[\binom{10}{2}\right]^{2} \\
- & {\left[\binom{10}{3}\right]^{2}+\cdots+\left[\binom{10}{10}\right]^{2}=-252 }
\end{aligned}
$$

(b)
i. (4 marks)
$\checkmark \quad[1]$ for A_{1} and A_{2}.
\checkmark [1] for summing GP.
$\checkmark \quad[1]$ for $A_{360}=0$.
\checkmark [1] for $M=2850.91$.

- $P=\$ 420000$,
- $r=\frac{0.072}{12}=0.006 \mathrm{p} . \mathrm{m}$.

Let the amount outstanding at the end of the k-th month be A_{k}.

- $A_{1}=P \times 1.006-M$
- $A_{2}=A_{1} \times 1.006-M$

$$
=(1.006 P-M) 1.006-M
$$

$$
=1.006^{2} P-M(1+1.006)
$$

- $A_{n}=1.006^{n} P-M(1+1.006$

$$
\begin{aligned}
+ & \left.\cdots+1.006^{n-1}\right) \\
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{1\left(1.006^{n}-1\right)}{1.006-1} \\
& =1269.23
\end{aligned}
$$

When the loan is repaid in $30 \times 12=360$ months, $A_{360}=0$.

$$
\begin{aligned}
& 1.006^{360} \times 500=1269.23 M \\
\therefore & M=\frac{1.006^{360} \times 500}{1269.23}=\$ 2850.91 \text { Question } 3
\end{aligned}
$$

ii. (4 marks)
$\checkmark \quad$ [1] for finding $A_{12}=415895.38$.
$\checkmark \quad[1]$ for finding new A_{n}
\checkmark [1] for evaluating sum of $G P$.
$\checkmark \quad$ [1] for final answer.
Find the amount owing after 12 months:

$$
\begin{aligned}
A_{12}= & 420000 \times 1.006^{12} \\
& -2850.91\left(\frac{1.006^{12}-1}{1.006-1}\right) \\
= & 415895.38
\end{aligned}
$$

Now in the 13th month, the interest rate changes to $r=\frac{0.06}{12}=0.005$
p.m. with monthly repayment K :

$$
\begin{aligned}
A_{13}= & A_{12} \times 1.005-K \\
A_{14}= & A_{13} \times 1.005-K \\
= & \left(A_{12} \times 1.005-K\right) \times 1.005-K \\
= & 1.005^{2} A_{12}-K(1+1.005) \\
& \vdots \\
A_{360}= & 1.005^{360-12} A_{12} \\
& -K\left(1+1.005+\cdots+1.005^{360-12-1}\right)
\end{aligned}
$$

Evaluating the sum of GP with $n=$ $360-12=348$

$$
\begin{aligned}
S_{348} & =\frac{1\left(1.005^{348}-1\right)}{1.005-1} \\
& =934.54
\end{aligned}
$$

At the 360th month, the loan is repaid. $A_{360}=0$

$$
\begin{aligned}
0 & =1.005^{348} A_{12}-934.54 K \\
\therefore K & =\frac{415895.38 \times 1.005^{348}}{934.54} \\
& =2524.50
\end{aligned}
$$

(a) i. (2 marks)

$\checkmark \quad[1]$ for $R=\sqrt{2}$.
$\checkmark \quad[1]$ for $\alpha=\frac{\pi}{4}$.

$$
\begin{aligned}
x & =\cos 2 t-\sin 2 t \\
& \equiv R \cos (2 t+\alpha) \\
& =R \cos 2 t \cos \alpha-R \sin 2 t \sin \alpha
\end{aligned}
$$

Equating coefficients of $\cos 2 t$ and $\sin 2 t$,

$$
\left\{\begin{array}{l}
R \cos \alpha=1 \tag{1}\\
R \sin \alpha=1
\end{array}\right.
$$

$(2) \div(1)$

$$
\begin{gathered}
\tan \alpha=1 \\
\therefore \alpha=\frac{\pi}{4} \\
R \cos \frac{\pi}{4}=1 \\
R \times \frac{1}{\sqrt{2}}=1 \\
\therefore R=\sqrt{2} \\
\therefore x=\sqrt{2} \cos \left(2 t+\frac{\pi}{4}\right)
\end{gathered}
$$

ii. (2 marks)
$\checkmark \quad[1]$ for $a=\sqrt{2}$.
$\checkmark \quad[1]$ for $T=\pi$.

$$
\begin{gathered}
\text { amplitude }=\sqrt{2} \\
T=\frac{2 \pi}{n}=\frac{2 \pi}{2}=\pi
\end{gathered}
$$

iii. (1 mark)

$$
\begin{aligned}
x & =\left.\sqrt{2} \cos \left(2 t+\frac{\pi}{4}\right)\right|_{t=0} \\
& =\sqrt{2} \times \cos \frac{\pi}{4}=1
\end{aligned}
$$

iv. (2 marks)
$\checkmark \quad$ [1] for $2 t+\frac{\pi}{4}=\frac{\pi}{4}, \frac{7 \pi}{4} \cdots$.
$\checkmark \quad$ [1] for $t=\frac{3 \pi}{4}$.

$$
\begin{gathered}
1=\sqrt{2} \cos \left(2 t+\frac{\pi}{4}\right) \\
\cos \left(2 t+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
2 t+\frac{\pi}{4}=\frac{\pi}{4}, \frac{7 \pi}{4} \cdots \\
2 t=0, \frac{3 \pi}{2} \cdots \\
t=0, \frac{3 \pi}{4} \cdots
\end{gathered}
$$

Hence the particle first returns to $x=1$ at $t=\frac{3 \pi}{4}$.
(b) i. (2 marks)
[1] for integrating correctly.
$\checkmark \quad$ [1] for substituting $t=\frac{x}{V \cos \alpha}$ correctly and showing what is required.

$$
\left\{\begin{array}{l}
\dot{x}=V \cos \alpha \\
\dot{y}=V \sin \alpha-g t
\end{array}\right.
$$

Integrating,

$$
\left\{\begin{array}{l}
x=V t \cos \alpha+C_{1} g \\
y=V t \sin \alpha-\frac{1}{2} g t^{2}+C_{2}
\end{array}\right.
$$

Initially, $x=0$ and $y=0$. Hence $C_{1}=C_{2}=0$.

$$
\therefore\left\{\begin{array}{l}
x=V t \cos \alpha \\
y=V t \sin \alpha-\frac{1}{2} g t^{2}
\end{array}\right.
$$

Remove parameter t to obtain Cartesian equation,

$$
\begin{aligned}
& t=\frac{x}{V \cos \alpha} \\
& y=V\left(\frac{x}{V \cos \alpha}\right)-\frac{1}{2} g\left(\frac{x}{V \cos \alpha}\right)^{2} \\
&= x \tan \alpha-\frac{g x^{2}}{2 V^{2} \cos ^{2} \alpha} \\
&= x \tan \alpha-\frac{g x^{2}}{2 V^{2}} \sec ^{2} \alpha \\
&= x \tan \alpha-\frac{g x^{2}}{2 V^{2}}\left(1+\tan ^{2} \alpha\right)
\end{aligned}
$$

ii. (3 marks)
$\checkmark \quad$ [1] for substituting $\alpha=30^{\circ}, x=$ 72 and $y=4$.
$\checkmark \quad[1]$ for obtaining $v^{2}=\frac{960}{\frac{12}{\sqrt{3}}-4}$ or equivalent.
$\checkmark \quad[1]$ for $v=18.1 \mathrm{~ms}^{-1}$.

$$
\alpha=30^{\circ} \quad x=12 \quad y=4
$$

$$
4=12 \tan 30^{\circ}-\frac{10 \times 144}{2 V^{2}}\left(1+\tan ^{2} 30^{\circ}\right)
$$

$$
4=\frac{12}{\sqrt{3}}-\frac{720\left(1+\frac{1}{3}\right)}{V^{2}}
$$

$$
4=\frac{12}{\sqrt{3}}-\frac{960}{V^{2}}
$$

$$
\frac{960}{V^{2}}=\frac{12}{\sqrt{3}}-4
$$

$$
V^{2}=\frac{960}{\frac{12}{\sqrt{3}}-4}
$$

$$
\therefore V=\sqrt{\frac{960}{\frac{12}{\sqrt{3}}-4}}=18.1 \mathrm{~ms}^{-1}
$$

