MATHEMATICS (EXTENSION 1)

2013 HSC Course Assessment Task 4
Friday August 16, 2013

General instructions

- Working time - 50 min .
(plus 5 minutes reading time)
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

Class (please \boldsymbol{V})
○ 12M3A - Mr Lam
○ 12M3B - Mr Berry
○ $12 \mathrm{M} 3 \mathrm{C}-\mathrm{Mr}$ Lin
○ 12M4A - Mr Choy
O 12M4B - Mr Weiss
O 12M4C - Ms Ziaziaris

STUDENT NUMBER

\# BOOKLETS USED: \qquad

Marker's use only.

QUESTION	1	2	3	$4(\mathrm{ab})$	$4(\mathrm{~cd})$	Total	$\%$
MARKS	$\overline{4}$	$\overline{8}$	$\overline{6}$	$\overline{4}$	$\overline{5}$	$\overline{27}$	

Question 1 (4 Marks)
Commence a NEW page.
In the expansion of $\left(\frac{2}{x}-\frac{x^{2}}{3}\right)^{12}$
(a) Write the expansion in sigma notation.
(b) Find the term independent of x in the expansion.

Question 2 (8 Marks)

Commence a NEW page.
Marks
Mr Cash is borrowing $\$ 500000$ to purchase a property. The bank will be lending him the amount based on a 6% p.a. interest rate on the balance owing, and loan term of 30 years with equal monthly repayments of $\$ M . \$ A_{n}$ is the amount owing after the n-th monthly repayment.
(a) Show that $A_{n}=500000 \times 1.005^{n}-200 M\left(1.005^{n}-1\right)$.
(b) Hence or otherwise, show that the repayment amount $M=\$ 2997.75$.
(c) Show that, if Mr Cash decides to make repayments of $\$ 3200$ on a monthly basis, that he would be able to save approximately 55 months off the term of the loan.
(d) Hence or otherwise, find the amount of interest saved by making repayments of $\$ 3200$ instead of $\$ 2997.75$ per month.
(For simplicity, you may assume the final repayment for the additional repayment schedule is also $\$ 3200$).

Question 3 (6 Marks)
Commence a NEW page.
A particle is moving on a horizontal line with velocity $v \mathrm{~ms}^{-1}$, with v^{2} given as

$$
v^{2}=64+24 x-4 x^{2}
$$

(a) Prove that the particle is moving in simple harmonic motion.
(b) Find the centre of the motion.
(c) Find the period and amplitude.

Question 4 (9 Marks)
Commence a NEW page.
A movie scene is to be filmed inside a tunnel of height 5.5 m . In this scene, a stunt man (of negligible height) will ride a motorcycle off an inclined plane (in the shape of a wedge, of negligible height) positioned at point M at α degrees, with velocity $V=25 \mathrm{~ms}^{-1}$.

The stunt man must just clear a policeman of height 2 m , standing 5 m away from the inclined plane at point P.

The stunt man will then land safely at another point L in the tunnel.

Assume that there is no air resistance in the tunnel, and that the acceleration due to gravity is $g=10 \mathrm{~ms}^{-2}$.

$\longleftarrow 5 \mathrm{~m} \longrightarrow$
You may also assume the equations of motion are $\left\{\begin{array}{l}x=25 t \cos \alpha \\ y=25 t \sin \alpha-5 t^{2}\end{array}\right.$ and the equations for the velocity are $\left\{\begin{array}{l}\dot{x}=25 \cos \alpha \\ \dot{y}=25 \sin \alpha-10 t\end{array}\right.$.
(a) Show that the trajectory can be expressed as

$$
y=-\frac{x^{2}}{125} \sec ^{2} \alpha+x \tan \alpha
$$

(b) Hence show that $\tan ^{2} \alpha-25 \tan \alpha+11=0$.
(c) Hence or otherwise, show that the value(s) of α (correct to the nearest degree) are

$$
\alpha=24^{\circ} \text { or } 88^{\circ}
$$

(d) Explain (with mathematical reasoning) which of these values of α is valid.

For simplicity, the rounded off values from part (c) may be used in your explanation

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Suggested Solutions

Question 1 (Ziaziaris)

(a) (2 marks)

$$
\begin{aligned}
& \left(\frac{2}{x}-\frac{x^{2}}{3}\right)^{12} & S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
= & \sum_{k=0}^{12}\binom{12}{k} 2^{k}\left(x^{-1}\right)^{k}(-1)^{12-k}\left(3^{-1}\right)^{12-k}\left(x^{2}\right)^{12-k} & & =\frac{1.005^{n}-1}{1.005-1} \\
= & \sum_{k=0}^{12}\binom{12}{k} 2^{k}(-1)^{12-k} 3^{k-12} x^{-k+24-2 k} & & =200\left(1.005^{n}-1\right)
\end{aligned}
$$

$$
=\sum_{k=0}^{12}\binom{12}{k} 2^{k}(-1)^{12-k} 3^{k-12} x^{24-3 k}
$$

(b) (2 marks) Term independent of x appears when

$$
\begin{gathered}
24-3 k=0 \\
3 k=24 \\
k=8
\end{gathered}
$$

$$
\binom{12}{8} 2^{8} 3^{-4}
$$

Question 2 (Lin)

(a) (3 marks)

- At the end of the first month:
$r=\frac{0.06}{12}=0.005$ p.m.

$$
A_{1}=500000 \times 1.005-M
$$

- At the end of the second month:

$$
\begin{aligned}
A_{2} & =A_{1} \times 1.005-M \\
& =(500000 \times 1.005-M) \times 1.005-M \\
& =500000 \times 1.005^{2}-M(1+1.005) \quad(\mathrm{d}
\end{aligned}
$$

(d) (2 marks)

- At the end of the third month:

$$
\begin{aligned}
A_{3}= & A_{2} \times 1.005-M \\
= & 500000 \times 1.005^{3} \\
& -M\left(1+1.005+1.005^{2}\right)
\end{aligned}
$$

(b) (1 mark)

At the end of the loan of 30 years, $n=360$,
$A_{360}=0$:
(c) (2 marks) If $M=\$ 3200$,

$$
A_{n}=500000 \times 1.005^{n}-200(3200)\left(1.005^{n}-1\right)
$$

At the end of the loan, $A_{n}=0$:

- At the end of n months,

$$
\begin{aligned}
& \quad A_{n}=500000 \times 1.005^{n} \\
& -M \underbrace{\left(1+1.005+1.005^{2}+\cdots+1.005^{n-1}\right)}_{S_{n}: r=1.005, a=1, n \text { terms }}
\end{aligned}
$$

$$
500000 \times 1.005^{360}-200 M\left(1.005^{360}-1\right)=0
$$

$$
200 M\left(1.005^{360}-1\right)=500000 \times 1.005^{360}
$$

$$
\therefore M=\frac{500000 \times 1.005^{360}}{200\left(1.005^{360}-1\right)}=\$ 2997.75
$$

$$
\begin{gathered}
500000 \times 1.005^{n}-200(3200)\left(1.005^{n}-1\right)=0 \\
1.005^{n}(500000-640000)+640000=0 \\
\therefore 1.005^{n} \times 140000=640000 \\
1.005^{n}=\frac{64}{14} \\
n \log 1.005=\log \frac{64}{14} \\
n=\frac{\log \frac{32}{7}}{\log 1.005}=304.72 \approx 305 \text { months }
\end{gathered}
$$

Previous repayment schedule had 360 months. Increasing repayments to $\$ 3200$ per month now only takes 305 months. Hence a time saving of 55 months.

- $\$ 2997.75$ per month repayments:
- Total repaid:

$$
\$ 2997.75 \times 360=\$ 1079190
$$

- Total interest:

$$
\$ 1079190-\$ 500000=\$ 579190
$$

- $\$ 3200$ per month repayments:
- Total repaid:

$$
\$ 3200 \times 304.72=\$ 975104
$$

Students may use 305 months: $\$ 976000$

- Total interest:

$$
\$ 975104-\$ 500000=\$ 475104
$$

(\$476000)

- Total interest saved over 55 months:

$$
\$ 579190-\$ 475104=\$ 104086
$$

(\$103 190 if 305 mths used)

Question 3 (Berry)

(a) (2 marks)

$$
\begin{aligned}
\ddot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2}\left(64+24 x-4 x^{2}\right)\right) \\
& =\frac{d}{d x}\left(32+12 x-2 x^{2}\right) \\
& =12-4 x \\
& =-4(x-3) \\
& \equiv-n^{2}(x-k)
\end{aligned}
$$

As acceleration is proportional to, and directed against the motion, the particle is moving in simple harmonic motion.
(b) (1 mark) Centre: $x=3$.
(c) (3 marks)

$$
\begin{aligned}
& v^{2}=64+24 x-4 x^{2} \\
&=-4\left(x^{2}-6 x-16\right) \\
&=-4\left(x^{2}-6 x+9-25\right) \\
&=-4\left((x-3)^{2}-25\right) \\
&=4\left(25-(x-3)^{2}\right) \\
& \equiv n^{2}\left(a^{2}-(x-k)^{2}\right) \\
& T=\frac{2 \pi}{n}=\frac{2 \pi}{2}=\pi \\
& \quad a=5
\end{aligned}
$$

Question 4 (Weiss (a)(b), Choy (c)(d))
(a) (2 marks)

$$
\left\{\begin{array}{l}
x=25 t \cos \alpha \tag{1}\\
y=25 t \sin \alpha-5 t^{2}
\end{array}\right.
$$

Change subject of (1) to t, and substitute to (2):

$$
\begin{aligned}
& t=\frac{x}{25 \cos \alpha} \\
& y=2 \%\left(\frac{x \sin \alpha}{25 \cos \alpha}\right)-5\left(\frac{x}{25 \cos \alpha}\right)^{2} \\
&= x \tan \alpha-\frac{5 x^{2}}{625 \cos ^{2} \alpha} \\
&= x \tan \alpha-\frac{x^{2}}{125} \sec ^{2} \alpha
\end{aligned}
$$

(b) (2 marks) When $x=5, y=2$:

$$
\begin{gathered}
2=5 \tan \alpha-\frac{5^{2}}{125}\left(1+\tan ^{2} \alpha\right) \\
\underset{\times 5}{2}=\underbrace{5 \tan \alpha-\frac{1}{5}\left(1+\tan ^{2} \alpha\right)}_{\times 5} \\
10=25 \tan \alpha-1-\tan ^{2} \alpha \\
\therefore \tan ^{2} \alpha-25 \tan \alpha+11=0
\end{gathered}
$$

(c) (2 marks) Let $z=\tan \alpha$.

$$
\begin{aligned}
& z^{2}-25 z+11=0 \\
& z=\frac{25 \pm \sqrt{25^{2}-4(1)(11)}}{2} \\
&=\frac{25 \pm \sqrt{581}}{2} \\
&=\frac{25 \pm 24.1 \cdots}{2} \\
& \tan \alpha=24.5519 \text { or } 0.4480
\end{aligned}
$$

$$
\therefore \alpha=87.6676^{\circ} \text { or } 24.1337^{\circ}
$$

$$
\approx 88^{\circ} \text { or } 24^{\circ}
$$

(d) (3 marks)

- If $\alpha=88^{\circ}$, check maximum height - i.e $\dot{y}=0$

$$
\begin{aligned}
& \dot{y}=0=25 \sin 88^{\circ}-10 t \\
& \therefore 10 t=25 \sin 88^{\circ} \\
& t=\frac{25 \sin 88^{\circ}}{10} \approx 2.498 \mathrm{~s}
\end{aligned}
$$

Check maximum height attainable with this angle of inclination:

$$
\begin{aligned}
y & =25 t \sin 88^{\circ}-5 t^{2} \\
& =25(2.498) \sin 88^{\circ}-5(2.498)^{2} \\
& \approx 31.2 \mathrm{~m}
\end{aligned}
$$

i.e. if the inclined plane is at 88°, the stunt man will hit the roof well before he reaches his maximum height. Therefore an unsafe landing.

- If $\alpha=24^{\circ}$, check maximum height - i.e $\dot{y}=0$

$$
\begin{gathered}
\dot{y}=0=25 \sin 24^{\circ}-10 t \\
\therefore 10 t=25 \sin 24^{\circ} \\
t=\frac{25 \sin 24^{\circ}}{10} \approx 1.0168 \mathrm{~s}
\end{gathered}
$$

Check maximum height attainable with this angle of inclination:

$$
\begin{aligned}
y & =25 t \sin 24^{\circ}-5 t^{2} \\
& =25(1.0168) \sin 24^{\circ}-5(1.0168)^{2} \\
& \approx 5.1698 \mathrm{~m}
\end{aligned}
$$

The maximum height attained by the stunt man when $\alpha=24^{\circ}$ will be approx 5.2 m , well below the 5.5 m roof. Therefore he will land safely inside the tunnel.

