\qquad
\qquad

BAULKHAM HILLS HIGH SCHOOL

Year 12

MATHEMATICS ADVANCED ASSESSMENT

HALF-YEARLY

March 2010

Time allowed -3 hours +5 minutes reading time

DIRECTIONS TO CANDIDATES:

- \quad Start each question on a new page.
- Show all relevant working.
- Use black or blue pen.
- \quad NO liquid paper is to be used.
- Approved Maths aids and calculators may be used.
(a) Evaluate, correct to three significant figures

2

$$
\frac{3.5^{2}}{1.8^{2}-\sqrt{145}}
$$

(b) Find integers a and b such

$$
\begin{equation*}
(2 \sqrt{5}-1)^{2}=a \sqrt{5}+b \tag{2}
\end{equation*}
$$

(c) Solve $\frac{2 x-1}{3}-\frac{1-3 x}{5}=2$
(d) Find the primitive function of $3 x+\sin 3 x$
(e) Find the value of x for which
$|2 x-1|>5$
2
(f) Factorise $9 x^{2}-16$

1

QUESTION 2 [12 marks]
(a) Differentiate
(i) $x^{2} \cdot \cos x \quad 2$
(ii) $\frac{4-x}{\sin x}$
(b) Solve $2 \cos x+1=0$ for $0 \leq x \leq 2 \pi$
(c) Evaluate

$$
\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \sec ^{2} 3 x d x
$$

(d)

If the area of this triangle is $6 \mathrm{~cm}^{2}$, find the exact value of x.
(e) Sketch the curve of $y=\tan x$ for $0 \leq x \leq \pi$
(a) Given points $A(-3,1)$ and $B(2,-3)$.

Point A lies on the line $l: 4 x-3 y+15=0$ and
Point B lies on the line k given by the equation $4 x+y-5=0$.

(i) Show that the point C, the point of intersection of the lines l and k, must lie on the y-axis.
(ii) Find the gradient of the line $A B$
(iii) Find the equation of AB
(iv) Find the perpendicular distance from point C to the line $A B$
(v) Find the area of $\triangle A B C$.
(b) Find the equation of the tangent to the curve $y=(x-1)(x+5)$ at the point where $x=0$

QUESTION 4 [12 marks]
(a)

$A B C$ is a sector with $\angle B A C=\frac{\pi}{3}$ and $A C=A B=9 \mathrm{~cm}$
(i) Calculate the area of sector ABC
(ii) Calculate the area of the shaded region
(b) Find the equation of the parabola with vertex $(1,4)$ and focus $(1,-2)$.
(c) The tangent to the curve $y=\cos x$ at point P has a slope of $\frac{1}{2}$ for $0 \leq x \leq \frac{3 \pi}{2}$ Find the coordinates of the point P.
(d) Given $y=x^{4}-x$. Is the function even or odd or neither? Justify your answer.
(a)

$\triangle A B C$ is isosceles where $A B=A C$.
D lies on $A C$ such that $\angle A B D=3 \angle D B C$ and also $B D=B C$.
Find the value of x, giving reasons.
(b) The graph below can be represented by an equation in the form $y=\operatorname{acos} n x$.

Find the values of a and n.

(c)

An observer is standing at point O and sees a plane at $P 750 \mathrm{~m}$ from O. 8 seconds later the plane is sighted at $Q, 3000 \mathrm{~m}$ from O.
The angles of elevation of P and Q from O are 73° and 7° respectively.
Find the speed of the plane.
(d) (i) Differentiate $y=\left(3 x^{2}-7\right)^{10}$
(ii) Hence find $\int x\left(3 x^{2}-7\right)^{9} d x$
(a) (i) Graph

2
$y=\left\{\begin{array}{cc}-\frac{3}{x-1} & \text { for } x<0 \\ x^{2}+3 & \text { for } x \geq 0\end{array}\right.$
(ii) Find $f(-2)+f(2)$ 1
(iii) Find $f\left(a^{2}\right)$
(b) Find the values of k for which the quadratic equation $2 x^{2}-k x+k=0$ has real roots
(c) Use Simpson's rule with five function values to approximate the volume generated by $y=\sin x$ rotated around x-axis between $x=0$ and $x=\frac{\pi}{2}$
(d) Find $\int 5 \cos x^{\circ} d x$

QUESTION 7 [12 marks]
(a)

(i) Show that $y=\cos 2 x$ and $y=\sin x$ meet at the point where $x=\frac{\pi}{6}$ Hence, write down the value of x at B.
(ii) Redraw the diagram in your booklet and shade the region bounded only by these two curves in between $x=\frac{\pi}{6}$ and $x=\frac{\pi}{2}$
(iii) Find the exact area of the shaded region shown in part (ii)

3
(b) The point $P(x, y)$ moves so it's distance from the point $A(3,9)$ is always twice the distance from the point $B(6,6)$
(i) Find the locus of the point P
(ii) Show that the locus in part (i) is a circle.

State its centre and radius.
(c) Evaluate
(a) Find the area bounded by $x=y^{2}-2 y-3$ and the y - axis

3
(b)

(i) Find the coordinates of C
(ii) Find the exact volume when the shaded area is rotated around the y-axis.
(c)

Given, $A C / / E D, C D=4 \mathrm{~cm}, D B=12 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$
(i) Prove that $\triangle C B A / / / \triangle D B E$
(ii) Hence or otherwise, calculate the length of $E B$
(a) (i) Prove that $\sec ^{2} \theta-2 \tan \theta=(\tan \theta-1)^{2} \quad 2$
(ii) Hence or otherwise solve $\sec ^{2} \theta-2 \tan \theta=0$ for $0 \leq \theta \leq 2 \pi$
(b) Consider the geometric series

$$
3-6 x+12 x^{2}-24 x^{3}+\ldots
$$

(i) For what values of x does this series have a limiting sum?
(ii) If the limiting sum of the series is 2.5 , find the value of x
(c) The parabola is given by equation $2 y=x^{2}-8 x$ Find:
(i) The coordinates of the vertex $\mathbf{1}$
(ii) The focal length $\mathbf{1}$
(iii) The focus 1
(iv) The equation of the directrix $\mathbf{1}$

QUESTION 10 [12 marks]

Marks

(a) Given that $f(x)=x^{2} \sqrt{10-x}$
(i) Show that $f^{\prime}(x)=\frac{5 x(8-x)}{2 \sqrt{10-x}}$
(ii) State the domain of the function
(iii) Find all the stationary points on the curve $y=x^{2} \sqrt{10-x}$ and determine their nature.
(b) A cylinder is to be made to fit inside a sphere of radius $r \mathrm{~cm}$, as shown

(c)

Let $R=$ radius of cylinder and x be the distance of the base of the cylinder from the centre of the sphere as shown.
(i) Find an expression for the radius of the cylinder (R) in terms of r and x
(ii) Show that the volume, V, of the cylinder is given by $V=2 \pi x\left(r^{2}-x^{2}\right)$
(iii) Find in terms of r, the maximum volume of the cylinder. Leave your answer in exact form.

Yr. 12 Half-yearly ass. task 2010 Total (\$120)
Question
a) $-1.39179 \ldots=-1.39$
b) $(2 \sqrt{5}-1)^{2}=a \sqrt{5}+b$
$4 \times 5-2 \times 2 \sqrt{5}+1=a \sqrt{5}+b$
$20+1-4 \sqrt{5}=b+a \sqrt{5}$

$$
b=21 \quad a=-4
$$

$$
\begin{aligned}
\text { C) } \frac{2 x-1}{3}-\frac{1-3 x}{5} & =2 \\
\frac{10 x-5-3+9 x}{15} & =2 \\
\therefore x & =2
\end{aligned}
$$

d)

$$
\begin{aligned}
& 3 x+\sin 3 x d x \\
& =\frac{3 x^{2}}{2}-\frac{1}{3} \cos 3 x+c
\end{aligned}
$$

e) $|2 x-1|>5$
$2 x-1>5$ or $2 x-1<-5$
$x>3 \quad x<-2$

$$
\therefore \quad x<-2, x>3
$$

f) $(3 x-4)(3 x+4)$

Question $20 . K$.
a) $\frac{d}{d x}\left(x^{2} \cdot \cos x\right)$
(i) $d x$
$=2 x \cdot \cos x+x^{2} \cdot(-\sin x)$
(ii) $\frac{d}{d x}\left(\frac{4-x}{\sin x}\right)=\frac{-1 \cdot \sin x-(4-x) \cdot \cot .}{\sin ^{2} x}$
$=\frac{-\sin x-4 \cos x+x \cdot \cos x}{\sin ^{2} x}$
b) $2 \cos x+1=0$

$$
\cos x=-\frac{1}{2}
$$

$x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
$=\frac{1}{3}\left[\tan \frac{\pi}{3}-\tan \frac{\pi^{-1}}{4}\right]=$ $=\frac{1}{3}[\sqrt{3}-1]^{\vee}$ or 0.244 .
d)

$A=6=\frac{1}{2} x \times 3 \times \sin \frac{\pi}{3} V$

$$
\begin{aligned}
& 12=3 x \cdot \frac{\sqrt{3}}{2} \\
& x=\frac{24}{3 \sqrt{3}}=\frac{8}{\sqrt{3}} 2
\end{aligned}
$$

c) $\int_{\sec ^{2} 3 x d x=\left[\frac{1}{3} \tan 3 x\right]^{\pi / 9} \quad \text { iii } A B: y-1=-\frac{4}{5}(x+3) v}$

Question 3.
a) $A(-3,1) \quad B(2,-3)$

$$
l: \frac{\downarrow}{4} x-3 y+15=0
$$

$$
\overrightarrow{k: ~} 4 x+y-5=0
$$

$$
y=-\frac{4}{5} x-\frac{7}{5}
$$

or $4 x+5 y+7=0$
i) $c\left\{\begin{array}{l}4 x-3 y+15=0 \\ 4 x+y-5=0 \quad 4 y-20=0 \\ \therefore y=5\end{array}\right.$
$\therefore y=5 \therefore x-3 y+15=0$
$4 x-15+15=0^{2}$
$\therefore c(0,5) \therefore$ lies on y-axis
ii) $m_{A B}=\frac{1+3}{-3-2}=\frac{-4}{5}$
iv) $C(0,5)$
$A B: 4 x+5 y+7=0$

$$
\therefore d=\frac{4 \times 0+5 \times 5+7}{\sqrt{4^{2}+5^{2}}}=\frac{32}{\sqrt{41}}
$$

b) $(1,4)(1,-2)$

v)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times A B \times 2 \\
& =\frac{1}{2} \times \sqrt{41} \frac{32}{\sqrt{4}}, \quad A B=\sqrt{41} \quad(x-m)^{2}=-4 a(y \\
& \left.=16 \text { (units }^{2}\right)
\end{aligned}
$$

i) Area $=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times$.

$$
\therefore A=\frac{27 \pi}{2}
$$

ii) $\triangle A D B=\frac{1}{2} A D \cdot A R$.
$\cos \frac{\pi}{3}=\frac{A D}{9}=\frac{1}{2} \therefore A D$
\therefore Area $=\frac{1}{2} \times \frac{9}{2} \times 9 \cdot \frac{\sqrt{3}}{2}$

$$
\therefore \therefore=\frac{91}{8} \sqrt{3} v
$$

$$
\begin{aligned}
& \therefore \text { or }=\frac{27 \pi}{2}=\frac{8}{8}= \\
& \quad \text { or }=81 \sqrt{3} \\
&
\end{aligned}
$$

(c)
b) $y=(x-1)(x+5)=x^{2}+4 x-5$

$$
y=\cos x
$$

$\therefore \frac{d y}{d x}=2 x \times \underbrace{4} \quad \therefore m=2 \times 0+4$
at $x=0 \quad y=-5$

$$
\begin{gathered}
y=\cos x \\
\frac{d y}{d x}=-\sin x \quad P(x \\
\frac{1}{2}=-\sin x \\
\therefore x=\frac{1 \pi}{6}
\end{gathered}
$$

\therefore trent: $\left.\begin{array}{rl}y+5 & =4(x-0) \\ y & =4 x-5\end{array} \quad \therefore P\left(\frac{7 \pi}{6}\right)-\frac{\sqrt{3}}{2}\right)$

Question Ad)

$$
\begin{aligned}
& y=x^{4}-x=f(x) \\
& f(-x)=(-x)^{4}-(-x)=x^{4}+x \\
& \\
& \neq f(x) \quad \therefore \text { notevey } \\
& f(-x)
\end{aligned}=-f(x) \quad \text { since } f(-x)=x^{4}+x=-\left(-x^{4}-x\right) .
$$

$\neq-f(x) \quad \therefore$ not odd
\therefore neither
Question $50 . x$.

a)

B
$\angle A B D=3 x \therefore \angle A B=4 x$

" $A B C$ are $=1$ Question 6 V. .
b)

$$
\begin{aligned}
& y=a \cos n x \\
& a=3 \text { (amplitude) } \\
& T=\frac{4 \pi}{3}=\frac{2 \pi}{n} \therefore n=\frac{3}{2}
\end{aligned}
$$

$$
\cos 73^{\circ}=\frac{\alpha_{1}}{750} \quad \text { iii) } f\left(a^{2}\right)=\left(a^{2}\right)^{2}+3=a^{4}+3-
$$

$$
\begin{aligned}
& \therefore d_{\text {TRAVELED }}=d_{2}-d_{1}=2758.3597 \\
& \therefore \text { speed } \\
& =\frac{2758.359676 \mathrm{~m}}{8 \mathrm{sec}} \\
& \\
& =344.7949596 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

d) i) $y=\left(3 x^{2}-7\right)^{10}$

$$
\begin{aligned}
\frac{d y}{d x} & =10\left(3 x^{2}-7\right)^{9} \times 6 x \\
& =60 x\left(3 x^{2}-7\right)^{9}
\end{aligned}
$$

Question 7 0.K.
b)
c) $y=\sin x$

$$
V=\pi \int^{\pi / 2} \sin ^{2} x d x
$$

$$
V \doteqdot \pi \times \frac{\frac{\pi}{8}}{3}
$$

$$
\begin{aligned}
& \left.+2 \times \sin \frac{7}{5}\right)=\frac{\pi}{24} \times 6=\frac{\pi}{4} \\
& \text { off each error }
\end{aligned}
$$

1 mark off each error 24 answer 4 or $V \div 2.4674$
d) $\int 5 \cos x^{\circ} d x=\int 5 \cos \frac{x \pi}{180} d x$

$$
\begin{aligned}
& 2 x^{2}-k x+k=0 \\
& \Delta=b^{2}-4 a c \geq 0 \\
& (-k)^{2}-4 \times 2 \times k \geq 0 \\
& k^{2}-8 k \geq 0 \\
& k(k-8) \geq 0 \\
& \therefore K \leq 0, k \geq 8
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& A= \int_{\frac{\pi}{6}}^{\pi / 2} \sin x-\cos 2 x d \\
&= {\left[-\cos x-\frac{1}{2} \sin 2 x\right]^{\pi / t} } \\
&=-\cos \frac{\pi}{2}-\frac{1}{2} \sin \pi+\cos \frac{\pi}{6} \\
&=0-0+\frac{\sqrt{3}}{2}+\frac{1}{2}+\frac{1}{2}
\end{aligned}
$$

$$
=\frac{3}{4} \sqrt{3}
$$

$$
=5 \times \frac{180}{\pi} \cdot \sin \frac{x \pi}{180}+c
$$

or $5 \times \frac{180}{\pi} \cdot \sin x^{\circ}+c$
b) $P A=2 P B \quad A(3$,

$$
\begin{aligned}
& \sqrt{(x-3)^{2}+(y-7)^{2}}=2 \sqrt{x-6)^{2} \times(y} \\
& x^{2}-6 x+9+y^{2}-18 y+81=4\left[x^{2}-12\right. \\
& 9+81-4 \times 36-4 \times 36=3 x^{2}-42 x+ \\
& -\frac{198}{3}=x^{2}-14 x+y^{2}-1 c \\
& 8=(x-7)^{2}+(y-5)
\end{aligned}
$$

ii) $8=(x-7)^{2}+(y-5)$
\therefore centre $(7,5)$ radius $r=18$

Question 10 cont.
b)
ii)

$$
\text { i) } \begin{aligned}
& R^{2}=r^{2}-x^{2} \\
\therefore R & =\underset{\text { only }}{+} \sqrt{r^{2}-x^{2}}
\end{aligned}
$$

or

$$
\begin{aligned}
V_{M A X} & =\frac{2 \pi r}{\sqrt{3}}\left(\frac{2 r^{2}}{3}\right) \\
& =\frac{4 \pi r^{3}}{3 \sqrt{3}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& V=\pi \times R^{2} \times h \quad h=2 x \\
& \therefore V=\pi \times\left(r^{2}-x^{2}\right) \times 2 x \\
& \therefore V=2 \pi x\left(r^{2}-x^{2}\right)
\end{aligned}
$$

iii)

$$
\frac{d v}{d x}=0
$$

$$
V=2 \pi r^{2} x-2 \pi x^{3}
$$

$$
\therefore \frac{d v}{d x}=2 \pi r^{2}-6 \pi x^{2}
$$

$0=2 \pi r^{2}-6 \pi x^{2}$
$x^{2}=\frac{2 \pi r^{2}}{6 \pi}=\frac{r^{2}}{3} \therefore x=\frac{+r}{\sqrt{3}}$

$$
\therefore \frac{d^{2} V}{d x^{2}}=0-12 \pi x
$$

$$
\text { at } x=\frac{r}{\sqrt{3}} \therefore \frac{d^{2} v}{d x^{2}}=-12 \pi \times \frac{r}{\sqrt{3}}<0
$$

$$
\begin{aligned}
& \therefore \text { at } x=\frac{\frac{r}{\sqrt{3}} \quad V \text { is Max }}{} \\
& \therefore V_{\text {MAX }}=2 \pi x\left(r^{2}-x^{2}\right) \\
& \therefore V_{\text {MAX }}=\frac{2 \pi r}{\sqrt{3}}\left(r^{2}-\frac{r^{2}}{3}\right)
\end{aligned}
$$

