2012

SEMESTER 1 HIGHER SCHOOL CERTIFICATE EXAMINATION

Student Number	

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided as a separate sheet
- A multiple choice answer sheet is provided
- Answer Section 1 on multiple choice answer sheet provided
- All necessary working should be shown in Section 2

Total Marks - 100

Section 1 - 10 Marks

- Attempt questions 1-10
- 1 mark objective-response questions

Section 2 – 90 Marks

- Attempt questions 11-16
- All questions are 15 marks

SECTION 1

10 marks

Attempt Questions 1 to 10.

Allow about 10 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. Which is a graph of the following function

$$f(x) = -(x+2)^2 - 3$$

(A)

(C)

(D)

- 2. From point P the bearing of point R is 065° and from point Q the bearing of R is 315°. If point Q is 8.8 kilometres from P on a bearing of 090° then the distance from R to Q is closest to:
 - (A) 3.78 km
- **(B)** 3.94 km
- (C) 3.96km
- **(D)** 5.37 km

- 3. Solve for $x: log_465 = x$
 - (A) 1.21
- **(B)** 1.81
- **(C)** 3.06
- **(D)** 3.01

The equations of the two axes below are y = 3 - x and y = x. 4.

The shaded region could be described by which of the following sets of inequations?

(A)
$$x \ge 0$$
, $y \ge 0$, $y \le x$, $x + y \le 3$

(B)
$$x \ge 0$$
, $y \ge 0$, $x \le y$, $x + y \le 3$

(C)
$$x \ge 0$$
, $y \ge 0$, $y \le x$, $x - y \le 3$

(D)
$$x \ge 0, y \ge 0, x \le y, x - y \le 3$$

The quadratic equation whose roots are at x = 3 and x = 5 is given by 5.

(A)
$$(x-3)(x-5) = 1$$

(B)
$$(x + 3)(x + 5) - 9 = (x + 3)(x + 5) - 25$$

(C)
$$(x + 3)(x + 5) = 0$$

(D)
$$x^2 - 8x = -15$$

If $tan\theta = \frac{5}{12}$ and $180^{\circ} \le \theta \le 360^{\circ}$, then $sec\theta =$

(A)
$$\frac{12}{13}$$

(B)
$$-\frac{12}{13}$$

(C)
$$\frac{13}{12}$$

(D)
$$-\frac{13}{12}$$

If x > 1 and $\frac{\sqrt{x}}{x^3} = x^m$ what is the value of m?

(A)
$$-\frac{7}{2}$$
 (B) -3

(C)
$$-\frac{5}{2}$$

(D)
$$\frac{1}{6}$$

FOR THE FOLLOWING THREE QUESTIONS THERE MAY BE MORE THAN ONE ANSWER

8. What are the asymptotes of the graph of

$$y = \frac{1}{x - 3}$$

(A)
$$x = 3$$

(B)
$$y = 3$$

$$(C) y = 0$$

(D)
$$x = 0$$

9. For which of these graphs is $\Delta > 0$

(B)

(C)

(D)

- 10. The x coordinate of the function $f(x) = \frac{x^3}{3} 5x^2 + 2x + 10$ where its gradient is -14 is:
 - **(A)** -10
- (B) -2
- (C) 2
- **(D)** 8

End of Section I

SECTION 2

Question 11 (15 marks)

Start a new sheet of writing paper.

Marks

(a) If
$$f(x) = x^2 - 4$$
, calculate $f(-2)$

1

(b) Find integers a and b such that

2

$$\frac{2}{2-\sqrt{3}} = a + \sqrt{b}$$

(c) Express 2.17 as a fraction

1

(d) Simplify

2

$$\frac{16a^4b^8-36a^8b^4}{8a^4b^6+12a^6b^4}$$

(e) Find θ (to the nearest minute)

2

(f) Find the distance between $(\sqrt{5}, -\sqrt{5})$ and $(-\sqrt{5}, 3\sqrt{5})$

2

(g) Find
$$\lim_{x\to 1} (5x)(2+3x)^2$$

1

(h) If
$$f(x) = 5x^{-6}$$
, find $f'(x)$

1

(i) Evaluate

2

$$\int_0^3 2dx$$

(j) Find the primitive function for $x^4 + 2x + 3$

1

Marks

(a)

In the diagram A, B and C are the points (-1,0), (2,4) and (-6,0) respectively. D has coordinates (-2,2) and is the midpoint of AE.

(i) Find the length of the interval AB.

1

2

- (ii) Find the equation of the circle with centre at B which passes through the point A.
- 2

(iii) Find the size of $\angle CAB$ (to the nearest degree)

1

(iv) Find the midpoint of BC.

(vi)

2

(V) Show that the equation of the line BC is x - 2y + 6 = 0.

- 2
- (vii) What type of quadrilateral is ABEC? Give reasons for your answer.
- 2
- (b) (i) Sketch the locus of a point P(x, y) which is equidistance from the point (0,3) and the line y = -3.

(ii) Determine the equation of the locus

2

End of Question 12

Find the perpendicular distance of A from the line BC in simplest exact form.

- (a) Consider the curve given by $y = 2x^3 9x^2 + 12x$.
 - (i) Find the coordinates of any stationary points and determine their nature.

3

Show that a point of inflexion occurs at $x = \frac{3}{2}$

1

(iii) Sketch the graph y = f(x), indicating clearly any important features. (Make the sketch approximately $\frac{1}{3}$ of a page)

2

(iv) For what values of x is the curve concave up?

1

(b) The height in metres of a projectile for a horizontal displacement of s metres is given by $h = 108 + 40s - s^2$. Find the maximum height

2

(c) Find the value of k if the sum of the roots of the equation, $x^2 - (4 - k)x + (k - 2) = 0$, is equal to the reciprocal of the products of the roots.

2

(d)

The parabola above is drawn to scale.

(i) State the coordinates of the points where the parabola crosses the *x* axis and the *y* axis.

2

(ii) Hence, or otherwise, find the equation of the parabola drawn above in the form of $y = ax^2 + bx + c$

2

Quest	ion 14 (15 marks) Start a new sheet of writing paper.	Marks
(a)	Calculate the angle between the line $3y - 5x = 17$ and the positive direction of the <i>x</i> -axis, correct to the nearest degree.	2
(b)	Find all the values of x in the interval $0^{\circ} \le x \le 360^{\circ}$ for which $2\cos x = -\sqrt{3}$	3
(c)	Differentiate:	
(i)	$y = x^2 e^x$	2
(ii)	$f(x) = \frac{e^x + 1}{2x}$	2
(d)	Find the equation of the normal to the curve $y = x^4 + x - 1$ at the point where $x = 1$.	3
(e)	Consider the function given by $y = \frac{8}{2 + x^2}$	3

Using Simpson's rule with 5 function values, estimate the area under the curve from 0 to 4.

Differentiate: (a)

(i)
$$y = \frac{2}{x} + 3x^2 - 1$$

2

(ii)
$$f(x) = \ln (e^x + 3)$$

2

(b) Evaluate

$$\int (6x-4)dx$$

1

$$\int (3x-4)^{10} dx$$

1

(iii)
$$\int \left(\frac{x^2 + 2x - 4}{x}\right) dx$$

2

(iv)
$$\int_{1}^{3} (3x^2 - 2x + 5) dx$$

2

(c) Given that
$$f'(x) = 2x + 2$$
, and $f(2) = 13$. Find $f(x)$.

2

(d) Consider

3

$$\int_{1}^{m} \frac{dx}{\sqrt{x}} = 6$$

Determine the value of m

Question 16 (15 marks)

Start a new sheet of writing paper.

Marks

(a) Find the equation of the normal to the curve $y - 2e^{2x} - e^x$ at the point where x = 0

3

(b) Express $5x^2 + 2x - 3$ in the form of $A(x + 1)^2 + B(x + 1) + C$

3

(c) Solve the following equation giving all real roots in exact form

3

$$(x-3)^4 - 18(x-3)^2 + 32 = 0$$

(d)

The diagram shows a straight section of a river with parallel riverbanks 1 km wide.

Ben is at point *O* on the bank. He needs to reach point B on the opposite bank. The point *A* is directly opposite him on the other side of the river and the distance between *A* and *B* is 2 kilometres.

Ben can swim at 6 km/h and jog at 10 km/h. He wants to swim in a straight line to the other side of the river, to a point P (between A and B), and then jog the rest of the way to B. Let the distance from A to P be x.

(i) Show that the time T, in hours that Ben takes to reach B is given by:

2

$$T = \frac{\sqrt{x^2 + 1}}{6} + \frac{2 - x}{10}$$

- (ii) Show that if Ben wishes to minimize the time taken to complete the journey from O to B, then he should swim to a point P, 0.75km from A.
- (iii) Find the minimum time it takes Ben to complete his journey, to the nearest minute

1

3

MATHEMATICS SEMESTER 1 EXAMINATION

MULTIPLE CHOICE ANSWER SHEET

STUDENT NUMBER:

- 1 A O B O C O DO
- 2 A O B O C O D O
- 3 A O B O C O D O
- 4 A O B O C O D O
- 5 A O B O C O DO
- 6 A O B O C O D O
- 7 A O B O C O DO
- 8 A O B O C O D O
- 9 A O B O C O D O
- 10 A O B O C O D O

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \cot x, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_a x$, x > 0