MATHEMATICS HSC HALF YEARLY EXAM 2006

QUESTION	115 marksStart a NEW answer booklet	Marks
(a)	Calculate, correct to 3 significant figures, the value of: $\frac{\sqrt{(2.3)^5 - 6.95}}{\pi}$	2
(b)	Solve the equation $p^2 = 2p$	2
(c)	Fully factorise the expression: $5x^3 + 40$	2
(d)	Briefly explain why the equation $ 5t-32 = -18$ has no solutions.	1
(e)	Find the two values of x where the circle $x^2 + y^2 = 15$ and the line $y = 2x$ intersect. Leave your answers in exact form.	3
(f)	(i) Solve the quadratic inequality $36-9x-x^2 \ge 0$.	2
	(ii) Graph your solution on a number line.	1
(g)	Solve for m:	2
	$7^m = 18$	

Give your answer correct to 2 decimal places.

QUESTION	N 2 15 marks	Start a NEW answer booklet	Marks
The	points P and Q have $\cos q$	ordinates $(3, -2)$ and $(1, 3)$ respectively.	
(a)	The line <i>k</i> has equation	4x + 5y - 2 = 0. Verify that <i>P</i> lies on <i>k</i> .	1
(b)	The line l through Q has	as gradient $\frac{1}{3}$. Show that the equation of <i>l</i> is	2
	x - 3y	+ 8 = 0.	
(c)	The point of intersection	on of k and l is R . Find the coordinates of R .	3
(d)	Draw a neat sketch on	a number plane showing P , Q , R , k and l .	2
(e)	Find the perpendicular Leave your answer as a		2
(f)	Find the area of ΔPQR		3
(g)	<i>l</i> is a tangent to a circle	e centre <i>P</i> . Find the equation of that circle.	2

- (a) Solve the equation $3x^2-6x+1=0$ giving each solution correct to two decimal places. 2
- (b) Let α and β be the roots of the equation $x^2 5x + 2 = 0$. Find the values of:
 - (i) $\alpha + \beta$ 1
 - (ii) $\alpha\beta$ 1

(iii)
$$(\alpha+1)(\beta+1)$$
 2

(c) Consider the equation $x^2 + (k+2)x + 4 = 0$.

For what values of k does the equation have:

(i) equal roots? 2

- (d) Solve the equation $3^{2x} + 2 \times 3^x 15 = 0$ 3
- (e) Find the values of *A* and *B* for which the following identity holds. **3**

$$5x^{2} + x - 2 \equiv A + B(x+1) + Cx(x+1)$$

QUESTION 4		15 marks St	tart a NEW answer booklet	Marks
(a)	For t	ne parabola $x^2 = 12$	2 y find:	
	(i)	the co-ordinates	of the focus	1
	(ii)	the equation of the	he directrix.	1
(b)	A pa	abola has equation	$x^2 = 8(2-y).$	
	(i)	Find the coordinate	ates of its vertex.	1
	(ii)	Find the coordinate	ates of its focus.	1
	(iii)	Find the equation	n of its directrix.	1
	(iv)	Find the <i>x</i> and <i>y</i>	intercepts of the parabola.	2
	(v)	Draw a neat sket information.	cch of the parabola, illustrating the above	1
(c)	Find	the vertex of the pa	arabola $y = x^2 + 6x + 7$.	
(d)		and B be the fixed (x, y) .	I points $(-2,0)$ and $(1,0)$. Let <i>P</i> be the variable	2
	(i)		oves so that $PA = 2PB$. ves on the circle $x^2 - 4x + y^2 = 0$.	3
	(ii)	Find the centre and	d radius of this circle.	
				2

(a)	For th	ne sequence 1, 1, 2, 3, 5,	
	i)	Find the next term	1
	ii)	Determine whether the sequence is arithmetic, geometric or neither geometric or arithmetic giving reasons.	2
(b)	Find	the sum to twenty terms for the following series: $80 + 73 + 66 + 59 + \dots$	2
(c)	The t Find:	hird term of a geometric sequence is $\frac{4}{27}$ and the fifth term is $\frac{16}{243}$	
	(i)	the common ratio,	2
	(ii)	the first term,	1
	(iii)	the limiting sum.	1

QUESTION 5 continues on the next page

QUESTION 5 (continued)

- (d) A \$5000 scholarship fund, for tertiary studies, is set up for Johnny at his birth. The account has an interest rate of 8% p.a. compounded quarterly for the duration of the investment. Johnny commences University on his 18th birthday. An allowance of \$1500 is to be paid to Johnny on commencement of his tertiary studies and each subsequent 3 monthly period.
 - (i) Show that the amount in the fund just prior to the first allowance **1** payment is \$20 806, to the nearest dollar.
 - (ii) Show that the balance of the account on Johnny's 19th birthday (ie after the fifth allowance payment) is: 2

$$5000(1.02)^{76} - 75000(1.02^5 - 1)$$

(iii) Show that the account balance after n payments is given by the expression: 1

$$5000(1.02)^{71+n} - 75000(1.02)^{n} + 75000$$

(iv) How long, in years and months, will Johnny receive allowance 2 payments?

- (a) Use differentiation to find the values of *x* for which the graph of $y = 9x(x + 2)^2$ is:
 - (i) increasing 3
 - (ii) concave down.

(b) The gradient function of a curve is
$$\frac{dy}{dx} = 3x^2 - 2x + 1.$$
 2

If the curve passes through the point (2, 3), find its equation.

The diagram shows the graph of a certain function y = f(x). (c) Copy this graph, then on the same set of axes, draw a sketch of the derivative y = f'(x) of the function.

(d) Consider the function
$$y = x^3 - 6x^2 + 9x - 4$$
.

(i) Find its stationary points and determine their nature. 3 (ii) Find its point of inflexion. 2 (iii) Graph the function on a number plane. 1

2

2

Marks

Year 12 M	Aathema	tics Half Yearly Examination 2006	
Question	No. 1	Solutions and Marking Guidelines	
		Outcomes Addressed in this Questi-	
P3 p	erforms ro	asoning to support conclusions which are appropriate to the con- putine arithmetic and algebraic manipulation involving surds, since identities.	
		d applies appropriate arithmetic, algebraic, graphical, trigonom	etric and geometric techniques.
Outcome		Solutions	Marking Guidelines
P3	(a)	$\frac{\sqrt{(2.3)^5 - 6.95}}{\pi} = 2.411886541$ $= 2.41$	2 marks Correct answer correctly rounded. 1 mark Correct answer incorrectly rounded OR Incorrect answer rounded to 3 sig. figs.
P4	(b)	$p^2 = 2p$ $p^2 - 2p = 0$ p(p-2) = 0 p = 0, 2	 2 marks Both correct answers stated. 1 mark Only 1 of 2 correct answers stated OR solution showing correct factorisation leading to incorrect answer.
P4	(c)	$5x^{3} + 40 = 5(x^{3} + 8)$ = 5(x + 2)(x ² - 2x + 4)	2 marks Expression fully and correctly factorised. 1 mark Common factor recognised without proceeding to factorise sum of two cubes or factorising difference of two cubes incorrectly.
P2	(d)	By definition, $ 5t - 32 $ must be positive. Hence, there are no values of t which will give this expression a value of -18 .	1 mark Valid explanation given.
P4	(e)	$x^{2} + y^{2} = 15 \qquad \dots 1$ $y = 2x \qquad \dots 2$ Sub.eqn.2 into eqn.1 $x^{2} + (2x)^{2} = 15$ $5x^{2} = 15$ $x^{2} = 3$ $x = \pm \sqrt{3}$	3 marks Correct solution 2 marks Correct solution not showing <u>both</u> values of <i>x</i> , OR Minor error in solution leading to incorrect answer but working substantially correct. 1 mark Substantially correct attempt to solve equations simultaneously, not proceeding beyond this point.
P4	(f)	(i) $36-9x-x^2 \ge 0$ $x^2+9x-36 \le 0$ $(x+12)(x-3) \le 0$ Solution: $-12 \le x \le 3$	 2 marks Solution correctly stated. 1 mark Factorises quadratic correctly, but does not proceed to correct solution. OR error leads to an incorrect solution with working consistent with given solution.
P4		(ii) -12 0 3 x	1 mark Correct representation of solution in part (i), provided incorrect solution in (i) does not lead to simpler graph.
P4	(g)	$7^{m} = 18$ $\log 7^{m} = \log 18$ $m \log 7 = \log 18$ $m = \frac{\log 18}{\log 7}$ = 1.49 (2 dec. pl.)	 2 marks Correct solution given. 1 mark Attempts to solve equation using logarithms, showing knowledge of at least one relevant log law.

ID communicates using mathematical language, notation diagrams and graphsOutcomeSolutionsMarking GuidelinesP4 (a)Substitute $(3,-1)$ in $4x + 5y - 2 = 0$ $4 \times 3 + 5 \times (-2) - 2$ $= 12 - 10 - 2$ $= 0$ 1 mark correct answerP4 (b) $y - y_1 = m(x - x_i)$ $y - 3 = \frac{1}{3}(x - 1)$ $3y - 9 = x - 1$ $x - 3y + 8 = 0$ 2 mark for correct answer. or I mark correctly using an appropriate form of the straight lineP4 (c) $x - 3y + 8 = 0$ $4x + 5y - 2 = 0$ $(2) - (3)$ 1 mark solving simultaneously to find x mark for attempting to find yP4 (c) $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ $(2) - (3)$ 3 marks for correct answer. or 1 mark solving simultaneously to find x mark for attempting to find y	Question No.	5	es
19 communicates using mathematical language, notation diagrams and graphsOutcomeSolutionsMarking GuidelinesP4 (a)Substitute (3,-1) in $4x + 5y - 2 = 0$ $4 \times 3 + 5 \times (-2) - 2$ $= 12 - 10 - 2$ $= 0$ 1 mark correct answerP4 (b) $y - y_1 = m(x - x_1)$ $y - 3 = \frac{1}{3}(x - 1)$ $3y - 9 = x - 1$ $x - 3y + 8 = 0$ 2 mark for correct answer. or 1 mark correctly using an appropriate form of the straightingP4 (c) $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ 3 marks for correct answer. or 1 mark solving simultaneously to find x mark for attempting to find yP4 (c) $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ $(2) - (3) = 17y - 34 = 0$ $y = 2$ Sub in (1) $x - 6 + 8 = 0$ $x = -2$ 3 marks for correct answer. or 1 mark solving simultaneously to find x mark for attempting to find yH9 (d) $y - Q(1, 3)$ 2 marks for correct answer. O one mark if not labelled correctly.	P4 choos		al and geometric techniques
OutcomeSolutionsMarking GuidelinesP4 (a)Substitute $(3,-1)$ in $4x + 5y - 2 = 0$ 1 $4 \times 3 + 5 \times (-2) - 2$ $= 12 - 10 - 2$ 1 $= 0$ 1mark correct answer $\therefore (3,-2)$ lies on k 2mark for correct answerP4 (b) $y - y_1 = m(x - x_1)$ 2mark for correct answer $y - 3 = \frac{1}{2}(x - 1)$ $3y - 9 = x - 1$ 2mark for correct using an appropriate form of the straight lineP4 (c) $x - 3y + 8 = 0$ (1) $4x + 5y - 2 = 0$ (2) $4 \times (1)$ $4x - 12y + 32 = 0$ (3)(2) - (3) $(2) - (3)$ $17y - 34 = 0$ (3)(2) - (3) $y = 2$ Sub in (1) $x - 6 + 8 = 0$ 1 $x = -2$ $\cdot R(-2,2)$ is the point of intersection1marks for correct answer. or or orH9 (d) $4x - 5y - 2 = 0$ $4x - 5y - 2 = 0$ (2) k $x = -2$ (3) 2 marks for correct answer. Or or or orH9 (d) $4x - 5y - 2z - 2$ (2)(3) k 2 marks for correct answer. Or one mark if not labelled correctly.			
H9 (d) = H2 (d) = H			
$H9 (d) = 12 - 10 - 2$ $= 0$ $\therefore (3, -2) \text{ lies on } k$ $P4 (b) = 12 - 10 - 2$ $= 0$ $\therefore (3, -2) \text{ lies on } k$ $y - y_1 = m(x - x_1)$ $y - 3 = \frac{1}{3}(x - 1)$ $3y - 9 = x - 1$ $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ (1) $4x + 5y - 2 = 0$ (2) $4x + (1) 4x - 12y + 32 = 0$ (3) $(2) - (3) 17y - 34 = 0$ $y = 2$ Sub in (1) $x - 6 + 8 = 0$ $x = -2$ $\therefore R(-2, 2) \text{ is the point of intersection}$ $H9 (d) = 1$ $M = 0$	P4 (a)	Substitute $(3,-1)$ in $4x + 5y - 2 = 0$	
P4 (b) P4 (b) P4 (c) P4 (c		$4 \times 3 + 5 \times (-2) - 2$	
H9 (d) $P(b) = \frac{1}{2} (x-1)$ $y - y_1 = m(x - x_1)$ $y - 3 = \frac{1}{3} (x-1)$ $3y - 9 = x - 1$ $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ (1) $4x + 5y - 2 = 0$ (2) $4x(1) 4x - 12y + 32 = 0$ (3) $(2) - (3) 17y - 34 = 0$ $y = 2$ Sub in (1) $x - 6 + 8 = 0$ $x = -2$ $\therefore R(-2,2) \text{ is the point of intersection}$ H9 (d) H9 (d) H		=12-10-2	
H9 (d) $ \begin{array}{c} \therefore (3,-2) \text{ lies on } k \\ P4 (b) \\ P4 (c) \\ x - 3y + 8 = 0 \\ x - 3y + 8 = 0 \\ x - 3y + 8 = 0 \\ (2) \\ 4 \times (1) 4x - 12y + 32 = 0 \\ (2) \\ 4 \times (1) 4x - 12y + 32 = 0 \\ y = 2 \\ Sub in (1) x - 6 + 8 = 0 \\ x = -2 \\ \therefore R(-2,2) \text{ is the point of intersection} \end{array} $ H9 (d) H9 (d) $ \begin{array}{c} y - y_1 = m(x - x_1) \\ y - 3 = \frac{1}{3}(x - 1) \\ x - 3y + 8 = 0 \\ (2) \\ 4 \times (1) 4x - 12y + 32 = 0 \\ y = 2 \\ Sub in (1) x - 6 + 8 = 0 \\ x = -2 \\ \therefore R(-2,2) \text{ is the point of intersection} \end{array} $ H9 (d) $ \begin{array}{c} y - y_1 = m(x - x_1) \\ x - 3y + 8 = 0 \\ y = 2 \\ Sub in (1) x - 6 + 8 = 0 \\ x = -2 \\ \therefore R(-2,2) \text{ is the point of intersection} \end{array} $ H9 (d) $ \begin{array}{c} y \\ y \\ y \\ Q(1,3) \\ x \\ x \\ x \\ x \\ x \\ x \\ y \\ y$		= 0	1 mark correct answer
P4 (b) P4 (c) P4 (c		\therefore (3.–2) lies on k	
$y - y_{1} = m(x - x_{1})$ or 1 mark correctly using an appropriate form of the straight line P4 (c) $y - 3 = \frac{1}{3}(x - 1)$ $3y - 9 = x - 1$ $x - 3y + 8 = 0$ $x - 3y + 8 = 0$ $4x + 5y - 2 = 0$ (2) $4x + (1) 4x - 12y + 32 = 0$ (2) $4x + (1) 4x - 12y + 32 = 0$ (2) $4x + (1) 4x - 12y + 32 = 0$ (2) $4x + (1) 4x - 12y + 32 = 0$ (3) $(2) - (3) 17y - 34 = 0$ $y = 2$ Sub in (1) $x - 6 + 8 = 0$ $x = -2$ $\therefore R(-2, 2) \text{ is the point of intersection}$ H9 (d) H9 (d) $y = \frac{y}{R(-2, 2)}$ k k $x = \frac{1}{2}$ $x $			
P4 (c) P4 (c	P4 (b)	$y - y_1 = m(x - x_1)$	
$H9 (d) H9 (d) H9 (d) = x - 1$ $x - 3y + 8 = 0$ (1) $4x + 5y - 2 = 0$ (2) $4x (1) 4x - 12y + 32 = 0$ (3) $(2) - (3) 17y - 34 = 0$ $y = 2$ Sub in (1) $x - 6 + 8 = 0$ $x = -2$ $\therefore R(-2,2) \text{ is the point of intersection}$ $H9 (d) = \frac{y}{Q(1,3)}$ $2 \text{ marks for correct answer. Of a mark if not labelled correctly.}$			• •
$H9 (d) = H9 (d) = \frac{3y-9=x-1}{x-3y+8=0}$ $\frac{3y-9=x-1}{x-3y+8=0}$ $\frac{x-3y+8=0}{(1)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x}{(2)-(3)} = 17y-34=0$ $y=2$ Sub in (1) $x-6+8=0$ $x=-2$ $\frac{x-2}{(1)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8=0}{(3)}$ $\frac{x-3y+8=0}{(2)}$ $\frac{x-3y+8}{(2)}$ $x-$			· · · ·
P4 (c) x-3y+8=0 (1) 4x+5y-2=0 (2) $4\times(1) 4x-12y+32=0$ (3) (2)-(3) 17y-34=0 y=2 Sub in (1) $x-6+8=0$ x=-2 $\therefore R(-2,2)$ is the point of intersection H9 (d) H9 (d) y x			
H9 (d) x = -2 H9 (d) x = -2 x = -2		x - 3y + 8 = 0	
H9 (d) $4x+5y-2=0$ (2) $4\times(1) 4x-12y+32=0$ (3) $(2)-(3) 17y-34=0$ $y=2$ Sub in (1) $x-6+8=0$ $x=-2$ $\therefore R(-2,2) \text{ is the point of intersection}$ H9 (d) H9 (d) 4x+5y-2=0 (3) $(3) marks for correct answer. or 1 mark solving simultaneously to find x mark for attempting to find y$ $2 marks for correct answer. O one mark if not labelled correctly.$	P4 (c)	x - 3y + 8 = 0 (1)	
H9 (d) $4 \times (1) 4x - 12y + 32 = 0 \qquad (3)$ $(2) - (3) 17y - 34 = 0$ $y = 2$ Sub in (1) $x - 6 + 8 = 0$ $x = -2$ $\therefore R(-2,2) \text{ is the point of intersection}$ $H9 (d)$ $4 \times (1) 4x - 12y + 32 = 0 \qquad (3)$ $x = -2$ $\therefore R(-2,2) \text{ is the point of intersection}$ $H9 (d)$ $4 \times (1) 4x - 12y + 32 = 0 \qquad (3)$ $y = 2$ $x = -2$ $\therefore R(-2,2) \text{ is the point of intersection}$ $4 \times (1) 4x - 12y + 32 = 0 \qquad (3)$ $y = 2$ $y = 2$ $x = -2$ $y = 2$ $y = -2$ $y = 2$ $y = -2$ $y = -2$ $y = 2$ $y = -2$ $y = -$			
H9 (d) $(2)-(3) 17y-34=0$ $y=2$ Sub in (1) $x-6+8=0$ $x=-2$ $\therefore R(-2,2) \text{ is the point of intersection}$ $(2)-(3) 17y-34=0$ $y=2$ Sub in (1) $x-6+8=0$ $x=-2$ $\therefore R(-2,2) \text{ is the point of intersection}$ $(2)-(3) 17y-34=0$ $y=2$ $(3) marks for correct answer. or 1 mark solving simultaneously to find x mark for attempting to find y$ $(2)-(3) 17y-34=0$ $(3) \text{ marks for correct answer. or 1 mark solving simultaneously to find x mark for attempting to find y$ $(2)-(3) (2) (3$			
$y = 2$ Sub in (1) $x-6+8=0$ $x = -2$ $\therefore R(-2,2)$ is the point of intersection H9 (d) H9 (d) $y = 2$ $x = -2$ $\therefore R(-2,2)$ is the point of intersection $x = -2$ $x = -2$ $x = -2$ $y = Q(1,3)$ $y = 2$ $y = 2$ $y = -2$ $y = -2$ $y = Q(1,3)$ $y = Q(1,3)$ $y = 2$ $y = -2$ $y =$			
$y = 2$ Sub in (1) $x-6+8=0$ $x = -2$ $\therefore R(-2,2)$ is the point of intersection H9 (d) H9 (d) Q(1,3)			3 marks for correct answer
Sub in (1) $x-6+8=0$ x = -2 $\therefore R(-2,2)$ is the point of intersection H9 (d) H9 (y = 2	
H9 (d) $x = -2$ $R(-2,2) is the point of intersection$ $H9 (d)$ $M(-2,2)$ $R(-2,2)$ K K x		Sub in (1) $x - 6 + 8 = 0$	
H9 (d) (1,3) (1			
H9 (d) R(-2,2) k k k k H9 (d) 2 marks for correct answer. Of one mark if not labelled correctly.			
R(-2,2) $Q(1,3)R(-2,2)$ $Q(1,3)$		$\therefore R(-2,2)$ is the point of intersection	
R(-2,2) $Q(1,3)R(-2,2)$ $Q(1,3)$	H9 (d)		
R(-2,2) k	11) (u)	1. ^y	
$ \begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & $		Q(1,3)	
$ \begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & $			
$ \xleftarrow{k} \\ k \\$		R(-2,2)	2 marks for correct answer. Only
$ \\ k \\ $			
			correctly.
		$\leftarrow \qquad \qquad$	
P(3,-2)			
P(3,-2)			
		P(3-2)	
		↓ ↓	

P4 (e)	$d = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$ = $\frac{3 - 3 \times (-2) + 8}{\sqrt{1^2 + 3^2}}$ = $\frac{17}{\sqrt{10}}$	2 marks for correct answer.or1 mark for partially correct answer.
P4 (f)	Length of QR $d = \sqrt{3^{2} + 1^{2}}$ $= \sqrt{10}$ Area of triangle $A = \frac{1}{2}bh$ $= \frac{1}{2} \times QR \times \text{distance of } P \text{ from } l$ $= \frac{1}{2} \times \sqrt{10} \times \frac{17}{\sqrt{10}}$ Area = $\frac{17}{2}u^{2}$	3marks for correct answer. or 1 mark for finding a length of a side and 1 mark for substituting appropriate values in the area formula
P4 (g)	Circle centre (3,-2) and radius $\frac{17}{\sqrt{10}}$ $(x-3)^2 + (y+2)^2 = \frac{17^2}{10}$	1 mark for stating radius 1 mark for correctly substituting in the central form of a circle

Year 12	Mathematics	Half-Yearly Exam 2006
Question 1	No. 3 Solutions and Marking Guidelines Outcomes Addressed in this Question	n
P4 – Choo	ses and applies appropriate arithmetic and algebraic tech	
Outcome	Solutions	Marking Guidelines
P4	Question 3 (a) Using quad formula $x = \frac{6 \pm \sqrt{36 - 4 \times 3 \times 1}}{6}$ $= \frac{6 \pm \sqrt{24}}{6}$ = 1.82 or 0.18	Award 1 for correct substitution into correct formula Award 2 for correct substitution and at least one correctly evaluated answer
	(b) (i) $\alpha + \beta = -\frac{b}{a}$ = 5	Award 1 for correct answer.
	(ii) $\alpha\beta = \frac{c}{a}$ = 2	Award 1 for correct answer.
	(iii) $(\alpha+1)(\beta+1) = \alpha\beta + (\alpha+\beta) + 1$ = 2+5+1 = 8	Award 1 for simplificationAward 2 for simplification and correct substitution (subsequent errors are not penalised)
	(c) $\Delta = b^2 - 4ac$ = $(k+2)^2 - 4 \times 1 \times 4$ = $k^2 + 4k - 12$ = $(k+6)(k-2)$	Award 1 for correct calculation of Δ .
	(i) Equal roots $\Delta = 0$ $\therefore (k+6)(k-2) = 0$ $\therefore k = 2 \text{ or } k = -6$	Award 1 for correct answer
	(ii) Distinct real roots $\Delta > 0$ $\therefore (k+6)(k-2) > 0$ $\therefore k > 2$ or $k < -6$	Award 1 for stating $\Delta > 0$ (Deduct mark for $\Delta \ge 0$)
	(d) Let $3^{x} = u$ $\therefore 3^{x \times 2} + 2 \times 3^{x} - 15 = 0$ becomes $u^{2} + 2u - 15 = 0$	Award 1 for correct substitution Award 2 for correct solutions for "u"
	$\therefore (u+5)(u-3) = 0$ $\therefore 3^{x} = -5 \text{ or } 3^{x} = 3$ no solutions $x = 1$ Ie the only solution is $x = 1$	Award 3 for both correct solutions for x. (ie. some indication that student considered $3^x = -5$, but decided that this would yield NO solution)

(e)
$$5x^2 + x - 2 \equiv A + B(x+1) + Cx(x+1)$$

 $= A + Bx + B + Cx^2 + Cx$
 $= Cx^2 + (B+C)x + (A+B)$
 $\therefore C = 5$ $B + C = 1$ $A + B = -2$
 $B + 5 = 1$ $A - 4 = -2$
 $\therefore B = -4$ $A = 2$

OR

By substitution :

Let
$$x = -1$$

 $5(-1)^2 + (-1) - 2 = A$
 $\therefore A = 2$

Let x = 0

$$\therefore -2 = A + B$$
$$= 2 + B$$
$$\therefore B = -4$$

Award 1 for correct expansion

Award 2 for correct expansion and collecting like terms

Award 3 for at least one correct solution resulting from equating coefficients

Award 1 each for each correct substitution and at least one correct solution

Year 12	Mathematics	Half Yearly Examination 2006		
Question N	5.4 Solutions and Marking Guidelines			
	Outcome Addressed in this Question			
H2 con	H2 constructs arguments to prove and justify results			
H9 communicates using mathematical language, notation, diagrams and graphs				
Outcome	Solutions	Marking Guidelines		

(c) H9	$y = x^{2} + 6x + 7$ $y' = 2x + 6$	Award 2 for correct solution
	Vertex occurs where $y' = 0$	Award 1 for substantial
	$\therefore 2x + 6 = 0$	progress towards solution
	$\therefore x = -3$	
	$\therefore \text{ Vertex is } (-3, -2)$ $PA = 2PB$	
	$\sqrt{(x+2)^2 + (y-0)^2} = 2 \times \sqrt{(x-1)^2 + (y-0)^2}$	
	$\therefore (x+2)^{2} + y^{2} = 4 \times \left[(x-1)^{2} + y^{2} \right]$	
	$\therefore x^{2} + 4x + 4 + y^{2} = 4 \times \left[x^{2} - 2x + 1 + y^{2} \right]$	Award 3 for correct solution
(d) (i) H2	$\therefore x^{2} + 4x + 4 + y^{2} = 4x^{2} - 8x + 4 + 4y^{2}$	Award 2 for substantial
	$\therefore 3x^2 - 12x + 3y^2 = 0$	progress towards solution
	$\therefore x^2 - 4x + y^2 = 0$	Award 1 for either: removing square root
	$x^2 - 4x + y^2 = 0$	or
	$x^2 - 4x + 4 + y^2 = 4$	expansion
	$(x-2)^2 + y^2 = 4$	
	\therefore Centre = (2,0)	Award 2 for correct solution
(ii) H2	$\therefore \text{Radius} = 2$	Award 1 for either: centre <i>or</i> radius
		centre of factures

Year 12 Question N	Io. 5 Mathematics	Task 2Examination 2006
Guidelines		
H4 exp H5 app	Outcomes Addressed in this Question structs arguments to prove and justify results resses practical problems in mathematical terms based on s lies appropriate techniques from the study of calculus, geon series to solve problems	
Outcome	Solutions	Marking Guidelines
Н5 Н2	a 1, 1, 2, 3, 5, i) next term: $3+5 = 8$ ii) Arithmetic if $T_1 - T_2 = T_3 - T_2$ $1 - 1 \neq 2 - 1$ \therefore not arithmetic Geometric if $\frac{T_2}{T_1} = \frac{T_3}{T_2}$ $\frac{2}{1} \neq \frac{1}{1}$	1 mark correct term 1 mark correct conclusion 1 mark for reasons
Н5	∴ not geometric ∴ Series is neither arithmetic or geometric b $80+73+66+59+$ $a = 80, \qquad d = -7, \qquad n = 20$ $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{20} = \frac{20}{2} [2 \times 80 + (20-1) \times -7]$ $S_{20} = 270$ c	2 marks correct solution 1 mark substantially correct
H5	i) $ar^{2} = \frac{2}{27}$ $ar^{4} = \frac{16}{243}$ $r^{2} = \frac{16}{243} \times \frac{27}{4}$ $r^{2} = \frac{4}{9}$ $r = \pm \frac{2}{3}$ ii) $a\left(\pm \frac{2}{3}\right)^{2} = \frac{4}{27}$	 2 marks correct method giving both solutions for <i>r</i> 1 mark 1 correct solution for <i>r</i>
	$a = \frac{1}{3}$ <i>iii</i>) $S_{\infty} = \frac{a}{1-r}$ $S_{\infty} = \frac{\frac{1}{3}}{1-\frac{2}{3}}$ or $\frac{\frac{1}{3}}{1-\frac{-2}{3}}$	1 mark correct solution
	$3 \qquad \qquad 3$ $S_{\infty} = 1 \qquad or \qquad \frac{1}{5}$	1 mark correct solution

$$\begin{array}{|c|c|c|c|c|} \label{eq:constraint} \mathbf{d} \\ i) & 5000(1+0\cdot02)^{72} \\ & $$20806$ \\ \mathbf{H4} & i) & $$A_{1} = 5000(1\cdot02)^{72} - 1500 \\ $A_{2} = [5000(1\cdot02)^{72} - 1500] \times 1\cdot02 - 1500 \\ $A_{4} = [5000(1\cdot02)^{72} - 1500] \times 1\cdot02 - 1500] \times 1\cdot02^{-1} \\ & $C_{4} = 5000(1\cdot02)^{71} - 1500(1+1\cdot02+...+1\cdot02^{4}) \\ $S_{n}(GP) = \frac{a(r^{n} - 1)}{r - 1} = \frac{1(1\cdot02^{5} - 1)}{1\cdot02 - 1} \\ & $S_{2} = 50(1\cdot02^{5} - 1) \\ & $C_{4} = 5000 \times 1\cdot02^{71 \times 3} - 75000(1\cdot02^{5} - 1) \\ & $iii) & $A_{4} = 5000 \times 1\cdot02^{71 \times 3} - 75000(1\cdot02^{5} - 1) \\ & $iii] & $A_{4} = 5000 \times 1\cdot02^{71 \times 3} - 75000(1\cdot02^{5} - 1) \\ & $C_{4} = 5000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{2^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{2^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{5^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{5^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{5^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{5^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{5^{5}} \\ & $P_{5}000 \times 100^{2^{5}} + 75000 \\ & $P_{5}000 \times 1\cdot02^{71 \times 3} - 75000 \times 1\cdot02^{5^{5}} \\ & $P_{5}000 \times 1^{5}000 \times 1^{5}000 \times 1^{5}000 \\ & $P_{5}000 \times 1^{5}000 \times 1^{5}000 \times 1^{5}000 \\ & $P_{5}000 \times 1^{5}000 \times 1^{5}000 \times 1^{5}000 \\ & $P_{5}000 \times 1^{5}000 \times 1^{5}000 \\ & $P_{5}00 \times 1^{5}000 \times 1^{5}00 \\ & $P_{5}00 \times 1^{5}00 \times 1^{5}$$

