MATHEMATICS (EXTENSION 2)
 2011 HSC Course Assessment Task 4

General instructions

- Working time - 50 min .
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

Class (please \boldsymbol{V})12M4A - Mr Fletcher/Mrs Collins12M4B - Mr Ireland
12M4C - Mrs Collins/Mr Rezcallah /Mr Lin

Marker's use only.

QUESTION	\square	2	$\overline{3}$	Total	$\%$
MARKS	$\overline{13}$	$\overline{13}$	$\overline{13}$	$\overline{39}$	

Question 1 (13 Marks)
Commence a NEW page.
(a) Show that $\left(\frac{a+b+c}{3}\right)^{2} \leq \frac{a^{2}+b^{2}+c^{2}}{3}$.
(b) The function $f(x)$ is defined as

$$
f(x)=x-\log _{e}\left(x^{2}+1\right)
$$

for $x \geq 0$.
i. Show that $x>\log _{e}\left(x^{2}+1\right)$ for $x>0$.
ii. By evaluating $\int_{0}^{1} x d x$ and $\int_{0}^{1} \log _{e}\left(x^{2}+1\right) d x$, show that $5>2 \log _{e} 2+\pi$.
(c) i. A sequence of numbers t_{n} where $n \geq 1$ is defined as

$$
t_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n}
$$

Show that $t_{n}+\frac{1}{2 n}=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2 n-1}$.
ii. Another sequence S_{n}, where $n \geq 1$, is defined as

$$
S_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}
$$

Use mathematical induction to show that $S_{n}=t_{n}$.

Question 2 (13 Marks)
Commence a NEW page.
(a) In the diagram, $A B$ and $A C$ are tangents from A to the circle with centre O, meeting the circle at B and $C . A D E$ is a secant of the circle. G is the midpoint of $D E$. $C G$ produced meets the circle at F.

i. Copy the diagram on to your answer sheet and prove that $A B O C$ and $A O G C$ are cyclic quadrilaterals.
ii. Explain why $\angle O G F=\angle O A C$.
iii. Show that $\angle B A O=\angle O A C$.
iv. Hence or otherwise, prove that $B F \| A E$.

Question 2 continues overleaf . . .

Question \mathbf{Q} continued from previous page...
(b) A particle is projected from a point O with speed $80 \mathrm{~ms}^{-1}$ at an angle of elevation α, where $\tan \alpha=\frac{5}{12}$.

Two seconds later, a second particle is projected from O with initial speed U at an angle β. It collides with the first particle one second after leaving O. Take $g=10 \mathrm{~ms}^{-2}$.
i. Show that t seconds after the first particle is projected, the second particle is at

$$
\left(U(t-2) \cos \beta, U(t-2) \sin \beta-5(t-2)^{2}\right)
$$

ii. Find the value of $\tan \beta$.
iii. Find the initial velocity of the second particle.

Question 3 (13 Marks) Commence a NEW page.

A ball of mass 0.5 kg is projected vertically upwards from ground level at $10 \mathrm{~ms}^{-1}$.
During its motion, the ball is subject to gravity and it also experiences air resistance of magnitude $\frac{1}{20} v^{2}$, where v is the velocity of the ball after t seconds. Take $g=10 \mathrm{~ms}^{-2}$.
(a) Show that $\frac{1}{2} \ddot{x}=-\frac{1}{2} \times 10-\frac{v^{2}}{20}$.
(b) Show that the ball reaches a maximum height of $5 \log _{e} 2$ metres above the ground.
(c) Show that the ball takes $\frac{\pi}{4}$ seconds to reach its maximum height.
(d) The ball, having reached its maximum height, falls back towards its starting point. As it falls, it once again is subject to gravity and air resistance of magnitude $\frac{1}{20} v^{2}$.

Find the speed of the ball when it returns to its starting point, and hence show that the ball has not attained its terminal velocity before it returns to the ground.

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

EXTENSiON 2 ASSESMANT wo 4 . Soluctions
Q) (a)

$$
a^{2}+b^{2}=(a-b)^{2}+2 a b
$$

$$
\therefore \quad a^{2}+b^{2} \geqslant 20 b
$$

Simibily, $b^{2}+c^{2} \geqslant 2 b c$

$$
c^{2}+a^{2} \geqslant 2 c a
$$

$$
\begin{equation*}
\text { i.e- } 2\left(a^{2}+b^{2}+c^{2}\right) \geqslant 2 a b+2 b c+2 c a \tag{}
\end{equation*}
$$

$$
\therefore\left(\frac{a+b+c}{3}\right)^{2} \leqslant \frac{a^{2}+b^{2}+c^{2}}{3}
$$

1 merk

$$
\begin{aligned}
&(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 c c+2 c a \\
& \text { coms }
\end{aligned}
$$

$$
\leq 3\left(a^{2}+b^{2}+c^{2}\right) \quad \operatorname{tin}(*)
$$

1 mank
I mak
(b)

$$
f(0)=x-\operatorname{loge}_{e}\left(x^{2}+1\right) \text { whe } x \geqslant 0
$$

(i) $f^{\prime}(x)=1-\frac{2 x}{x^{2}+1}=\frac{(x-1)^{2}}{x^{2+1}}$

$$
f^{\prime}(x)>0 \quad \text { for } x \neq 1
$$

$A t_{x}=1, \quad f(1)=1-\ln 2>0$

$$
A f=0, \quad f(0)=0
$$

$f(x)$ is a contumions function

$$
\therefore f(x)>x \text { for } x>0
$$

$$
\begin{aligned}
& \text { ii) } \quad \int_{0}^{1} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=-\frac{1}{2} \\
& \int_{0}^{1} \log _{x}\left(x^{2}+1\right) d x=\left[x x^{2}+1\right) \text { for } x>0 \\
& =\log _{e} 2-2 x_{0}^{2}+\frac{\left.\left.x^{2}+1\right)\right]_{0}^{1}-\int_{0}^{1} \frac{2 x^{2}}{x^{2}+1} d x}{}=\log _{e} 2-2\left[x-\tan ^{-1} x\right]_{0}^{1} \\
& =\log _{e} 2-2\left(1-\frac{\pi}{4}\right) \\
& =\log _{e} 2-2-\frac{\pi}{2}
\end{aligned} \quad \begin{aligned}
& \text { fram (i) } \quad \frac{1}{2}>\log _{e} 2-2+\frac{\pi}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{1}{2}>\log _{e} 2-2+\frac{\pi}{2} \\
& \therefore r>2 \log _{2} 2+\pi
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
t_{n}+\frac{1}{2 n} & =\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n}+\frac{1}{2 n} \\
& =\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1}+\frac{2}{2 n} \\
& =\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n-1}
\end{aligned}
$$

(ii) Whem $n=1, \quad S_{n}=1-\frac{1}{2}=\frac{1}{2}$

$$
t_{A}=\frac{1}{2}
$$

$S_{n}=t_{n} \quad \therefore \quad$ tre for $n=1$
Arsume tua for $n=k$
Hisume mad for $n=k, S_{k}=t_{k}$

$$
\begin{aligned}
& i e \cdot S_{k}=\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k-1}+\frac{1}{2 k} \\
S_{k+1}= & 1-\frac{1}{2}+\frac{1}{3} \cdots \frac{1}{2 k+1}-\frac{1}{2 k+2} \\
= & S_{k}+\frac{1}{2 k+1}-\frac{1}{2 k+2} \\
= & \frac{1}{k+1}+\cdots+\frac{1}{2 k}+\frac{1}{2 k+1}-\frac{1}{2 k+2}
\end{aligned}
$$

from assomption

$$
\begin{aligned}
& t_{k+1}=\frac{1}{k+2}+\cdots \frac{1}{2 k+1}+\frac{1}{2 k+2} \\
& t_{k+1}+\frac{1}{2 k+2}=\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k+1} \text { fom (i) } \\
& \therefore t_{k+1}=\frac{1}{k+k}+\frac{1}{k+2}+\cdots+\frac{1}{2 k+1}-\frac{1}{2 k+2} \\
&=s_{k+1}
\end{aligned}
$$

1 mark

1 mooks
(mank

1 mork

1 male

- trae for $n=l a t$ if frue for $n=l$

But alneady prived timee for $A=1$
. - tra for $n=334$, etc ive frue for all positive iitegers

Question 2
(a) (i)

$$
\begin{aligned}
& \angle A B O=\angle A C O=90^{\circ}(\text { tangent } \angle \text { radius }) \\
& \text { ie. } \angle A B O+\angle A C O=180^{\circ}
\end{aligned}
$$

I mark correct reasoning
$\therefore A B O C$ is cyclic (opposite $\angle 5$ supplementing)
$A /$ so, $\angle A G O=90^{\circ}$ (hie from centre to midpoint of chord is 1 chord)

$$
\therefore \angle A C O=\angle A G O
$$

$\begin{aligned} & \therefore A O G C \text { is cychic (AO subtends equal } \\ & \\ & \text { As at } G \text { and } C \\ & \text { Angles in same segment) }\end{aligned}$
1 mark correct reasoning
(ii.) $\angle O G F=\angle O A C$ (exterior \angle of cychic quadilatial

AOGC is equal op opposite interior \angle)
(iii.) $B A=C A$ (tangents from external point)
$O B=O C$ (equal radii)
$A O$ is common

$$
\therefore \triangle O B A \equiv D O C A(555)
$$

$\therefore \angle B A O=\angle C A O$ (corresponding sides in congruent ΔS)
(iv.) Let $\angle O G F=\theta$
$\therefore \angle D A C=\theta$ (from (ii.))
and $\angle D A B=\theta$ (from (iii.))
$\angle B O C=180-2 \theta(\angle$ opposite $\angle B A C$ in cyclic
$\angle B F C=90-\theta$ (\angle at circumference is $\frac{1}{2} \angle$ at
$\angle F G E+\theta+90=180$ ($\angle A G E$ is a sxraij4 \angle)

$$
\angle F G E=90-\theta
$$

$$
=\angle B F C
$$

$\therefore B F I A A E$ (alternate $\angle S$ equal)

Also proved using RAS
1 mark corset reasoning

1 mark (relate $\angle B F C$ to $\angle B O C$), 1 mark (establishes $\angle B F C=\angle F G E$ or $=\angle A G C$ or supplements. $x_{0} \angle F G A$

I mark reason
(b) (i)

$$
\begin{aligned}
& \ddot{x}=0 \\
& \dot{x}=U \cos \beta \\
& x=U \cos \beta(t-2)
\end{aligned}
$$

$\ddot{y}=-10$
$\dot{y}=-10(t-2)+u_{\sin } \beta_{2}$
$y=u \sin (t-2)-5(t-2)^{2}$

I mave for finding
Correct integrection form \ddot{x} and \ddot{y}
(made for thowing undertandion that $\tau=E-2$ for 2 ad pactule wote: juit subrititung t-2 doer not gat mak

I makl
$\} 1$ make

1 mavk
(iii)

$$
\begin{aligned}
& U \cos \beta=240 \times \frac{12}{13} \\
& \cos \beta=\frac{72}{\sqrt{5473}} \\
& \Rightarrow U=\frac{\frac{2880}{13}}{\frac{72}{\sqrt{5473}}}=\frac{40 \sqrt{1473}}{13}
\end{aligned}
$$

2011 Ext. 2 Task 4
Q3 (a)
Forces cecting on ball: $\underset{m g}{\downarrow} \underset{\frac{1}{20} v^{2}}{\downarrow}$
\therefore Resultant force is

$$
\left.F=-m g-\frac{1}{20} v^{2} \quad \begin{array}{c}
(\text { taking } \uparrow \text { as } \\
\text { positive }
\end{array}\right)
$$

By Newton, $F=m \ddot{x}$

$$
\therefore m x=-m g-\frac{1}{20} v^{2}
$$

Subbing $m=0.5 \mathrm{~kg}, \quad g=10 \mathrm{~ms}^{-2}$, we get

$$
0.5 \ddot{x}=-0.5 \times 10-\frac{1}{20} v^{2} \text {, as required. }
$$

(b) Method 1 - Constants of Integration

$$
\begin{aligned}
\ddot{x} & =-10-\frac{v^{2}}{10} \\
\therefore v \frac{d v}{d x} & =-10-\frac{v^{2}}{10}=-\frac{100+v^{2}}{10} \\
\therefore \frac{d v}{d x} & =-\frac{100+v^{2}}{10 v} \\
\therefore \frac{d x}{d v} & =-\frac{10 v}{100+v^{2}} \\
\therefore x & =-5 \ln \left(100+v^{2}\right)+C
\end{aligned}
$$

At $t=0, x=0, v=10$:

$$
\begin{array}{r}
\therefore \quad c=5 \ln 200 \\
\therefore \quad x=5 \ln \left(\frac{200}{100+v^{2}}\right)
\end{array}
$$

At max. height, $v=0$

$$
\therefore x=5 \ln \left(\frac{200}{100}\right)=5 \ln 2
$$

(as required to be shown)
(Q3)-(b) contimed
(b) Method 2 - Definite Integral technique

$$
\begin{aligned}
\ddot{x}= & -10-\frac{v^{2}}{10} \\
\therefore v \frac{d v}{d x} & =-\frac{100+v^{2}}{10 v} \\
\frac{d x}{d v} & =-\frac{10 v}{100+v^{2}}
\end{aligned}
$$

Initially $(t=0), x=0, v=10$.
Let maximum height $=H$.
At $x=H, v=0$.
Thees

$$
\left.\begin{array}{l}
\int_{0}^{H} d x=\int_{10}^{0} \frac{-10 v}{100+v^{2}} d v \\
\therefore[x]_{0}^{H}=\left[-5 \ln \left(100+v^{2}\right)\right]_{10}^{0} \\
H-0
\end{array}\right)=-5 \ln 100+5 \ln 200 .
$$

Q3-continued.
(C) Method 1 -Constants of Integration:

$$
\begin{aligned}
\ddot{x} & =-10-\frac{v^{2}}{10} \\
\therefore \frac{d v}{d t} & =-\frac{100+v^{2}}{10} \\
\frac{d t}{d v} & =-\frac{10}{100+v^{2}} \\
\therefore t & =-10 \cdot \frac{1}{10} \tan ^{-1} \frac{v}{10}+C
\end{aligned}
$$

At $t=0, x=0, v=10$:

$$
\therefore c=\tan ^{-1} \frac{10}{10}=\tan ^{-1} 1=\frac{\pi}{4}
$$

Thus $t=\frac{\pi}{4}-\tan ^{-1} \frac{v}{10}$
At max. height, $v=0 \therefore t=\frac{\pi}{4}-\tan ^{-1} 0=\frac{\pi}{4}$ secs.
Method 2 - Definite Integrals:
Let $T=$ time to maximum height.

$$
\begin{aligned}
\therefore \ddot{x} & =\frac{d v}{d t}=-\frac{100+v^{2}}{10} \\
\therefore \frac{d t}{d v} & =-\frac{10}{100+v^{2}} \\
\therefore \int_{0}^{T} d t & =-10 \int_{10}^{0} \frac{d v}{100+v^{2}} \\
\therefore T-0 & =-10\left[\frac{1}{10} \tan ^{-1} \frac{v}{10}\right]_{10}^{0} \\
\therefore T & =-10\left[\frac{1}{10} \tan ^{-1} 0-\frac{1}{10} \tan ^{-1} 1\right] \\
& =\tan ^{-1} 1 \text { as required. } \\
& =\frac{\pi}{4} \text { secs, as }
\end{aligned}
$$

$\Sigma \Sigma \ll$

