STUDENT NUMBER:

TEACHER'S NAME: _____

BAULKHAM HILLS HIGH SCHOOL

Year 12

MATHEMATICS ADVANCED ASSESSMENT

HALF-YEARLY

March 2010

Time allowed – *3 hours* + *5 minutes reading time*

DIRECTIONS TO CANDIDATES:

- Start each question on a new page.
- Show all relevant working.
- Use black or blue pen.
- <u>NO</u> liquid paper is to be used.
- Approved Maths aids and calculators may be used.

QUESTION 1 [12 marks]

(a)	Evaluate, correct to three significant figures 3.5^{2} $\overline{1.8^{2} - \sqrt{145}}$	2
(b)	Find integers a and bsuch $(2\sqrt{5}-1)^2 = a\sqrt{5} + b.$	2
(c)	Solve $\frac{2x-1}{3} - \frac{1-3x}{5} = 2$	2
(d)	Find the primitive function of $3x + \sin 3x$	3
(e)	Find the value of x for which $ 2x - 1 > 5$	2
(f)	Factorise $9x^2 - 16$	1

QUESTION 2 [12 marks]

(a)	Diffe	erentiate	
	(i)	$x^2 \cdot \cos x$	2
	(ii)	$\frac{4-x}{\sin x}$	2

- (b) Solve $2 \cos x + 1 = 0$ for $0 \le x \le 2\pi$
- (c) Evaluate

 $\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \sec^2 3x \, dx$

(**d**)

If the area of this triangle is $6cm^2$, find the exact value of x. 3

(e) Sketch the curve of $y = \tan x$ for $0 \le x \le \pi$

1

2

Given points A(-3,1) and B(2,-3). **(a)** Point *A* lies on the line l: 4x - 3y + 15 = 0 and Point *B* lies on the line *k* given by the equation 4x + y - 5 = 0.

	(i)	Show that the point <i>C</i> , the point of intersection of the lines <i>l</i> and <i>k</i> , must lie on the $y - axis$.	2
	(ii)	Find the gradient of the line <i>AB</i>	1
	(iii)	Find the equation of AB	2
	(iv)	Find the perpendicular distance from point C to the line AB	2
	(v)	Find the area of $\triangle ABC$.	2
Find the equation of the tangent to the curve $y = (x - 1)(x + 5)$ at the point where $x = 0$		3	

QUESTION 4 [12 marks]

(a)

(b)

	ABC is a sector with $\angle BAC = \frac{\pi}{3}$ and $AC = AB = 9cm$	
	(i) Calculate the area of sector ABC	1
	(ii) Calculate the area of the shaded region	3
(b)	Find the equation of the parabola with vertex $(1,4)$ and focus $(1,-2)$.	3
(c)	The tangent to the curve $y = \cos x$ at point <i>P</i> has a slope of $\frac{1}{2}$ for $0 \le x \le \frac{3\pi}{2}$ Find the coordinates of the point <i>P</i> .	3
(d)	Given $y = x^4 - x$. Is the function even or odd or neither? Justify your answer.	2

3

2

 $\triangle ABC$ is isosceles where AB = AC. *D* lies on *AC* such that $\angle ABD = 3 \angle DBC$ and also BD = BC. Find the value of *x*, giving reasons.

(b) The graph below can be represented by an equation in the form $y = a\cos nx$. Find the values of *a* and *n*.

An observer is standing at point O and sees a plane at P 750m from O. 8 seconds later the plane is sighted at Q, 3000m from O. The angles of elevation of P and Q from O are 73° and 7° respectively. Find the speed of the plane.

(d) (i) Differentiate $y = (3x^2 - 7)^{10}$ 1

2

(a)	(i) Graph	2
	$y = \begin{cases} -\frac{3}{x-1} & \text{for } x < 0\\ x^2 + 3 & \text{for } x \ge 0 \end{cases}$	
	(ii) Find $f(-2) + f(2)$	1
	(iii) Find $f(a^2)$	1

- (b) Find the values of k for which the quadratic equation $2x^2 kx + k = 0$ has real roots
- (c) Use Simpson's rule with five function values to approximate the volume generated by $y = \sin x$ rotated around x axis between x = 0 and $x = \frac{\pi}{2}$ 3

(d) Find $\int 5 \cos x^{\circ} dx$

QUESTION 7 [12 marks]

(a)

(b)

(c)

(i)	Show that $y = \cos 2x$ and $y = \sin x$ meet at the point where $x = \frac{\pi}{6}$ Hence, write down the value of x at B.	2
(ii)	Redraw the diagram in your booklet and shade the region bounded only by these two curves in between $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$	1
(iii)	Find the exact area of the shaded region shown in part (ii)	3
The twic	point $P(x, y)$ moves so it's distance from the point $A(3,9)$ is always e the distance from the point $B(6,6)$	
(i)	Find the locus of the point <i>P</i>	2
(ii)	Show that the locus in part (i) is a circle. State its centre and radius.	2
Eval	uate	2
$\sum_{x=2}^{10} (3)$	3x - 5)	

Marks

3

(a) Find the area bounded by $x = y^2 - 2y - 3$ and the y - axis

(b)

- (i) Find the coordinates of C
- (ii) Find the exact volume when the shaded area is rotated around the y axis. 4

(c)

Given, AC//ED, CD = 4cm, DB = 12cm and AE = 8cm

- (i) Prove that $\Delta CBA / / / \Delta DBE$
- (ii) Hence or otherwise, calculate the length of *EB*

1

2

QUESTION 9 [12 marks]

(a)	(i) Prove that $\sec^2 \theta - 2 \tan \theta = (\tan \theta - 1)^2$	2
	(ii) Hence or otherwise solve $\sec^2 \theta - 2 \tan \theta = 0$ for $0 \le \theta \le 2\pi$	2
(b)	Consider the geometric series $3 - 6x + 12x^2 - 24x^3 +$	
	(i) For what values of x does this series have a limiting sum?	2
	(ii) If the limiting sum of the series is 2.5, find the value of x	2
(c)	The parabola is given by equation $2y = x^2 - 8x$ Find:	
	(i) The coordinates of the vertex	1
	(ii) The focal length	1
	(iii) The focus	1
	(iv) The equation of the directrix	1

Marks

QUESTION 10 [12 marks] Marks

- Given that $f(x) = x^2 \sqrt{10 x}$ **(a)**
 - Show that $f'(x) = \frac{5x(8-x)}{2\sqrt{10-x}}$ (i) 2
 - **(ii)** State the domain of the function
 - (iii) Find all the stationary points on the curve $y = x^2 \sqrt{10 x}$ and determine their nature.
- A cylinder is to be made to fit inside a sphere of radius r cm, as shown **(b)**

(c)

Let R = radius of cylinder and x be the distance of the base of the cylinder from the centre of the sphere as shown.

(i) Find an expression for the radius of the cylinder (R) in terms of r and x	1
(ii) Show that the volume, V, of the cylinder is given by $V = 2\pi x(r^2 - x^2)$	2
(iii) Find in terms of <i>r</i> , the maximum volume of the cylinder. Leave your answer in exact form.	3

Not to scale

3

$$\begin{array}{c} \begin{array}{c} \frac{Yr}{12} \quad Halt-yearly \ ass. \ base \quad 2010 \quad Tolal \left(\binom{120}{2} \right) \\ \frac{yuestion 1}{|a|-1\cdot3q|71\dots q-1\cdot3q|} \\ a) -1\cdot 3q|71\dots q-1\cdot3q| \\ b) \left(2y^{2}-1\right)^{2} = a^{1}y^{2} + b \\ 1 \\ 4x^{5}-2x^{2}(5^{5}+1) = a^{1}y^{5} + b \\ 20x^{1} - 4y^{5} = b + a^{1}y^{5} \\ b = 21 \quad a^{2}-t \\ \hline b) \left(2x^{2}-1-\frac{1-3x}{3} = 2 \\ \frac{mx^{5}-3+4x}{15} = 2 \\ \frac{mx^{5}-3}{15} = \frac{1}{3} \\ \frac{mx^{5}-3}{15} \\ \frac{mx^{5}-3}{15} = \frac{1}{3} \\ \frac{mx^{5}-3}{15} \\ \frac{mx$$

estion 9 0.K.
i)
$$k+5 = (4m\theta - 1)^{2}$$

= $tan^{10} - 2tan\theta + 1$
= $tan^{10} - 2tan^{10} - 2tan^{10} + 1$
= $tan^{10} - 2tan$