$\qquad$
$\qquad$

# BAULKHAM HILLS HIGH SCHOOL 

## Year 12

## MATHEMATICS ADVANCED ASSESSMENT

## HALF-YEARLY

## March 2008

Time allowed -3 hours +5 minutes reading time

## DIRECTIONS TO CANDIDATES:

- $\quad$ Start each question on a new page.
- Show all relevant working.
- Use black or blue pen.
- NO liquid paper is to be used.
- Approved Maths aids and calculators may be used.
(a) Evaluate, correct to three significant figures

$$
1-\sqrt{\frac{(2.044)^{3}}{34.5-1.2^{2}}}
$$

(b) Factorise $x^{3}-5 x^{2}+6 x$
(c) A function $f(x)$ is defined as $f(x)= \begin{cases}|x-1| & \text { for } x \leq 0 \\ 4-x^{2} & \text { for } x>0\end{cases}$

Evaluate $f(2)+f(0)$
(d) Evaluate $\sum_{r=1}^{3} r^{2}$
(e) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(f) Evaluate $\int_{0}^{3} e^{2 x} d x$ in terms of $e$

QUESTION 2 [12 marks]
(a) Find $\int \frac{3 x^{2}}{x^{3}+5} d x$
(b) Differentiate
i) $x^{2} \ln 3 x \quad 2$
ii) $\frac{x}{3 x-2}$

2
(c) Given $\log _{a} 2=0.36$ and $\log _{a} 5=0.83$,

Show working to find the value of
(i) $\log _{a} 10$
(ii) $\log _{2} 5$
(d) By rationalising the denominators,
express $\frac{1}{3-\sqrt{2}}+\frac{1}{3+\sqrt{2}}$ in simplest form
(a)


ABCD is a square. Lines are drawn from $C$ to $M$ and $N$, the midpoints of $A D$ and $A B$ respectively.
(i) Show that $\triangle C B N \equiv \triangle C D M$
(ii) Prove that $M C=N C$
(b) Let $T_{n}=$ the $n$th term of a series, and $S_{n}=$ the sum of $n$ terms of a series. For a particular arithmetic series, $S_{n}=n(2 n-1)$
(i) Find $S_{1}$ and $S_{2} \quad 2$
(ii) Find the expression for $T_{n}$ for this series
(c) For the curve $y=\frac{1}{x+1}+4$
(i) State the domain and range
(ii) Sketch the graph showing all important features
(a) For the following diagram, find
(i) find $A C$
(ii) find the size of $\angle A B C$ (correct to the nearest degree)

(b) In the diagram below the lines $3 x+y-9=0$ and $4 x-y+16=0$ intersect at the point B. The point A has the coordinates $\mathrm{A}(3,0)$ and the point C has the coordinates $\mathrm{C}(-2,8)$.

(i) Show that the line AC has the equation $8 x+5 y-24=0$
(ii) B is the intersection point of the lines $3 x+y-9=0$ and $4 x-y+16=0$, show that the co-ordinates of $B$ is $(-1,12)$
(iii) Find the length of AC. Leave your answer as a surd.
(iv) Find the perpendicular distance from point B to AC.

Leave your answer as a surd.
(v) Hence find the area of $\triangle A B C$
(a) Copy the diagram and below the axis sketch the derivative function


(b) Consider the function $f(x)=3 x^{4}-4 x^{3}$
(i) Show that $f^{\prime}(x)=12 x^{2}(x-1)$
(ii) Find the coordinates of the stationary points of the 4 curve $y=f(x)$ and determines their nature.
(iii) Sketch the graph of the curve $y=f(x)$, showing stationary points,
(iv) Find the coordinates of any points of inflection.
(v) Find the values of $x$ for which the graph of $y=f(x)$ is concave down.
(vi) Find the greatest values of $y=f(x)$ in the domain $-1 \leq x \leq 2$
(a) If $\alpha, \beta$ are roots of the quadratic equation $6 x^{2}-x+5=0$, find:
(i) $\alpha+\beta$

1
(ii) $\alpha \times \beta$
(iii) $\alpha^{2}+\beta^{2}$
(iv) $\alpha^{3}+\beta^{3}$

2
(b) Given the parabola $y=x^{2}+6 x+7$, find:
(i) focal length 1
(ii) vertex

1
(iii) Find the equation of the normal at $x=-1$, in general form.
(c) Solve for $2 \cos \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

QUESTION 7 [12 marks]
(a) Show that $\frac{3 x+3}{x^{2}-9}=\frac{1}{x+3}+\frac{2}{x-3}$

Hence find $\int \frac{3 x+3}{x^{2}-9} d x$.
(b) Find the volume of the solid of revolution formed by rotating
the curve $y=x-\frac{1}{x}$ about the $x$-axis between $x=1$ and $x=4$
Answer in terms of $\pi$.
(c) Find $\frac{d}{d x}\left(x^{2}-3\right)^{5}$ and

Hence find $\int x\left(x^{2}-3\right)^{4} d x$
(d) Find the largest term less than 10000 in the series $1+4+7+10$
(e) Find the values of $K$ for which the equation $x^{2}-K x+4=0$, has two real distinct roots
(a) Differentiate:
(i) $4^{x}$
(ii) $\log _{10} x$

1
2
(b) Solve the equation $2 \ln x=\ln (6-x)$
(c) By expressing $0 . \overline{25}$ as the sum of an infinite geometric series, find the simple equivalent fraction for $0 . \overline{25}$.
(d) The gradient of the curve $y=f(x)$ is given by $f^{\prime}(x)=(2 x+1)^{5}$. Find the equation of the curve if it passes through the point $(1,5)$
(e) Find the values $A, B$ and $C$ if

$$
x^{2}+5 \equiv A(x-1)^{2}+B(x-1)+C
$$

QUESTION 9 [12 marks]
(a) Solve for $x$ : $3^{2 x}-4\left(3^{x}\right)+3=0$
(b) (i) Sketch the graph $y=|2 x|-4$ for $-2 \leq x \leq 4$.

Showing all features of the graph.
(ii) Hence or otherwise, evaluate

$$
\int_{-2}^{4}|2 x|-4 d x
$$

(c) A farmer is building a wheat silo in the shape of a closed cylinder of radius $r$ metres. The silo is to be made from galvanised iron sheeting and is to have a capacity of $300 \mathrm{~m}^{3}$.
(i) Find an expression for the height of the silo in terms of $r$.
(ii) Show that the surface area A , of the silo is given by the equation 2

$$
A=2 \pi r^{2}+\frac{600}{r}
$$

(iii) Hence find the minimum area of galvanised iron sheeting needed to make the silo, leaving your answer in one decimal place.
(a) Find the area enclosed between the curve $y=x^{2}$ and the line $y=x+2$
(b) (i) Shade the region bounded by the curve $y=\log _{e} x$, the $y$-axis the $x$-axis and the line $y=2$.
(ii) Calculate the volume of the solid of revolution formed when this region is rotated about the $y$-axis, in terms of $\pi$.
(c) The following diagram represents a retaining wall in a nursery made from timber. Each length of the timber is 4 cm longer than the proceeding one. The last length of timber is 296 cm long and the first is 60 cm long.


Find:
(i) How many lengths of timber make up the wall
(ii) The total length of the timber needed to make the retaining wall.
(iii) If each of timber is 10 cm wide, find the area of the wall in square $\mathbf{1}$ metres

## End of Paper

The third term and the tenth term of an arithmetic series are 10 and 31 respectively. Find the:
i) first term and the common difference
ii) sum of the first ten terms of the series 1
(c) Using Simpson's Rule with three function values, find an approximate 3 value for the area represented by the definite integral

$$
\int_{2}^{3} \cos ^{2} x d x
$$

(d) For what values of $k$ does the quadratic equation $k x^{2}+k x+1=0$ have no real roots?

Find the equation of the tangent to the curve $y=\ln \left(x^{2}+2\right)$
at the point where $x=1$. Answer in general form
(b)
(c)


Solve $\log _{27} 32=x \log _{3} 2$ without the aid of a calculator.
Show all working
(f)

IR 122008 HYKLY $2 U$ ADVANCED.
(4a) 0.49175

$$
=0.492(3 \operatorname{sig} f(\mathrm{eg})
$$

b) $x^{3}-5 x^{2}+6 x$.

$$
=x\left(x^{2}-5 x+6\right)
$$

$$
=x(x-3)(x-2)
$$

c) $f(2)=4-2^{2}=0$
$f(0)=|0-1|=1$

$$
f(2)+f(0)=b+1=1
$$

d)

$$
\begin{aligned}
\sum_{r=1}^{3} r^{2} & =1^{2}+2^{2}+3^{2} \\
& =1+4+9 \\
& =14
\end{aligned}
$$

e) $\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{(x-3)}=\lim _{x \rightarrow 3} x+3$
f) $\int_{0}^{3} e^{2 x} d x=\left[\frac{1}{2} e^{2 x}\right]_{0}^{3}$

$$
\begin{aligned}
& =\frac{1}{2} e^{6}-\frac{1}{2} e^{c} \\
& =\frac{1}{2} e^{b}-\frac{1}{2} .
\end{aligned}
$$

Q2
a) $\int \frac{3 x^{2}}{x^{3}+5} d x=\ln \left(x^{3}+5\right)+c$
b) (i) $y=x^{2} \ln 3 x$

$$
\begin{array}{rlrl}
u & =x^{2} & \quad v=\ln 3 x \\
u^{\prime} & =2 x \quad v^{\prime}=\frac{3}{3 x}=\frac{1}{x} \\
y^{\prime} & =2 x \ln 3 x+\frac{1}{x} \times x^{2} \\
& =2 x \ln 3 x+x
\end{array}
$$

$$
\text { (ii) } \begin{aligned}
y & \frac{x}{3 x-2} u \\
u & =x \quad v^{\prime}=3 x-2 \\
u^{\prime} & =1 \quad v^{\prime}=3 \\
y^{\prime} & =\frac{1 \times(3 x-2)-3 x}{(3 x-2)^{2}} \\
& =-\frac{-2}{(3 x-2)^{2}}
\end{aligned}
$$

C)
i) $\begin{aligned} \log _{a} 10 & =\log _{e^{2}} \log _{a} 5 \\ & =0.36+0.83\end{aligned}$

$$
=0.36+0.85
$$

$$
=
$$

(ii) $\log _{2} 5=\frac{\log _{a} 5}{\log _{2} 2}=\frac{0.83}{0.3 t}$
d) $\frac{1(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}+\frac{1(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}=\frac{6}{9-2}$

$$
=\frac{6}{7}
$$


(v)

$$
\begin{aligned}
A & =\frac{1}{2} b n \\
& =\frac{1}{2} \times \sqrt{80} \times \frac{28}{\sqrt{84}} \\
& =14 \text { units }^{2}
\end{aligned}
$$


b) $f(x)=3 x^{4}-4 x^{3}$
(i)

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}-12 x^{2} \\
& =12 x^{2}(x-1)
\end{aligned}
$$

ii) Stent pt when $f^{\prime}(x)=0$

$$
\begin{aligned}
& 0=12 x^{2}(x-1) \\
& x=0 \quad \text { or } x=1 \\
& f(0)=0 \quad \text { or } f(1)=-1
\end{aligned}
$$

$f^{\prime \prime}(x)=36 x^{2}-24 x$
$f^{\prime \prime}(0)=0$.
$f^{\prime}(0,0)$ is a $V$
horizontal inflection
$f^{\prime \prime}(1)=12>0$
Cancule vi horizontal inflection $\ldots=(1,-1)$ is a ming.
(ii)


QT N

$$
\begin{aligned}
& f^{\prime \prime}(x)=36 x^{2}-24 x \\
& 0=36 x^{2}-24 x \\
& 0=x(3 x-2) \\
& x=0 \quad x=\frac{2}{3} \\
& f(0)=0 \quad f\left(\frac{2}{3}\right)=
\end{aligned}
$$

pts of inflections ave $(0,0)$ and $\left(\frac{2}{3},-\frac{16}{2}\right)$
v) honcaue down when $f^{\prime \prime}(x)<0 /$
$x(3 x-2)<0$.

$$
x(3 x-2)<0 \text {. }
$$

$\therefore$ concave down when $0<x<\frac{2}{3}$
vi)

$$
\begin{aligned}
f(-1) & =3(-1)^{4}-4(-1)^{3} \\
& =7 \\
f(2) & =3(2)^{4}-4(2)^{3} \\
& =16
\end{aligned}
$$

$\therefore$ max value is $1 t$
Q a) $6 x^{2}-x+5=0$

$$
\text { (i) } \alpha+\beta=\frac{1}{\frac{1}{2}}
$$

ii) $\alpha \beta=\frac{5}{6}$

$$
-\quad v
$$

iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta \\
& =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =-\frac{59}{36}
\end{aligned}
$$

$$
\text { iv) } \begin{aligned}
\alpha^{3}+\beta^{3} & =(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\
& =\left(\frac{1}{6}\right)\left(39-\frac{5}{6}\right) \\
& =-\frac{89}{216}
\end{aligned}
$$

66
b) $y=x^{2}+6 x+7$

$$
\begin{gathered}
y=x^{2}+x+9-9+7 \\
y=(x+3)^{2}+7 \\
\left.(x+3)^{2}=y+2\right)
\end{gathered}
$$

(i) deal bugth $=\frac{1}{4}$
ii) virtex $(-3-2)$
iin $\quad y^{\prime}=3 x+6$

$\operatorname{xit}(-1,2)$

$$
i-2=\frac{-1}{4}(x+1)
$$

$$
x-4 y+\bar{Y}=0
$$



$$
\begin{aligned}
& \cos \theta=\frac{t}{2} \\
& A=t \theta \\
& \theta C
\end{aligned}
$$

$-M_{N}=\frac{1}{4}$
$\qquad$

$\qquad$
$\nu \frac{S L^{\prime}}{T K}$
 $\qquad$

Q] a)

$$
\text { a) } \begin{aligned}
\text { RHS } & =\frac{1}{x+3}+\frac{2}{x-3} \\
& =\frac{x-3+2(x+3)}{(x+3)(x-3)} \\
& =\frac{3 x+3}{x^{2}-9} \\
& =(1+) \\
& =\ln (x+3)+2 \ln (x-3)+C \\
& =\ln (x+3)(x-3)^{2}+C
\end{aligned}
$$

(b) $\quad V=\pi \int_{1}^{4} y^{2} d x$

$$
\begin{aligned}
& y= x-\frac{1}{x} \\
&\left.=x^{2}-2 x-\frac{1}{2}\right)^{2} \\
&=x^{2}-\frac{1}{x}+\frac{1}{x^{2}} \\
& V=\int_{1}^{4} x^{2}-2+\frac{1}{x^{2}} d x \\
&\left.=\pi \quad\left[\frac{x^{3}}{3}-2 x-\frac{1}{x}\right]_{1}^{4}\right] \\
&=\frac{\pi}{\pi}\left[\left(\frac{4^{3}}{3}-2 \times 4-\frac{1}{4}\right)-\left(\frac{1}{3}-2 \times 1-\frac{1}{1}\right)\right] \\
&=\frac{63 \pi}{4}
\end{aligned}
$$


(d) AP $a=1 \quad d=3$


$$
u \times 3334
$$

$$
\therefore n=3333
$$

$$
\therefore \text { langest telk }=T 3333=9997
$$

(e) $\frac{x=\frac{1}{2} \sqrt{2}}{a}$
$2 d \operatorname{stintr} 2 \in$ if 20

$$
\begin{aligned}
& \Delta=b^{2}-4 a c>0 \\
& k^{2}-4 \times 1 \times 4>0 \\
& k^{2}-16>0 \\
& (k+4)(k-4)>0
\end{aligned}
$$

Instuxt en $\Rightarrow k<-4$ or $k>4$

Q8 a)

$$
\begin{aligned}
& y=4^{x} \\
& y=\ln 4 \times 4^{x}
\end{aligned}
$$

$$
\text { b) } y=\log _{10} x=\frac{\log x}{\log 10}
$$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\log 10} \times \frac{1}{x} \\
& =\frac{1}{x \log 0}
\end{aligned}
$$

b) $\quad \ln x^{2}=\ln (6-x)$

$$
\begin{aligned}
& x^{2}=6-x \\
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 .
\end{aligned}
$$

$$
x=-3,2
$$

But $x \neq-3 \quad \therefore x=2$
() $0.25=0.25+0.0025+0.000025 t \ldots$

$$
\begin{aligned}
& a=0.25 \\
& S_{2}=\frac{a}{1-r}=\frac{0.001}{1-0.00} \\
&=\frac{0.25}{0.99} \\
&=\frac{25}{9.9}
\end{aligned}
$$

$\csc (\operatorname{ccn} t)$
a)

$$
\begin{aligned}
& f^{\prime}(x)=(2 x+1)^{5} \\
& f^{5}(x)=\frac{(2 x+1)^{2}}{6 \times 2}+c \quad
\end{aligned}
$$

$a t(1,5)$

$$
\begin{aligned}
& 5=\frac{\left(2 x(+1)^{6}\right.}{12}+c \\
& c=-55 \frac{3}{4} \sqrt{5}-5 \frac{3}{4} \\
& f(x)=\frac{(2 x+1)}{12}-55 \frac{3}{4}
\end{aligned}
$$

c)

$$
\begin{aligned}
& x^{2}+5 \equiv A(x-1)^{2}+B(x-1)+C \\
& x^{2}+5 \equiv A\left(x^{2}-2 x+1\right)+B X+C \\
& \frac{A}{-2}+5=A+B=C \\
& \frac{B=2}{2}-B+C=5 \\
& 1-2+C=5 \\
& C=6 \\
& \therefore A=1, B=2 C=C
\end{aligned}
$$

$1 Q 4$
a)

$$
\begin{gathered}
3^{2 x}-4\left(3^{x}\right)+3=0 \\
\left(3^{x}-3\right)\left(3^{x}-1\right)=0 \\
3^{x}=3 \text { or } 3^{x}=1 \\
x=1 \text { or } x=0
\end{gathered}
$$

b) $y=|2 x|-4$

| (i) yint; $x=0$. | $\operatorname{sint} y=0$ | $x=4, y=4$ |
| ---: | ---: | ---: |
| $y=-4$ | $\|2 x\|=4$ |  |
| $x= \pm 2$ |  |  |


(ii)

$$
\begin{aligned}
\int_{-2}^{4}|2 x|-4 d x & =\int_{2}^{4}|2 x|-4 d x+\int_{-2}^{2} \\
& =\frac{1}{2} \times 2 \times 4-\frac{1}{2} \times 4 \times 4 \\
& =-4
\end{aligned}
$$


(ii) \& $A=2 \pi r^{2}+2 \pi r h$
$A=2 \pi x^{2}+2 x y\left(\frac{300}{\pi x^{2}}\right)$.
$A=2 \pi r^{2}+\frac{600}{r}$
$A=2 \pi r^{2}+600^{-1}$
(ii) $\frac{d A}{d r}=4 \pi x \quad 4=6=c_{i}^{2}$
min when $\frac{d A}{d^{2}}=c$

$$
c=4 \pi r-\frac{6 c i}{r^{2}}
$$

$4 \pi r^{3}=600$

$$
r=\sqrt[3]{\frac{6 \odot 0}{4 \pi}}=3.627 \cdots /
$$



$$
A=218.85
$$



