NORTH SYDNEY BOYS HIGH SCHOOL

2010
 ASSESSMENT TASK 4

Mathematics

Extension 2

General Instructions

- Working time - 50 minutes
- Write in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:
(Please tick or highlight)
O Mr Barrett
O Mr Trenwith
O MrWeiss

Student Number:

(To be used by the exam markers only.)

Question No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total	Total
Mark	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{9}$	$\overline{11}$	$\overline{38}$	$\overline{100}$

A sequence U_{n} is defined as $U_{n+2}=6 U_{n+1}-5 U_{n}$.
$\mathrm{U}_{1}=2$ and $\mathrm{U}_{2}=6$
Use mathematical induction to prove that $\mathrm{U}_{\mathrm{n}}=5^{\mathrm{n}-1}+1$

Question 2 (6 marks)

In the diagram above AD , extended to E is the bisector of $\angle \mathrm{BAC}$.
Copy this diagram into your answer book.
a) Prove that $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ADC}$ are similar
b) Show that $\mathrm{AB} \times \mathrm{AC}=\mathrm{AD} \times \mathrm{AE}$
c) Prove that $\mathrm{AD}^{2}=\mathrm{AB} \times \mathrm{AC}-\mathrm{BD} \times \mathrm{DC}$

Question 3 (7 marks)

a) Find the term independent of x in $\left(x^{2}+\frac{1}{2 x}\right)^{18}$
b) Show that $\sum_{r=0}^{n} \frac{{ }^{n} C_{r}}{r+1}=\frac{2^{n+1}-1}{n+1}$

Question 4 (9 marks)

A mass of m kilograms falls from a stationary balloon at a height above the ground. It experiences air resistance during its fall equal to $m k v^{2}$, where v is its speed in metres per second and k is a positive constant.

Let x be the distance in metres of the mass from the balloon measured positively as it falls.
a) Show that the equation of motion of the mass is $\ddot{x}=g-k v^{2}$, where g is the acceleration due to gravity.
b) Show that $v^{2}=\frac{g}{k}\left(1-e^{-2 k x}\right)$
c) Find the terminal velocity of the mass.
d) Find the distance fallen when the mass reaches half of its terminal velocity.

Question 5 (11 marks)

Suppose $\quad a>0, b>0$ and $c>0$
a) Prove $a^{2}+b^{2} \geq 2 \mathrm{ab} \quad 2$
b) Hence prove $\mathrm{a}^{2}+b^{2}+c^{2} \geq a b+b c+c a$
c) Given that

$$
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

prove that $a^{3}+b^{3}+c^{3} \geq 3 a b c$
d) If x, y, z are >0,

Make a suitable substitution into part iii) to show that

$$
\begin{equation*}
x+y+z \geq 3(x y z)^{\frac{1}{3}} \tag{1}
\end{equation*}
$$

e) \quad Suppose $(1+x)(1+y)(1+z)=8$, prove that $x y z \leq 1$
$Q 1$
Step

$$
\begin{align*}
& n=1 \Rightarrow u_{1}=5^{1-1}+1=2 \tag{True 1}\\
& n=2 \Rightarrow U_{2}=5^{2-1}+1=6
\end{align*}
$$

Step 2
Assume true for $1,2,3, \ldots n$
ie $U_{n}=5^{n-1}+1$
Consider $U_{n+1}=6 U_{n}-5 \mu_{n-1}$

$$
\begin{aligned}
& =6\left(5^{n-1}+1\right)-5\left(5^{n-2}+1\right) \\
& =6 \times 5^{n-1}+6-5^{n-1}-5 \\
& =5 \times 5^{n-1}+1 \\
& =5^{n}+1
\end{aligned}
$$

\therefore If true for U_{n} it is true for

$$
u_{n+1}
$$

As it is true for $n=1,2,3, \ldots$. it is true for for all n by Mathematical Induction.
$Q 2$

C

i) In $\triangle 3 \quad \triangle A B E$ and $\triangle A P C$

$$
\angle E A B=\angle D A C \text { (given) }
$$

$$
\angle A E B=\angle A C D \text { (angle standing on })
$$ the same arc $A B$)

$$
\therefore \triangle A B E \| \triangle A D C \text { (he sem }
$$

ii) $\quad \frac{A B}{A E}=\frac{A D}{A C}$. (Sides um proportion)

$$
\begin{equation*}
\therefore A B \times A C=A D \times A E \tag{1}
\end{equation*}
$$

iii) Prove $A D^{2}=A B \times A C-B D \times D C$ (2)

Now $A D \times D E=B D \times D C(3)\binom{$ intersecting }{ chords }
Consider $A B \times A C-B D \times D C$ chords)
Subs (1) + (3)

$$
\begin{aligned}
& A D \times A E-A D \times D E D C \\
& A D(A D+D E)-A D \times D E \\
& A D^{2}+A D \times D E-A D * D E \\
= & A D^{2} .
\end{aligned}
$$

3

$$
\begin{gathered}
\Rightarrow 6 \\
a x \quad x \\
3 e^{3}+3 x=0 \\
x=12
\end{gathered}
$$

$$
\begin{aligned}
T B & =\frac{8}{T} \times \frac{1}{2^{12}} \\
& =\frac{18!}{1216!} \times \frac{1}{2^{12}} \\
& =4641 \\
& 624
\end{aligned}
$$

3

$$
\text { LHS }=\frac{{ }^{n} C_{B}}{1}+\frac{{ }^{n} C_{i}}{2}+\frac{{ }^{n} C_{3}}{3}+\frac{{ }^{n} c_{r}}{r+1}+\cdots \frac{{ }^{r} C_{n}}{n+1}
$$

Consider $\int(1+x)^{n} d x$

$$
\begin{aligned}
& =\int 1+x^{n} e_{1} x+{ }^{n} c_{2} x^{2}+\cdots{ }^{n} c_{r} x^{r}+\cdots d x \\
& =\frac{(1+x)^{n+1}}{n+1}+c=\sum_{r=0}^{n} \frac{c_{r} x^{r+1}}{r+1}+\ldots . \\
& x=0 \Rightarrow
\end{aligned}
$$

$$
\frac{1}{n+1}+C=0 \text { wi } C=\frac{-1}{n+1}
$$

$$
\therefore \frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{r=0}^{n} \frac{{ }^{n} c_{r} x^{r+1}}{r+1}
$$

let $x=1$

$$
\frac{2^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{r=0}^{n} \frac{c_{r}}{r+1}
$$

Q4.
a)

$$
\begin{aligned}
& m \ddot{x}=m g-m k v^{2} \\
& \therefore x=g-k v^{2}
\end{aligned}
$$

b)

$$
\begin{gathered}
\therefore \dot{x}=\frac{v d v}{d x}=g-k v^{2} \\
\frac{d v}{d x}=\frac{g-k v^{2}}{v} \\
\frac{d x}{d v}=\frac{v}{g-k v^{2}} \\
\int d x=\int \frac{v d v^{2}}{g-k v^{2}} \\
x+c=-\frac{1}{2 k} \log \left(g-k v^{2}\right) \\
x=0, v=0, \Rightarrow c=-\frac{1}{2 k} \log g \\
x-\frac{1}{2 k} \log g=-\frac{1}{2 k} \log \left(g-k v^{2}\right) \\
x=\frac{1}{2 k} \log \left(\frac{g}{g-k v^{2}}\right) \\
\log \left(\frac{g}{g-k v^{2}}\right)=2 k x \\
e^{2 k x}=\frac{g}{g-k v^{2}} \\
\frac{g-k v^{2}}{g}=e^{-2 k x} \\
g-k v^{2}
\end{gathered}
$$

Ac)

$$
\begin{aligned}
\ddot{x} & =0=g-k v^{2} \\
v^{2} & =\frac{g}{k} \\
\therefore v & =\sqrt{\frac{g}{k}}
\end{aligned}
$$

d)

$$
\begin{aligned}
v & =\frac{1}{2} \sqrt{\frac{9}{k}} \\
v^{2} & =\frac{g}{k} \frac{9}{4 k} \\
\frac{g}{4 k} & =\frac{g}{\not k}\left(1-e^{-2 k x}\right) \\
\frac{1}{4} & =1-e^{-2 k x} \\
e^{-2 k x} & =\frac{3}{4} \\
-2 k x & =\ln \left(\frac{3}{4}\right) \\
x & =\frac{1}{2 k} \ln \left(\frac{4}{3}\right)
\end{aligned}
$$

Q $(a-b)^{2}=a^{2}-2 a b+b^{2} \geqslant 0$
a)

$$
a^{2}+b^{2} \geqslant 2 a b
$$

b)

$$
\begin{align*}
& a^{2}+b^{2} \geqslant 2 a b \tag{1}\\
& b^{2}+c^{2} \geqslant 2 b c \tag{D}\\
& c^{2}+d^{2} \geqslant 2 a c \tag{3}
\end{align*}
$$

(1) $+(2)+3$

$$
\begin{aligned}
& 2 a^{2}+2 b^{2}+2 c^{2} \geqslant 2 a b+2 b c+2 a c \\
\therefore & a^{2}+b^{2}+c^{2} \geqslant a b+b c+a c
\end{aligned}
$$

c) Sunce $a, b, c,>0$ it follows $(a+b+c)>0$ and from b) $a^{2}+b^{2}+c^{2}>a b+b c+c a$.

$$
\begin{aligned}
& \therefore(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)>0 \\
& \therefore \quad a^{3}+b^{3}+c^{3}-3 a b c \geqslant 0 \\
& a^{3}+b^{3}+c^{3} \geqslant 3 a b c
\end{aligned}
$$

d)

$$
\begin{aligned}
& a^{3}=x \quad b^{3}=y \quad c^{3}=z \\
& a=x^{1 / 3} \quad b=y^{1 / 3} c=z^{1 / 3} \\
& \therefore x+y+z=3(x y z)^{1 / 3}
\end{aligned}
$$

(i)

$$
\begin{aligned}
8 & =(1+x)(1+y)(1+z) \\
& =(1+y+x y)(1+z) \\
& =1+z+y+y z+x+x z+x y+x y z \\
& =1+x+y+x y+x z+y z+x y z
\end{aligned}
$$

Now $x+y+z \geqslant 3(x y z)^{1 / 3}$

$$
\begin{gathered}
x y+x z+y z \geqslant 3\left(x^{2} y^{2} z^{2}\right)^{1 / 3}=3 x^{2 / 3} y^{2 / 3} z^{3} \\
\geqslant \\
8 \geqslant 1+3(x y z)^{1 / 3}+3(x y z)^{2 / 3}+x y z
\end{gathered}
$$

$$
\begin{aligned}
& 8 \geqslant 1+3 \mu+3 \mu^{2}+\mu^{3} \\
& 8 \geqslant(1+\mu)^{3} \\
& 2 \geqslant 1+\mu \\
& \mu \leqslant 1 \\
& x y z^{1 / 3} \leqslant 1 \\
& x y z \leqslant 1
\end{aligned}
$$

