

Girraween High School

2018 Year 12 Mathematics Half Yearly Examination

General Instructions

- Working Time - 1 hour \& 30 minutes
- Calculators and ruler may be used
- All necessary working out must be shown
- Write on one side of the paper only

Total Marks - 98

- Attempt all questions
- Marks may be deducted for careless or badly arranged work
- Start each question on a new sheet of paper

Question 1 (1 mark)
What is the value of $\frac{\pi^{2}}{6}$ correct to 3 significant figures?
A. 1.64
B. 1.65
C. 1.644
D. 1.645

Question 2 (1 mark)
Which one of the following statements is true for the equation $7 x^{2}-5 x+2=0$
A. It has no real roots
B. It has one real root
C. It has two distinct roots
D. It has three real roots

Question 3 (1 mark)
For what values of x is the curve $f(x)=2 x^{3}+x^{2}$ concave down?
A. $x<-\frac{1}{6}$
B. $x>-\frac{1}{6}$
C. $x<-6$
D. $x>6$

Question 4 (1 mark)
What is the value of $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$?
A. 2
B. 1
C. undefined
D. 0

Question 5 (1 mark)
The value of $\sum_{k=3}^{10} 2 k+1$ is
A. 120
B. 91
C. 122
D. 112

Question 6 (1 mark)
The quadratic equation $x^{2}+3 x-1=0$ has roots α and β.
What is the value of $\alpha \beta+(\alpha+\beta)$?
A. 4
B. 2
C. -4
D. -2

Question 7 (1 mark)
The angle of inclination that the line $3 x+2 y-7=0$ makes with the positive x-axis is closest to:
A. 56°
B. 124°
C. 34°
D. 146°

Question 8 (1 mark)
For the graph of $y=f(x)$, for what x values is $f^{\prime}(x)$ negative?

A. $x<-3$ and $x>3$
B. $-3<x<3$
C. $x \leq-3$ and $x \geq 3$
D. $-3 \leq x \leq 3$

Question 9 (1 mark)

The domain of the function $f(x)=\frac{1}{\sqrt{4 x^{2}-1}}$ is:
A. $-\frac{1}{2}<x<\frac{1}{2}$
B. $x<-\frac{1}{2}$ and $x>\frac{1}{2}$
C. $-\frac{1}{2} \leq x \leq \frac{1}{2}$
D. $x \leq-\frac{1}{2}$ and $x \geq \frac{1}{2}$

Question 10 (1 mark)
If y is decreasing at an increasing rate, which of the following is true?
A. $\frac{d y}{d x}<0$ and $\frac{d^{2} y}{d x^{2}}<0$
B. $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}<0$
C. $\frac{d y}{d x}<0$ and $\frac{d^{2} y}{d x^{2}}>0$
D. $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}>0$

Question 11 (20 marks)
(a) Find the derivative of the following:
i. $y=e^{2 x+1}-e^{-\frac{1}{2} x}$
ii. $y=\frac{1}{1+2 e^{x}}$
iii. $y=\frac{x^{2}+1}{x-1}$
iv. $y=3 x(2 x+1)^{3}$
v. $y=\frac{2+e^{x}}{e^{2 x}}$
(b) Find the primitive of the following:
i. $\frac{e^{2 x}}{2}$
ii. $\sqrt{2 x-1}$
(c) Find the values of a and b such that $\frac{1}{4-\sqrt{13}}=a+b \sqrt{13}$, where a and b are rational numbers.
(d) Prove that $\sin \theta+\cot \theta \cos \theta=\operatorname{cosec} \theta$

The exam continues on the next page

Question 12 (19 marks)
(a) The diagram below shows the points $A(-2,5), B(4,3)$ and $O(0,0)$. The point C is the fourth vertex of the parallelogram $O A B C$.

i. Show that the equation of $A B$ is $x+3 y-13=0$.
ii. Show that the length of $A B$ is $2 \sqrt{10}$.
iii. Calculate the perpendicular distance from O to the line $A B$.
iv. Calculate the area of parallelogram $O A B C$.
v. Hence or otherwise find the perpendicular distance from O to the line $B C$.
(b) The second term of arithmetic progression is 7 and the seventh term is 52
i. Find the common difference.
ii. Find the value of the first term which is greater than 1000
iii. Find the sum of the first ten terms.
(c) The equation $(x-1)^{2}=-4 y+16$ represents a parabola.
i. Find the coordinates of the vertex.
ii. Find the focal length and the equation of directrix.
iii. Sketch parabola, clearly showing the directrix, the focus and the x-intercept.

Question 13 (18 marks)
(a) Michael buys five tickets in a raffle in which 20 tickets are sold. Three different tickets are to be drawn out without replacement for first, second and third prizes. Find the probability that:
i. Michael wins all three prizes.
ii. Michael does not win a prize.
iii. Michael wins at least one prize.
iv. Michael wins exactly one prize.
(b) i. Find $\frac{d}{d x} e^{1-x^{2}}$
ii. Hence or otherwise find $\int x e^{1-x^{2}} d x$
(c) i. Use the trapezoidal rule with 5 function values to find an approximation to

$$
\int_{1}^{5} \frac{1}{x} d x
$$

ii. State whether the approximation found in part (i) is greater or less than the exact value of $\int_{1}^{5} \frac{1}{x} d x$. Justify your answer.
(d) In the diagram below $A B C$ is a triangle with $A B=B C$. The line $P Q$ passes through A parallel to $B C$, and the line $A D$ is perpendicular to $A C$.

i. Let $\angle B A C=\theta$ and prove that $A C$ bisects $\angle Q A B$.
ii. Prove that $A D$ bisects $\angle P A B$.

Question 14 (17 marks)
(a) Consider the function $f(x)=x e^{x}$
i. Find the coordinates of the stationary points and determine their nature.
ii. Find the coordinates of the points of inflexion.
iii. State the behaviour of $y=f(x)$ as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
iv. Sketch the graph of the curve $y=f(x)$, showing intercepts, stationary points and point of inflexion.
(b) Let A and B be fixed points $(-1,0)$ and $(1,2)$. Let P be the variable point (x, y) such that $\angle A P B=90^{\circ}$. Find the equation of the locus of P.
(c) Consider the series $1+x+(1+x)^{2}+(1+x)^{3}+\cdots$.
i. Show that the series is geometric.
ii. Find the values of x for which this series has a limiting sum.
iii. Find the limiting sum of this series in terms of x.

Question 15 (14 marks)

(a) Find the volume of the solid generated by rotating the area enclosed by the curve $y=x^{2}+1, x=1$ and the coordinate axes around the y-axis.
(b) The graph of $y=e^{k x}$ has a tangent at $x=a$ that passes through the origin, where k and a are constants.
i. Show that $k a=1$.
ii. Find the area bounded by $y=e^{x / 2}$ and its tangent at $x=2$ and the y-axis.
(c) The diagram below shows a cylinder of radius x and height y inscribed in a cone of radius R and height H, where R and H are constants.

The volume of a cone of radius r and height h is $\frac{1}{3} \pi r^{2} h$.
The volume of a cylinder of radius r and height h is $\pi r^{2} h$.
i. Show that the volume, V, of the cylinder can be written as

$$
V=\frac{H}{R} \pi x^{2}(R-x)
$$

ii. Find the value of x that maximises V.

End of exam

2018 Yil2 2 n Half Yowly
al
(A)
a^{2}

$$
\Delta=25-4(7)(2)<0
$$

63

$$
\begin{align*}
& f(x)=2 x^{3}+x^{2} \\
& f^{\prime}(x)=6 x^{2}+2 x \\
& f^{\prime \prime}(x)=12 x+2 . \\
& 12 x+2<0 \\
& 12 x<-2 \\
& x<-\frac{1}{6} . \tag{A}
\end{align*}
$$

64

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=2 \tag{A}
\end{equation*}
$$

05

$$
\begin{align*}
& i=7 \quad d=2 \quad n=8 \\
& S_{n}=\frac{8}{2}(7+21)=112 \tag{D}
\end{align*}
$$

ab

$$
\alpha \beta=-1 \quad \alpha+\beta=-3 \quad \therefore \text { (C) }
$$

$\Delta 7$

$$
\begin{aligned}
& 3 x+2 y-7=0 \\
& 2 y=-3 x+7 \\
& y=-\frac{3}{2} x+\frac{7}{2} \\
& \tan \alpha=-\frac{3}{2} \quad \alpha=123^{\circ} 41^{\prime} \\
& \therefore \quad \text { (B) }
\end{aligned}
$$

acl
(c) or (A)
all
(a).

$$
\begin{aligned}
& i y=e-e \\
& y^{\prime}=2 e^{2 n+1}+\frac{1}{2} e^{-\frac{1}{2} x} \\
& \therefore y=\left(1+2 e^{x}\right)^{-1} \\
& y^{\prime}=-\left(1+2 e^{x}\right)^{-2} \times 2 e^{x} \\
& y^{\prime}=\frac{-2 e^{x}}{\left(1+2 e^{x}\right)^{2}}
\end{aligned}
$$

ii..

$$
\begin{aligned}
a & =x^{2}+1 \quad v=x-1 \quad y^{\prime} \\
n^{\prime} & =2 x(x-1)-\left(x^{2}+1\right) \\
(x+1)^{2} & v^{\prime}
\end{aligned}
$$

N.

$$
\begin{array}{rlrl}
\text { v. } & =3 n & \quad v & =(2 x+1)^{3} \\
n^{\prime} & =3 \quad & v^{\prime} & =3(2 x+1)^{2} \times 2 . \\
& v^{\prime} & =6(2 x+1)^{2} \\
y^{\prime} & =3(2 x+1)^{3} & +18 x(2 x+1)^{2}
\end{array}
$$

Q1I
(k)

$$
\begin{aligned}
& y=2 e^{-2 x}+e^{-x} \\
& y^{\prime}=-4 e^{-2 x}-e^{-x}
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& \frac{1}{2} \int e^{x / 2} d x . \\
= & e^{x / 2}+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int(2 x-1)^{1 / 2} d x \\
= & \frac{(2 x-1)^{3 / 2}}{2 \times 3 / 2}+c . \\
= & \frac{1}{3}(2 x-1)^{3 / 2}+C .
\end{aligned}
$$

(ϵ)

$$
\begin{aligned}
& \frac{1}{4-\sqrt{13}} \times \frac{4+\sqrt{13}}{4+\sqrt{13}} \\
= & \frac{4+\sqrt{13}}{16-13}=\frac{4}{3}+\frac{1}{3} \sqrt{13} \\
\therefore & a=\frac{4}{3} \quad 4 \quad b=\frac{1}{3} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
L M S & =\sin \theta+\cot \theta \cos \theta \\
& =\sin \theta+\frac{\cos ^{2} \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta}=\operatorname{cosec} \theta=\text { RHS }
\end{aligned}
$$

012
(4)
(i)

$$
\begin{aligned}
& m=\frac{5-3}{-2-4}=\frac{2}{-6}=-\frac{1}{3} \\
& y-3=-\frac{1}{3}(x-4) \\
& 3 y-4=-x+4 \\
& x+3 y-13=0
\end{aligned}
$$

(i:)

$$
\begin{aligned}
D_{A D} & =\sqrt{6^{2}+(-2)^{2}} \\
& =\sqrt{40}=2 \sqrt{00}
\end{aligned}
$$

(iii)

$$
d=\frac{|-13|}{\sqrt{1^{2}+3^{2}}}=\frac{13}{\sqrt{10}}
$$

(iv)

$$
A=2 \sqrt{10} \times \frac{13}{\sqrt{10}}=26 n^{2}
$$

(v)

$$
\begin{aligned}
& D_{O A}=\sqrt{2^{2}+5^{2}} \\
&=\sqrt{29} \\
& \therefore \sqrt{29} \times d=26 \\
& \therefore \quad d=\frac{26}{\sqrt{29}}
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& 1+d=7 \\
& a+6 d=52 \\
& \therefore 5 d=45 \quad \therefore d=9 .
\end{aligned}
$$

Q12
(b)
(ii)

$$
\begin{aligned}
& a=-2 \\
& a+(n-1) d>1000 \\
& -2+(n-1)^{\prime} 9>1000 \\
& -2+q(n-1)>1000 \\
& 9 n-9>1002 \\
& 9 n>10+1 \\
& n>\frac{1011}{9} \quad \therefore n=113
\end{aligned}
$$

$$
T_{113}=-2+112 \times 9=1006
$$

(iii).

$$
\begin{aligned}
S_{10} & =\frac{10}{2}(2(-2)+9 \times 9) \\
& =385 .
\end{aligned}
$$

(c)
(i)

$$
\begin{aligned}
& (x-1)^{2}=-4(y-4) \\
& V=(1,4)
\end{aligned}
$$

(ii) $a=1$
$D: y=5$.
(iii) $\hat{i}^{y} \quad y=5$.
$a 13$
(a) $\frac{5}{20} \times \frac{4}{19} \times \frac{3}{18}=\frac{1}{114}$

$$
\text { (ri) } \frac{15}{20} \times \frac{14}{19} \times \frac{13}{18}=\frac{91}{228}
$$

(iii) $1-\frac{91}{228}=\frac{137}{228}$
(iv) $3 \times \frac{5}{20} \times \frac{15}{19} \times \frac{14}{18}=\frac{35}{16}$.
(b)
(i) $\frac{d}{d x} e^{1-x^{2}}=-2 x e^{1-x^{2}}$
(ii) $\int-2 x e^{1-x^{2}} d x=e^{1-x^{2}}$

$$
\therefore \int n e^{1-x^{2}} d x=-\frac{1}{2} e^{1-x^{2}}+c
$$

(c)

$$
\text { (i) } h=\frac{5-1}{4}=1
$$

$$
A \approx \frac{1}{2}\left[\begin{array}{c}
\frac{1}{1}+2\left(\frac{1}{2}\right)+2\left(\frac{1}{3}\right) \\
\left.+2\left(\frac{1}{9}\right)+\left(\frac{1}{5}\right) \cdot\right]
\end{array}\right.
$$

$\approx \frac{101}{60}$
(ii) Girenter, as $y=\frac{1}{x}$ is concave up for $1 \leqslant x \leqslant 5$.

413
(d)

(i)
$\angle B C A=O$ (equal \angle opposite equal sides)
$\angle C A Q=\theta$ (alternate $\angle ' s$, ($B / / R A$).
$\therefore A C$ barents $\angle Q A B$
(ii)

$$
\begin{aligned}
& \theta+90+\angle D A P=180 \text { (staojht } \angle) \\
& \therefore \angle D A P=90-\theta . \\
& \angle D A B=90-\theta \cdot(\text { adjacent } \angle)
\end{aligned}
$$

\therefore DA bisects $\angle B A P$.
4×14
(c) $n=n \quad r=e^{n}$
(i) $n^{\prime}=1 \quad V^{\prime}=e^{n}$

$$
\begin{aligned}
& f^{\prime}(x)=e^{x}+x e^{x} \\
& f^{\prime}(x)=e^{x}(1+x) .
\end{aligned}
$$

$f^{\prime}(x)=0$ when $x=-1$.
$f(-1)=-\frac{1}{e} \therefore$ stat pt at $\left(-1,-\frac{1}{e}\right)$

$$
\begin{aligned}
f^{\prime \prime}(x) & =e^{x}+e^{x}+x e^{x} \\
& =2 e^{x}+x e^{x} \\
f^{\prime \prime}(-1) & =2 e^{-1}-e^{-1} \\
& =e^{-1}>0 \\
& \therefore \text { mix at }\left(-1,-\frac{1}{e}\right)
\end{aligned}
$$

(ii) $f^{\prime \prime}(x)=0$ when $e^{x}(2+x)=0$.

$$
\begin{aligned}
\therefore x & =-2 \\
f(-2) & =-2 e^{-2}=-\frac{2}{e^{2}}
\end{aligned}
$$

possible point of inflexion at

$$
\left(-2,-\frac{2}{e^{2}}\right) .
$$

x	-3	-2	-1
$y^{\prime \prime}$	$-\frac{1}{e^{3}}$	0	$\frac{1}{e}$

$\therefore\left(-2,-\frac{2}{e^{2}}\right)$ is a pout of
inflexion.
(iii) $x \rightarrow \infty \quad y \rightarrow \infty$

$$
x \rightarrow-\infty \quad y \rightarrow 0 .
$$

414
(b)

$$
\begin{aligned}
& \frac{y}{x+1} \times \frac{y-2}{x-1}=-1 \\
& y(y-2)=-\left(x^{2}-1\right) \\
& y^{2}-2 y=-x^{2}+1 \\
& x^{2}+y^{2}-2 y-1=0
\end{aligned}
$$

(c)
(i)

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\frac{(1+x)^{2}}{(1+x)}=1+x \\
& \frac{T_{3}}{T_{2}}=\frac{(1+x)^{3}}{(1+x)^{2}}=1+x
\end{aligned}
$$

\therefore Series is geometriz.
(ii) Nead $-1<1+x<1$

$$
\therefore-2<x<0
$$

(ii.)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{1+x}{1-(1+x)}
\end{aligned}=\frac{1+x}{-x} .
$$

415
(a)

$$
\begin{aligned}
& V=\pi(1)^{2} \times 2-\pi \int_{1}^{2} y-1 d y \\
& V=2 \pi-\pi\left[y_{12}^{2}-y\right]_{1}^{2} \\
& V=2 \pi-\pi\left(2-2-\left(\frac{1}{2}-1\right)\right) \\
& V=2 \pi-\frac{\pi}{2}=\frac{3}{2} \pi
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& (i) y=e^{k x} \\
& y^{\prime}=k e^{k x} \\
& y(a)=e^{k a} y^{\prime}(a)=k \cdot e^{k a}
\end{aligned}
$$

(a, $\left.e^{k a}\right)$

$$
\begin{aligned}
& y-e^{k a}=k e^{k a}(x-a) \\
& y-e^{k a}=k e^{k a} n-a k e^{k a} \\
& y=k \cdot e^{k a} x+(1-\pi k) e^{k a} \\
& \therefore 1-a k=0 \quad \therefore \alpha k=1 .
\end{aligned}
$$

015
(b)
(ii)

$$
\begin{aligned}
A & =\int_{0}^{2} e^{x / 2} d x-\frac{1}{2}(2)(e) \\
& =2\left[e^{x / 2}\right]_{0}^{2}-e \\
& =2(e-1)-e \\
& =2 e-2-e=e-2 .
\end{aligned}
$$

(c)
(1)

$$
\frac{x}{R}=\frac{H-g}{H}\left(\begin{array}{c}
\text { (ratio of } \\
\text { mathong richs } \\
\text { ot is s's) }
\end{array}\right.
$$

$$
\begin{aligned}
\therefore H_{x} & =R(H-y) . \\
H_{x} & =R H-R y . \\
R y & =R H-H x . \\
y & =\frac{H}{R}(R-x) .
\end{aligned}
$$

$$
\begin{aligned}
& V=\pi x^{2} y \\
& \therefore V=\pi x^{2} \times \frac{H}{R}(R-x) . \\
& V=\frac{H}{\pi} \pi n^{2}(R-x)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& V=H \pi x^{2}-\frac{H}{R} \pi x^{3} \\
& V^{\prime}=2 H \pi x-\frac{3 H}{R} \pi x^{2} .
\end{aligned}
$$

$$
V^{\prime}=H_{\tan }\left(2-\frac{3}{R} n\right) \text {. }
$$

$\therefore v^{\prime}=0$ when $x=0$
or $2-\frac{3 x}{R}=0$.

$$
\begin{aligned}
z & =\frac{3 x}{R} \\
\therefore & x=\frac{2 R}{3} .
\end{aligned}
$$

$$
\begin{aligned}
& V^{\prime \prime}=2 H \pi-\frac{6 H}{R} \pi n . \\
& v^{\prime \prime}\left(\frac{2 R}{3}\right)=2 H \pi-\frac{6 H \pi}{R} \pi \times \frac{2 R}{3} . \\
&=2 H \pi-4 H \pi<0 \\
& \therefore \quad x=\frac{2 R}{3} \text { gres max } V .
\end{aligned}
$$

