MATHEMATICS (EXTENSION 2)

2012 HSC Course Assessment Task 4
 August 17, 2012

General instructions

- Working time - 50 min .
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

12M4A - Mr Lin12M4B - Mr Ireland
12M4C - Mr Fletcher

STUDENT NUMBER

\# BOOKLETS USED:

Marker's use only.

QUESTION	1	2	3	Total	$\%$
MARKS	$\overline{12}$	$\overline{11}$	$\overline{11}$	$\overline{34}$	

Glossary

- $\mathbb{Z}=\{\cdots,-3,-2,-1,0,1,2,3\}-$ set of all integers.
- \mathbb{Z}^{+}- all positive integers (excludes zero)
- \mathbb{R} - set of all real numbers

Question 1 (12 Marks)
Commence a NEW page.
(a) Given that $a^{2}+b^{2} \geq 2 a b$ and $a^{2}+b^{2}+c^{2} \geq a b+b c+a c$, where a, b and $c \in \mathbb{R}^{+}$, show that:
i. $\sin ^{2} \alpha+\cos ^{2} \alpha \geq \sin 2 \alpha$.
ii. $\sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha \geq \sin \alpha-\cos \alpha+\sec \alpha+\frac{1}{2} \sin 2 \alpha$.
(b) i. Show that $\binom{n}{r}<n\binom{n-1}{r-1}$, where $n, r \in \mathbb{Z}^{+}$and $1<r \leq n$.
ii. Given that $(a+b)^{n}$ can be written as

$$
\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n} b^{n}
$$

Show that for $a, b>0$ and $n \in \mathbb{Z}^{+}$,

$$
(a+b)^{n}-a^{n}<n b(a+b)^{n-1}
$$

(c) Show that $x>\frac{3 \sin x}{2+\cos x}$ for $x>0$.

A particle of mass $m \mathrm{~kg}$ is dropped from rest in a medium in which the resistance to motion has magnitude $\frac{1}{10} m v^{2}$ when the velocity of the particle is $v \mathrm{~ms}^{-1}$.

After t seconds, the particle has fallen x metres and has velocity $v \mathrm{~ms}^{-1}$ and acceleration $a \mathrm{~ms}^{-2}$. Take the acceleration due to gravity as $10 \mathrm{~ms}^{-2}$.
(a) Draw a diagram showing the forces acting on the particle. Hence show that

$$
a=\frac{100-v^{2}}{10}
$$

(b) Show that $t=\frac{1}{2} \log _{e}\left(\frac{10+v}{10-v}\right)$.
(c) Find expressions in terms of t for v and x.
(d) Show that the terminal velocity is $10 \mathrm{~ms}^{-1}$.
(e) Find the exact time taken and the exact distance fallen by the particle in reaching a speed equal to 80% of its terminal velocity.

Question 3 (11 Marks)
(a) Use mathematical induction to prove for $n \geq 1, n \in \mathbb{Z}^{+}$:

$$
1 \times 1!+2 \times 2!+\cdots+n \times n!=(n+1)!-1
$$

(b) $\quad B A C, B A D$ are two circles such that tangents at C and D meet at T on $A B$ produced. If $C B D$ is a straight line, prove that

i. $\quad T C=T D$.
ii. $\angle T A C=\angle T A D$.
iii. $T C A D$ is a cyclic quadrilateral.
(c) The number f_{n} is defined as $f_{n}=2^{2^{n}}+1$ for $n \in \mathbb{Z}^{+}$, where $2^{2^{n}}$ is 2 raised to the power of 2^{n}.

Prove, using mathematical induction, that for all $n \in \mathbb{Z}^{+}$,

$$
f_{0} f_{1} f_{2} \cdots f_{n-1}=f_{n}-2
$$

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

QuESRON 1
(a) (i) Let $a=\sin \alpha$ and $b=\operatorname{coc} \alpha$
then $\sin ^{2} \alpha+\cos ^{2} \alpha \geqslant 2 \sin \alpha \cos \alpha$

$$
\text { ie } \sin ^{2} \alpha+\cos ^{2} \alpha \geqslant \sin 2 \alpha
$$

(ii) Lat $a=\sin \alpha, b=\cos \alpha, c=\tan \alpha$
than $\sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha \geqslant \sin \alpha \cos \alpha+\sin \alpha \tan \alpha+\cos \alpha \tan \alpha$

$$
\begin{aligned}
& \text { RHS}=\frac{1}{2} \sin 2 \alpha+\sin \alpha+\frac{\sin ^{2} \alpha}{\cos \alpha} \\
& \quad=\frac{1}{2} \sin \alpha+\sin \alpha+\frac{1-\cos 2}{\cos \alpha} \\
& \quad=\frac{1}{2} \sin \alpha+\sin \alpha+\sec \alpha-\cos \alpha
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
&\binom{n}{r}=\frac{n!}{r(a-r)!}=\frac{n(n-1)!}{r(r-1)!(n-r)!} \\
&=\frac{1}{r} \times n+\binom{a-1}{r-1} \\
&<n\binom{-1}{-1} \quad \text { becave } r>1 \\
& \quad \therefore \div<1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
(a+b)^{n}-a^{n} & =\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n} b^{n}-a^{n} \\
& =\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\left(\begin{array}{c}
n
\end{array}\right) b^{n} \\
< & n\binom{n-1}{0} a^{n-1} b+n\binom{n-1}{1} a^{n-2} b^{2}+\cdots+n\binom{n-1}{n-1} b^{n} \\
& =n b\left[\binom{n-1}{0} a^{n-1}+\binom{n-1}{1} a^{n-2} b+\cdots+\binom{n-1}{a-1} b^{n-1}\right] \\
& \left.=a b(a+b)^{n-1}\right) \\
i e & (a+b)^{n}-a^{n}<n b(a+b)^{n-1}
\end{aligned}
$$

1 make for correct proof

1 malk
(mank (mank

1 mak
(mark

1 mack

1 mank
(c) Let $f(x)=x-\frac{3 \sin x}{2+\cos x}$

$$
\begin{aligned}
& \text { then } f^{\prime}(x)=1-\frac{(2+\cos x) 3 \cos x-3 \operatorname{cin} x-\sin x}{(2+\cos x)^{2}} \\
& =1-\frac{6 \cos x+3 \cos ^{2} x+3 \sin ^{2} x}{(2+\cos x)^{2}} \\
& =\frac{4+4 \cos x+\cot ^{2} x-6 \cos -3}{(2+\cos x)^{2}} \\
& =\frac{1-2 \cos x+\cos ^{2} x}{(2+\cos x)^{2}} \\
& =\left(\frac{1-\cos x}{2+\cos x}\right)^{2} \\
& f(x) \geqslant 0 \quad \text { for } x>0 \\
& f^{\prime}(0)=0 \text { and } f^{\prime}(2 n \pi)=0 \\
& f(x) \text { is nion-derearing for } x>0 \\
& f(0)=0 \text { and } f(2 n \pi)>0 \\
& \therefore f(x)>0 \text { for } x>0 \\
& \text { ie } \lambda>\frac{3 \sin x}{2+\cos x} \text { for } x>0
\end{aligned}
$$

Quetion 2
(a)
$\left\{\begin{array}{l}10 m^{2} \\ \{10 \mathrm{~m}\end{array}\right.$

$$
\begin{aligned}
m a & =10 m-\frac{1}{10} m v^{2} \\
a & =10-\frac{1}{10} v^{2} \\
& =\frac{160-0^{2}}{10}
\end{aligned}
$$

(b)

$$
\frac{10}{10+v)(10-v)}=\frac{b}{10+5}+\frac{c}{10-5}
$$

$$
10=b(10.0)+c(100)
$$

$$
\text { cub. } v=10 \Rightarrow c=\frac{1}{2}
$$

$$
\operatorname{sid}:=-10 \Rightarrow b=\frac{1}{2}
$$

(c)

$$
\begin{aligned}
& e^{2 t}=\frac{10+v}{10-v} \\
& 10 e^{2 t}-v e^{2 t}=10+v \\
& v=\frac{10\left(e^{2 t}-1\right)}{e^{2 t}+1} \\
& \frac{d x}{d t}=\frac{10\left(e^{t}-e^{-t}\right)}{e^{t}+e^{-t}} \\
& x=10 \ln \left(e^{t}+e^{-t}\right)+C
\end{aligned}
$$

When $t=0, x=0 \therefore c=-10 \ln 2$

$$
\begin{aligned}
& \text { hen } t=0, x-0 \\
& \therefore x=\ln \left(\frac{e^{t}+e^{-t}}{2}\right)
\end{aligned}
$$

(d)

$$
\text { as } a \rightarrow 0, \quad \begin{aligned}
& \quad \frac{100-v^{2}}{10}+0 \\
& v^{2}
\end{aligned} \quad=10 \theta \quad(v>0)
$$

(e)

$$
\begin{aligned}
v=\rho \Rightarrow t & =\frac{1}{2} \ln \left(\frac{18}{2}\right) \\
& =\frac{1}{2} \ln 9 \\
& =\ln 3 \\
x & =10 \ln \left(\frac{e^{\ln 3}+y^{-\ln 3}}{2}\right) \\
& =10 \ln \left(\frac{3+\frac{1}{2}}{2}\right) \\
& =10 \ln \left(\frac{5}{3}\right)
\end{aligned}
$$

1 mank

1 mank for reluiving to peptial fraturin.

1 manis for intiproturn

I mork for evaluation Conthant 1 mave for $e^{2 t}$

1 monk for 0

1 mark for $\frac{d x}{d t}$

I mante for x

1 mank

1 mark for any of there exprestions

1 meare
for anny of thece exprustions

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{100-v^{2}}{60} \\
& \frac{d t}{d v}=\frac{10}{100-0^{2}}=\frac{10}{(0+0)(100)} \\
& =\frac{1}{2}\left(\frac{1}{10+0}+\frac{1}{10-\theta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore t=\frac{1}{2}(\ln (10+0)-\ln (10-0))+k \\
& \text { When } t=0,0=0 \quad . \quad k=0 \\
& \therefore t=\frac{1}{2} \ln \left(\frac{10+v}{10-5}\right)
\end{aligned}
$$

Q VETRGN3
(a) Whon $n=1$, Lits $=1 \times 1!=1$

$$
\begin{aligned}
& R H=2!-1=2-1=1 \\
& L H=R H S
\end{aligned}
$$

\therefore pre ta $n=1$
Aisume hax for $n=1$

$$
\begin{aligned}
& \text { hax } \tan =1 \\
& -2!+2 \times 2!+\cdots+b x k!=(k+1)!-1
\end{aligned}
$$

$\operatorname{lot} n=4+13$

$$
\begin{aligned}
& \left.\begin{array}{rl}
L H: & =1 \times 1!+2+2!+\cdots+L \times K!+(L
\end{array}\right) \\
& =(k+1)(1+k+1)-1 \\
& =(k+2)(l+1)!-1 \\
& =\left.(L+2)\right|^{-1}=R+6
\end{aligned}
$$

ine Ma Cor $n=k+1$ if foni $f o r n=k$
Ont provel tway for
\therefore Wre for $n=2,3,4, \cdots$ and al poritie inteferg
(b)
(i)

$$
\begin{aligned}
& T C^{2}=T B \cdot T A \\
& T D^{2}=T B \quad T A
\end{aligned}\left(\begin{array}{c}
\text { squane of tanent equal powhent } \\
\text { of intercepts ofo secont Gow the } \\
T C^{2}=T D^{2}
\end{array}\right)
$$

$$
T C=T 0
$$

(ii) then $\angle T C D=G D C \quad$ (isor $\triangle T C D)$
$\angle T C D=\angle T A C$ (ample botwan taryent and duand and $\angle T D C=\angle A D$ (equals anpa in altenatefenent)

$$
\therefore \angle C A C=\angle T A
$$

(iii) Fiven(ii) $\angle T C D=\angle C A C=\angle C A D$
$T C A$ is a cyelie gradindeted
at the conpes in the some segmat at C and A subterdid from $C D$ ane epmad

I mack to primins frax far $n=1$

1 mink for corvestly Sbrtituling foom a/suouption

I mouk for corvect prore for $n=6$

1 modr - reaton not newsam
2 make fir carredpout

- I varle fi Wo neatons or smerrect realins. (Mente
(mank
(C)

$$
\begin{aligned}
& \text { LHS }=f_{0}=2^{2^{0}}+1=2^{1}+1=3 \\
& \text { RHS }=f_{1}-2=2^{2^{1}}+1-2=2^{2}+1-2=3 \\
& \text { LHS }=\text { RHS } \\
& \therefore \text { fre for } n=1
\end{aligned}
$$

Assume trae $\operatorname{cor} n=k$

$$
\text { ie } f_{0} f_{1} \cdots f_{k-1}=f_{k}-2
$$

$\operatorname{Lot} n=k m$,

$$
\begin{aligned}
L+s & =f_{0} f_{1} \cdots f_{k-1} f_{k} \\
& =\left(f_{k}^{-2}\right) f_{k} \text { from assomption } \\
& =\left(2^{\left.2^{k}+1-2\right)\left(2^{2 k}+1\right)}\right. \\
& =\left(2^{\left.2^{k}-1\right)\left(2^{2^{k}}+1\right)}\right. \\
& =\left(2^{2^{k}}\right)^{2}-1 \\
& =2^{2_{k+2}-1} \\
& =2^{2^{k+1}}-1=f_{k+1}^{-2} \\
& =2^{2^{k+1}+1-2}=R^{2+5}
\end{aligned}
$$

Fe true tor $n=6+n$ if trme for $n=x$ But tre for $n=1$, \therefore true to $n=2,3,4, \ldots$ and all pointive intereers

1 make fo
proving true tor $n=1$

2 manke for conrect prort

1 maik for Coneet Substitation Geom arsumption.

