HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS 2005

YEAR 12

ASSESSMENT TASK 2

HALF YEARLY EXAMINATION

MATHEMATICS

EXAMINERS ~ S. GEE, P. BIZCO, H. CAVANAGH, S. FAULDS, R. YEN

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 2 hours.
- Attempt all questions.
- Questions are of equal value.
- **All** necessary working should be shown in every question.
- This paper contains ten (10) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and MathAids may be used.
- Each question is to be started in a new answer booklet.
- This examination paper must **NOT** be removed from the examination room

STUDENT NAME:	
	_
TEACHER:	

Start each question on a separate writing booklet.

QUESTION ONE 8 marks Start a SEPARATE booklet

Marks

(a) Find the value of $\sqrt{\frac{19}{4\pi}}$ correct to 2 decimal places

1

(b) Simplify $\frac{m+3}{2} - \frac{m+2}{3}$

2

(c) Factorise $3k^2 - 8k - 3$

2

(d) A 2.5% increase in the annual Council rates increased the charge by \$28. What was the *original* charge?

1

(e) Factorise $a^3 - 27$

2

QUESTION TWO. 8 marks Start a NEW booklet.

(a) Solve the following equation for $0^{\circ} \le \theta \le 360^{\circ}$:

$$\sqrt{3} \tan \theta = -1$$

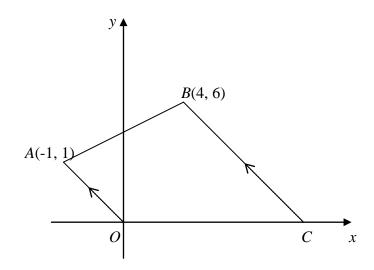
(b) Prove the identity:

$$5 - 5\sin^2\theta \equiv 5\cos^2\theta$$

(c) A ship is travelling due west at 20 knots.

From a point A, a lighthouse is sighted on a bearing of 300°.

Two hours later, at point B, the lighthouse can be seen on a bearing of 345°.


(i) Draw a neat diagram which illustrates the information given above.

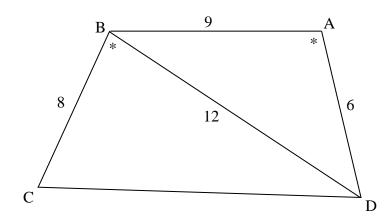
1

2

(ii) How far is the point B from the lighthouse? Give your answer to the nearest nautical mile.

1

In the diagram, OABC is a trapezium with $OA \parallel CB$. The coordinates of O, A and B are (0, 0), (-1, 1) and (4, 6) respectively.


- (a) Calculate the length of *OA*.
- (b) Write down the gradient of the line *OA*.
- (c) Find the equation of the line *BC*.
- (d) Find the coordinates of *C*.
- (e) Show that the perpendicular distance from O to the line BC is $5\sqrt{2}$.
- (f) Hence, or otherwise, calculate the area of the trapezium *OABC*.

QUESTION FOUR. 8 marks Start a NEW booklet.

Consider the curve given by $y = \frac{1}{4}x^4 - x^3$.

- (a) Find any turning points and determine their nature. 3
- (b) Find any points of inflexion. 2
- (c) Sketch the curve for $-1 \le x \le 4$.
- (d) For what values of x is the curve concave down?

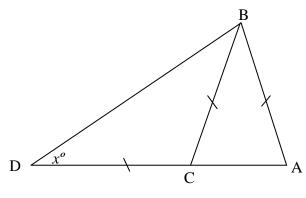
(a)

 $\angle DAB = \angle CBD$

(NOT TO SCALE)

(i) Prove triangles ABD and BDC are similar.

2


(ii) Find the length of CD.

1

(iii) Prove that AB and CD are parallel.

1

(b)

- $AB = BC = CD; \angle BDC = x^o$
- (i) Prove that $\angle CAB = 2x^o$

2

(ii) If $\angle ABD = 120^{\circ}$, find the value of x.

QUESTION SIX 8 marks Start a SEPARATE booklet

Marks

(a) Three consecutive terms of a sequence are 2x + 5, T_2 and 8x + 19. Find T_2 in terms of x if the sequence is to be arithmetic.

2

(b) For the sequence 3, $\frac{11}{2}$, 8, ... find:

2

(i) the 37th term

2

- (c) Does the sequence $\frac{3}{4}$, 1, $\frac{4}{3}$, ... have a limiting sum?
 - Explain your answer, stating S_{∞} if it exists.

the sum of 37 terms.

2

QUESTION SEVEN 8 marks Start a SEPARATE booklet

(a) Show the equation of a parabola is $x^2 - 2x - 2y - 13 = 0$ is also given by $(x-1)^2 = 2(y+7)$.

1

Find:

(ii)

(i) the coordinates of its vertex

1

(ii) the focal length

1

(iii) the equation of its directrix

1

- (b) A(1, 0) and B(4, 0) are points on the number plane. The point P(x, y) moves such that the length of PB is twice the length of PA.
 - (i) Write a formula for the length of PB.

1

(ii) Prove that the locus of P is a circle and determine its centre and radius.

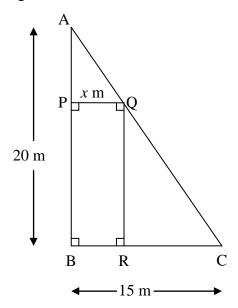
3

QUESTION EIGHT 8 marks Start a SEPARATE booklet

(a) If $2x^2 - 7x + 4 = a(x+2)^2 + b(x+2) + c$ for all values of x, find a, b and c.

2

(b) Find all values of k for which the quadratic equation $x^2 + (k-3)x + k = 0$ has real roots


3

(c) Find all real numbers x which satisfy the equation $x^4 = 4(x^2 + 8)$

QUESTION NINE 8 marks Start a SEPARATE booklet

Marks

- (a) For the function $y = x + \frac{900}{x}$
 - (i) Find $\frac{dy}{dx}$
 - (ii) Show that y has a relative minimum value of 60.
- (b) In the triangle ABC, AB = 20m, BC = 15m and angle ABC = 90° . BPQR is a rectangle inscribed in ABC, as shown, with PQ = x metres.

(i) Prove that $\triangle APQ \parallel \triangle ABC$

- 1
- (ii) Find the length of AP in terms of x and hence show that the area of the rectangle BPQR is given by $x(20-\frac{4x}{3})$ m²
- 2

(iii) Hence find the maximum possible area of the rectangle BPQR

2

QUESTION TEN 8 marks Start a SEPARATE booklet

(a) Find the primitive of $x^2 + 2x - 3$.

1

(b) Expand and simplify $(x^2 + 2)^2$. Hence find the primitive of $(x^2 + 2)^2$.

2

(c) The curve y=f(x) has a gradient function

3

$$\frac{dy}{dx} = 3x^2 - 2x + 1.$$

If the curve passes through the point Q(2,3), find its equation.

(d) Find the domain for which $y = \frac{1}{x^2 + 1}$ is a decreasing function.

		-								,	-			
	Marking Guidelines	1 monte - correct answer	2 marks - fully correct	1 mark - correct working but for 1 exror.	2 marks - both factors	correct solution	2 montes - both factors correct. 1 monte - 1 factor	an orded for (a-3)	•		,			***
Year 12 Mathematics Half Yearly Examination 2005 Question No. 1 Solutions and Marking Guidelines Solutions Addressed in this Question P3 performs routine arithmetic and algebraic manipulation involving surely and simple rational expressions	-	(a) [19 = 1.23 (2d.ps)	(b) m + 3 - m + 2 = 3(m + 3) - 2(m + 2)) (1 (1)	(१-4)(1+48) = १-78-78 (2)	(d) 2.5% -> \$28 17, -> \$11.20 .: (00 % -> \$1120 (00.ignal change)	(e) 03-27 = (a-3)(a+3a+a)							
Year 12 Mathe Question No. 1 P3 perfor	Outcome	F3												

	Question No. 2 Solutions and Marking Guidelines Outcomes Addressed in this Ouestion	Automote Palaminere,
H5 applies ap geometry, problems	propriate tech probability, tri	
Onfeome	Solutions	Marking Guidelines
HS	(a) $\sqrt{3} \tan \theta = -1$	3 marks Correct answer, showing basic angle and correct questrants.
	$\tan \theta = -\frac{1}{\sqrt{3}}$ $\therefore \theta = 150^{\circ}, 330^{\circ} \text{ (Basic angle is 30°,}$ $\tan is negative in 2nd and$ third quadrants)	2 mark. Only one correct angle shown, OR. Only one correct angle but answers given in correct quadrants 1 mark. Some reference made to the correct basic angle of 30° by rearranging equation.
HS	(b) $5-5\sin^2\theta = 5\cos^2\theta$ $L.H.S = 5-5\sin^2\theta$ $= 5(1-\sin^2\theta)$ $= 5\cos^2\theta (since \sin^2\theta + \cos^2\theta = 1)$ $= R.H.S$	2 marks Correct use of identities with working set out in logical, ordered way as required for a proof. I mark Correct use of identities but not presented as a proof, OR Demonstrates knowledge of at least one relevant identity in context.
H S	(c) (l) L 45° 105° 30° W 475° 105° 30° W A B 40M A	1 mark Diagram in correct orientation shows correct angles in correct positions (ZABL or reflex ZABL and ZLAB or reflex ZLAB and AB=40M. 0 marks any of the above incorrect or missing
H	(ii) $\frac{d}{\sin 30^{\circ}} = \frac{40}{\sin 45^{\circ}}$ $d = \frac{40 \sin 30^{\circ}}{\sin 45^{\circ}}$ $40 \times \frac{1}{2}$ $= \frac{40}{2}$ $= \frac{40}{\sqrt{2}}$ $\approx 28M \text{ (to nearest nautical mile)}$	2 marks Correct use of sine rule to obtain correct answer (rounding disregarded). Note: correct answer may be obtained using information from incorrect answer in (i) above. I mark Sine rule used correctly with arithmetic error causing incorrect answer, OR Sine rule used correctly but with wrong angles giving incorrect answer or wrong distance found.

35	(+) 5°C = 1/(6-0)° + (4°C)° +	ii ii ii	(e) BC has general equation $d = \frac{10+0-10!}{\sqrt{1^2+1^2}} [sub 0(a0)]$ $= \frac{10}{\sqrt{1^2+1^2}}$		(3) Mgc = MeA = -1 (0411CB) -4 - b = -1(x-4) -4 - x+4 -4 - x+4 - 10 -4 - x+4	나하를	chooses and applies appropriate and graphical techniques Solutions	Year 12 Question No. (3) Solutions and Marking Guidelines by Outcomes Addressed in this Question
10 correct working to find area	(1) length of BC as a surph	must show this step because the asswer sure is given in the question	<u>)</u>	V O	(a)	100	arithmetic, algebraic Marking Guidelines	Half-Yearly Examination 2005 by R. Year

	ρ8	He P6	H6	HS HC	P6	Year 12 Mathematics Question No. 4
fly <0 < xc when o < xc Thus fly is concave do to o < xc	d) fin	1	b) y"= 3x(H.Fo. I. X=2-y' Change'i P.O. I	a) $y = t_1 x^4 - x^3$ $x^2(x-3) = 0$ $y'' = 3x^2 - 6x$ \vdots , $f_0 s s i b le horizon$ $x = 0 - y'' > 0$ The only turning	Ph	ematics
fly <0 cx <2 when o cx <2	x(x-2) < x(x-2x < x) 2-2x < x) cowcaw	3	3x(x-a) = 0 0. I. already for 2-4'' < 0 x = 2+1'' (ancenia) nge in (ancenia) 0. I at (2,-4')	2"-x3 y"= x-3)=0 3C x-3)=0 3C 3x2-6x=0 5516/e horizon y">0, 2C y">0, 2	P 8 4	Half Yearly Solutions a Outcomes
	fx) come and down when 3 > 2 = 6 × < 0 7 (x - 2) < 0 fx)		3x2-6x = 0 at P.O. I. x-2)=0 2=07 27 y=05-45 . already found at (0,0) "<0 x = 2+y" > 0 " (ancenity at (2,-4)	y'= 23-32=0 a y=0}-6.75] y=0}-6.75] =0 at (0,0) worther inflexion 2=0+ y"<0 2=3+ y">0 2=3+ y">0	H2 H	Half Yearly Examination 2005 Solutions and Marking Guidelines Outcomes Addressed in this Que
2	en y"<0	, k	1 = 0 at P. O. I. 1 = 0? - 2? 4 = 0? - 4? 6 und at (0,0) 4 y" > 0	y = t 24-x3 y'= x3-3x3=0 a T.Pts. Demonstrate ability 22(x-3)=0 2=0? 3 y"= 3x3-6x=0 at(0,0) 1. Possible horizontal inflexion at(0,0) x=0 y">0, 2x=0+ y"<0 : HP.DE Locate possible to points x=3 y">0, 2x=0+ y"<0 : Al. Hin. (I mark) The only turning of is a Rel. Min. at(3-6:16) I dentify that 1.pt.	H6 H5	Half Yearly Examination 2005 Solutions and Marking Guidelines Outcomes Addressed in this Question
inequation OR OR Demonstrat to correct interpret to (at marks)	<u> </u>	plane	as a relative in Demonstrate fortocasting Pt (1 mark) Successfully: p.o.I. at (0, Q,-4) — (11 Demonstrate to represent derived in (Demonstrat to different set deinvet gero - (1 m Demonstrat Locate fossi L. (1 math)		
inequetion (I mark) OR Demonstrate validity to correctly mestrat the graph (of marks)	knowledge of condition for the to be concave down (I mark.) Demonstrate ability to solve the quadratic	(1 mark)	as a relative mus (mode) Demanstrate knowledge forlocating Pts. of Inflor. (1 mark) Successfully locate p.o.I. at (0,0) and Qy - (1 mark) Demanstrate ability to represent data derived in (a) and (b)	Demonstrate ability to differentiate and set deinvature to sero - (1 marts). Demonstrate ability to Locate possible t. points (1 marts) Tountfy the t.pt.	Marking Guidelines	
ility th	distrion Imask) Mity to ratic	st.	thoused the solution of the so	inter the second	(4)	J000

No. 5 No. 5 Above the second and the second and the second and the second are second as a second are second as a second are second as a second are seco	Half Yearly Examination 2005 g Guidelines	in this Question	Marking Guidelines	I mark for proportionality statement	ngles equal I mark for statement with the em in are in correct reason	ortion) I mark for correct answer	in similar 1 mark for correct solution (with appropriate reasons stated)	s) I mark for determining the size of $\angle BCA$ 1 mark for determining the size of $\angle BAC$		1 mark for correct answer
Year 12 Question Outcom H2 (a) (i H2 (b) (6 H2 (b) (6	n No. 5	Outcomes Addressed in Constructs arguments to prove and justify resu	Outcome Solutions	$\angle DAB = \angle CBD \text{ (given}$ $\frac{AD}{AB} = \frac{6}{9} = \frac{2}{3}$ $\frac{BC}{2} = \frac{8}{2} = \frac{2}{3}$		(ii) $\frac{DC}{BD} = \frac{BD}{AD}$ (sides are in the same proportion) $\frac{DC}{12} = \frac{12}{9}$ $\frac{DC}{12} = 16 \text{ cm}$	(iii) $\angle ABD = \angle BDC$ (corresponding angles in similar triangles) $AB \parallel CD$ (alternate angles are equal)	H2 (b) (i) $\angle DBC = x \text{ (angles opposite equal sides)}$ $\therefore \angle BCA = 2x \text{ (exterior angle of } \Delta BCD)$ $\therefore \angle BAC = 2x \text{ (angles opposite equal sides)}$	(ii) Since $\angle ABD = 120^{\circ}$ $x + 2x + 120 = 180$ (Angle sum of $\triangle ABD$) 3x = 60	x = 20

	Outshould in this Outstand Addressed in this Ouestion	Julacimes ,	A THE CONTRACT OF THE CONTRACT
H5 applies aggeometry, problems	propriate tecl probability, tri	of calculus,	· · · · · · · · · · · · · · · · · · ·
Outcome	Solutions	- Curien	Marking Guidelines
HS	(a) For an arithmetic sequence: $T_1 - T_2 = T_2 - T_1$ $\therefore 8x + 19 - T_2 = T_3 - (2x - 5)$, O #	2 marks Correct expression for T ₂ given with appropriate working. 1 mark
	$= T_1 - 2x + 5$ $10x + 24 = 2T_1$ $ie. T_2 = 5x + 12$. H 2 D &	In correct expression for T_2 found due to algebraic error in working, OR Uses test for arithmetic sequence in attempting to find an expression for T_2 .
H	(b) (i) $ T_3 - T_4 = 8 - \frac{11}{2} $ $ = \frac{5}{2} $ $ T_3 - T_4 = \frac{11}{2} $ $ T_3 - T_4 = \frac{11}{2} $		2 marks Correctly identifies sequence as arithmetic, finding the value of d, and hence finding a correct value for T ₃₁ , OR Uses other valid process to find T ₃ , I mark Finds incorrect value of d leading to a
	Sequence is arrithmetic with $d = \frac{3}{2}$ $T_n = a + (n-1)d$ $T_{3n} = 3 + 36 \times \frac{5}{2}$ $= 93$		consistent value of T _{JP} , OR Finds a correct value of d without valid justification. O marks Incorrect value of T _{JT} with no valid working.
HS .	(ii) $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{31} = \frac{37}{2} [2 \times 3 + (37 - 1) \times \frac{5}{2}]$ $= 18 \frac{1}{2} \times 96$ $= 1776$		2 marks Correctly states formula for sum of an arithmetic sequence, following on to find a correct answer for Syr, OR Uses correct formula with incorrect information from (i) above leading to a consistent answer. 1 mark Correct formula and information from (i) above used with arithmetic error in celenlation.
HS	(c) For a geometric series: $\frac{T_1}{T_1} = \frac{T_2}{T_1} = r$ $\frac{T_3}{T_1} = \frac{4}{1}$ $= \frac{4}{3}$ $= \frac{4}{1}$ $= \frac{4}{1}$ $= \frac{4}{1}$, AOOELARES	2 marks Correctly finds the value of the common ratio and states that a sum to infinity does not exist with valid reason. I mark Finds the correct value of the common ratio and then finds sum to infinity despite its non-existance.
	$= \frac{4}{3}$ $\therefore Sequence is geometric with r = \frac{4}{3}$ Here there is no limiting sum since $ r > 1$.	MR	O marks States that sum to infinity does not exist without justfication.

	 		P 4	P 4 (b)	P 4 (i		P3 (P ₃			(a)	me	P 3 performs rousurds, simple chooses and trigonometri	Vincential 1	Year 12 Half Yearly
·	$\therefore x^2 + y^2 = 4$ which is a circle of centre (0, 0) and radius 2 units	$\therefore (x-4)^2 + y^2 = 4((x-1)^2 + y^2)$ $\therefore x^2 - 8x + 16 + y^2 = 4x^2 - 8x + 4 + 4y^2$ $\therefore 3x^2 + 3y^2 = 12$	(ii) PB=2PA $\therefore \sqrt{(x-4)^2 + y^2} = 2\sqrt{(x-1)^2 + y^2}$	(i) PB = $\sqrt{(x-4)^2 + y^2}$	(iii) directrix is $\frac{1}{2}$ a unit below the vertex $(1, -7)$ directrix is $y = -7\frac{1}{2}$	$a = \frac{1}{2}$ $a = \frac{1}{2}$		(1, -7)	$\therefore (x-1)^2 = 2(y+7)$	$\therefore x^2 - 2x = 2y + 13$ $\therefore x^2 - 2x + 1 = 2y + 13 + 1$	$x^2 - 2x - 2y - 13 = 0$	Solutions	performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometrical techniques	Outcomes Addressed in this Question	Solu
).	2 marks: two of above 1 mark: one of above	correctly simplifying to give equation of a circle, plus finding radius and centre of the circle	3 marks: correctly squaring both sides of correct equation linking PA and PB, plus	I mark: correct use of distance formula	1 mark : correct solution or correct reasoning		1 mark : correct solution	1 mark : correct solution	•			1 mark : correct solution	Marking Childlings	ore later la	Examination 2005

· (S)	E.		Outcome (a)	Year 12 Question No. (8) PH Chooses techn
$x^{4} = 4(x^{2} + 8)$ $x^{4} = 4x^{2} - 32$ $(x^{2} - 8)(x^{2} + 32)$ $x^{2} = 4x^{2} - 32$ $x^{4} = 4x^{2} + 32$	(b) Real roots if $\Delta > 0$ $\Delta = b^{2} - 4ac > 0$ $(k-3)^{2} - 4 \cdot 1 \cdot k > 0$ $k^{2} - 6k + 9 - 4k > 0$ $k^{2} - 10k + 9 > 0$ $(k-9)(k-1) > 0$ $k \le 1 \text{ or } k > 9$	ALTERNATIVE	Solutions $Solutions$ (a) $2x^{L}-7x+4=a(x^{L}+2)^{L}+b(x+2)+a$ $= a(x^{L}+4x+4)+bx+4$	O. (8) Solutions and Marking Guidelines by Outcomes Addressed in this Question Chooses and applies appropriate arith techniques
tion TO cons	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ 2b + c c = 4 c = 4 c = 4 c = 24 c = 24	Marking Guidelines $+b(x+2)+c$ $+(x+2)+c$	Half-Yearly Exar R. Yea metic and
equation = 0 ide/ 2 cases rect solution	correct quadratic inequality > correct factorisation factorisation orrect solution	Correct exponsion correct answer correct answer correct answer values: ect thous	uidelines	nination 2005

					Marking Guidelines	- Ingriting	1 mark : correct answer	1 mark : solving $\frac{dy}{dx} = 0$	and finding corresponding y value	1 mark : justify	$\frac{d^2y}{d^2}$ or using 1^{st}	derivative test		I mark: state 2 pairs of equal angles, with reason	and justify equiangual	1 mark : correct answer AP	1 mark: justify area	(provided didn't		1 mark : correctly find A' and solve	1 mark: test maximum	and find corresponding		AMERICA V.
FYearly Mathematics Examination 2005 Only Solutions and Marking Guidelines		performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities	constructs arguments to prove and justify results applies appropriate techniques from the study of calculus,	geometry, probability, ingonometry and series to some procession uses the derivative to determine the features of the graph of a function	aphs	Solutions	(a) (i) $y = x + \frac{900}{x} = x + 900x^{-1}$ $\frac{dy}{x} = 1 - 900x^{-2} = 1 - \frac{900}{x^2}$	(ii) Maximum/Minimum when $\frac{dy}{dx} = 0$	$1 - \frac{900}{x^2} = 0$ when $x^2 - 900 = 0$, giving $x = \pm 30$	$\frac{d^2y}{dx^2} = 1800x^{-3} = \frac{1800}{x^3}$	When $x = 30$, $\frac{d^2y}{dx^2} = \frac{1800}{30^3} > 0$	\therefore minimum when $x = 30$	When $x = 30$, $y = 30 + \frac{900}{30} = 60$ \therefore y has a relative minimum value of 60	 (b) (i) ∠A is common ∠APQ = ∠ABC (both right angles) ∠AQP = ∠ACB (corresponding, PQ∥BC ∴ AAPQ is similar to AABC 	(ii) as \triangle 's similar, sides in same ratio	$\therefore \frac{20}{20} = \frac{15}{15} \therefore AP = \frac{3}{3}$ Area rectangle BPQR = PB × PQ	$=(20-\frac{4x}{3})\times x$	$=x(20-\frac{4x}{3})$	(iii) $A = x(20 - \frac{4x}{3}) = 20x - \frac{4x^2}{3}$	$A' = 20 - \frac{8x}{3} = 0$ for maximum/minimum	which occurs when $x = 7.5$	$A'' = -\frac{3}{3} < 0$: maximum when $x = 7.5$	Maximum area = $7.5(20 - \frac{4 \times 7.5}{3}) = 75 \text{m}^2$.	
Year 12 Half Yearly	Question 190. 3	P 3 perfor	H2 const H5 appli	geom H 6 uses t	"	Outcome	HS	,	но, ну					H2	P3		***		H 6, H 9					

	And the state of t	Marking Guidelines	Correct answer (1 mark)	Demonstrate ability to square the binomial (Imoth) Correct answer (Imath)	Correct primitive (1 mark)	Knowledge of condition for curve to pass through (d,3) - (matk)	Correct evaluations of c. (I mark)		Correct de rivative (Imank)		_	Correct domain	(Support)	- company
hematics Half Yearly Examination 2005 Solutions and Marking Guidelines Outcomes Addressed in this Question	PS HS HS	Solutions	a) $f(x) = x^2 + 2x - 3$ Primitare is $x_1^3 + x^2 - 3x + C$	b) $(2c^2+2)^2 = (\chi^2)^3 + 2(\chi^2)(2) + 2^2$ = $2c^4 + 4\chi^2 + 4$ Primitive is $3c^2_f + 4/3\chi^3 + 4\chi + c$	$c) \frac{dy}{dx} = 3x^2 - 2x + 1$ $y = x^3 - x^2 + x + C$	Substitute x=2, y=3 and solve to find a.	3 = 8 - 4 + 2 + C C = 3 - 8 + 4 - 2 = -3 Equation of the curve is $4 = x^3 - x^2 + x - 3$	d) $y = \frac{1}{x^3+1}$	$y' = -a \pi$ $(2\kappa^2 + i)^2$	Decreasing function when y's o factly so for all oc	" -2x < 0 farall x>0	ie. y = 1/2 13 a	decreasing functions when >< >0	tallegam (see a see a
Year 12 Mathematics Question No. 10	ρ¢	Outcome	HS	P#	ЭН		<u> </u>	Ç	₹ 5°	1	·			

• . .