MATHEMATICS HSC HALF YEARLY EXAM 2006

QUESTION 115 marks Start a NEW answer booklet Marks
(a) Calculate, correct to 3 significant figures, the value of:

$$
\frac{\sqrt{(2.3)^{5}-6.95}}{\pi}
$$

(b) Solve the equation $p^{2}=2 p$
(c) Fully factorise the expression: $5 x^{3}+40$
(d) Briefly explain why the equation $|5 t-32|=-18$ has no solutions.
(e) Find the two values of x where the circle $x^{2}+y^{2}=15$ and the line $y=2 x$ intersect. Leave your answers in exact form.
(f) (i) Solve the quadratic inequality $36-9 x-x^{2} \geq 0$.
(ii) Graph your solution on a number line.
(g) Solve for m:

$$
7^{m}=18
$$

Give your answer correct to 2 decimal places.

QUESTION 2

The points P and Q have coordinates $(3,-2)$ and $(1,3)$ respectively.
(a) The line k has equation $4 x+5 y-2=0$. Verify that P lies on k.
(b) The line l through Q has gradient $\frac{1}{3}$. Show that the equation of l is

$$
x-3 y+8=0
$$

(c) The point of intersection of k and l is R. Find the coordinates of R.
(d) Draw a neat sketch on a number plane showing P, Q, R, k and l.
(e) Find the perpendicular distance of P from l.

Leave your answer as a surd.
(f) Find the area of $\triangle P Q R$.
(g) $\quad l$ is a tangent to a circle centre P. Find the equation of that circle.

QUESTION 315 marks Start a NEW answer booklet

(a) Solve the equation $3 x^{2}-6 x+1=0$ giving each solution correct to two decimal places.
(b) Let α and β be the roots of the equation $x^{2}-5 x+2=0$.

Find the values of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\quad(\alpha+1)(\beta+1)$
(c) Consider the equation $x^{2}+(k+2) x+4=0$.

For what values of k does the equation have:
(i) equal roots?
(ii) distinct real roots?
(d) Solve the equation $3^{2 x}+2 \times 3^{x}-15=0$
(e) Find the values of A and B for which the following identity holds.

$$
5 x^{2}+x-2 \equiv A+B(x+1)+C x(x+1)
$$

QUESTION 4
 15 marks Start a NEW answer booklet

(a) For the parabola $x^{2}=12 y$ find:
(i) the co-ordinates of the focus
(ii) the equation of the directrix.
(b) A parabola has equation $x^{2}=8(2-y)$.
(i) Find the coordinates of its vertex.
(ii) Find the coordinates of its focus.
(iii) Find the equation of its directrix.
(iv) Find the x and y intercepts of the parabola.
(v) Draw a neat sketch of the parabola, illustrating the above information.
(c) Find the vertex of the parabola $y=x^{2}+6 x+7$.
(d) Let A and B be the fixed points $(-2,0)$ and $(1,0)$. Let P be the variable point (x, y).
(i) Suppose that P moves so that $P A=2 P B$.

Deduce that P moves on the circle $x^{2}-4 x+y^{2}=0$.
(ii) Find the centre and radius of this circle.
(a) For the sequence $1,1,2,3,5, \ldots$
i) Find the next term $\mathbf{1}$
ii) Determine whether the sequence is arithmetic, geometric or neither geometric or arithmetic giving reasons.
(b) Find the sum to twenty terms for the following series:

$$
80+73+66+59+\ldots
$$

(c) The third term of a geometric sequence is $\frac{4}{27}$ and the fifth term is $\frac{16}{243}$ Find:
(i) the common ratio,
(ii) the first term,
(iii) the limiting sum.

QUESTION 5 continues on the next page

QUESTION 5 (continued)

(d) A $\$ 5000$ scholarship fund, for tertiary studies, is set up for Johnny at his birth. The account has an interest rate of 8% p.a. compounded quarterly for the duration of the investment.
Johnny commences University on his $18^{\text {th }}$ birthday. An allowance of $\$ 1500$ is to be paid to Johnny on commencement of his tertiary studies and each subsequent 3 monthly period.
(i) Show that the amount in the fund just prior to the first allowance payment is $\$ 20806$, to the nearest dollar.
(ii) Show that the balance of the account on Johnny's 19th birthday (ie after the fifth allowance payment) is:

$$
5000(1.02)^{76}-75000\left(1.02^{5}-1\right)
$$

(iii) Show that the account balance after n payments is given by the expression:

$$
5000(1.02)^{71+n}-75000(1.02)^{n}+75000
$$

(iv) How long, in years and months, will Johnny receive allowance payments?

QUESTION 615 marks Start a NEW answer booklet

(a) Use differentiation to find the values of x for which the graph of $y=9 x(x+2)^{2}$ is:
(i) increasing
(ii) concave down.
(b) The gradient function of a curve is $\frac{d y}{d x}=3 x^{2}-2 x+1$.

If the curve passes through the point $(2,3)$, find its equation.
(c) The diagram shows the graph of a certain function $y=f(x)$.

Copy this graph, then on the same set of axes, draw a sketch of the derivative $y=f^{\prime}(x)$ of the function.

(d) Consider the function $y=x^{3}-6 x^{2}+9 x-4$.
(i) Find its stationary points and determine their nature.
(ii) Find its point of inflexion.
(iii) Graph the function on a number plane.

Year 12 Mathematics Half Yearly Examination 2006			
Question	o. 1	Solutions and Marking Guidelines	
Outcomes Addressed in this Question			
P2 pr P3 pe tri P4 ch 	provides reasoning to support conclusions which are appropriate to the context performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities. chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques.		
Outcome		Solutions	Marking Guidelines
P3		$\begin{aligned} \frac{\sqrt{(2.3)^{5}-6.95}}{\pi} & =2.411886541 \\ & =2.41\end{aligned}$	2 marks Correct answer correctly rounded. 1 mark Correct answer incorrectly rounded OR Incorrect answer rounded to 3 sig. figs.
P4	(b)	$\begin{aligned} \mathrm{p}^{2} & =2 \mathrm{p} \\ \mathrm{p}^{2}-2 \mathrm{p} & =0 \\ \mathrm{p}(\mathrm{p}-2) & =0 \\ \mathrm{p} & =0,2 \end{aligned}$	2 marks Both correct answers stated. 1 mark Only 1 of 2 correct answers stated OR solution showing correct factorisation leading to incorrect answer.
P4		$\begin{aligned} 5 x^{3}+40 & =5\left(x^{3}+8\right) \\ & =5(x+2)\left(x^{2}-2 x+4\right) \end{aligned}$	2 marks Expression fully and correctly factorised. 1 mark Common factor recognised without proceeding to factorise sum of two cubes or factorising difference of two cubes incorrectly.
P2		By definition, $\|5 t-32\|$ must be positive. Hence, there are no values of t which will give this expression a value of -18 .	1 mark Valid explanation given.
P4	(e)	$\begin{aligned} x^{2}+y^{2} & =15 & & \ldots 1 \\ y & =2 x & & \ldots 2 \end{aligned}$ Sub.eqn. 2 into eqn. 1 $\begin{aligned} x^{2}+(2 x)^{2} & =15 \\ 5 x^{2} & =15 \\ x^{2} & =3 \\ x & = \pm \sqrt{3} \end{aligned}$	3 marks Correct solution 2 marks Correct solution not showing both values of x, OR Minor error in solution leading to incorrect answer but working substantially correct. 1 mark Substantially correct attempt to solve equations simultaneously, not proceeding beyond this point.
P4		(i) $\begin{aligned} 36-9 x-x^{2} & \leq 0 \\ x^{2}+9 x-36 & \leq 0 \\ (x+12)(x-3) & \leq 0 \end{aligned}$ Solution: $-12 \leq x \leq 3$	2 marks Solution correctly stated. 1 mark Factorises quadratic correctly, but does not proceed to correct solution. OR error leads to an incorrect solution with working consistent with given solution.
P4		(ii)	1 mark Correct representation of solution in part (i), provided incorrect solution in (i) does not lead to simpler graph.
P4	(g)	$\begin{aligned} 7^{m} & =18 \\ \log 7^{m} & =\log 18 \\ m \log 7 & =\log 18 \\ m & =\frac{\log 18}{\log 7} \\ & =1.49 \quad(2 \text { dec. pl. }) \end{aligned}$	2 marks Correct solution given. 1 mark Attempts to solve equation using logarithms, showing knowledge of at least one relevant log law.

Year 12 Mathematics Half Yearly Examination 2006
Question No. 2
Solutions and Marking Guidelines

Outcomes Addressed in this Question

P4 chooses and applies appropriate arithmetic, algebraic, graphical and geometric techniques.
H9 communicates using mathematical language, notation diagrams and graphs

P4 (e)

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{3-3 \times(-2)+8}{\sqrt{1^{2}+3^{2}}} \\
& =\frac{17}{\sqrt{10}}
\end{aligned}
$$

P4 (f) Length of $Q R$

$$
\begin{aligned}
d & =\sqrt{3^{2}+1^{2}} \\
& =\sqrt{10}
\end{aligned}
$$

Area of triangle

$$
\begin{aligned}
\begin{aligned}
A & = \\
& =\frac{1}{2} b h \\
& =\frac{1}{2} \times Q R \times \text { distance of } P \text { from } l \\
& =\frac{1}{2} \times \sqrt{10} \times \frac{17}{\sqrt{10}} \\
\text { Area } & =\frac{17}{2} u^{2}
\end{aligned}
\end{aligned}
$$

P4 (g)
Circle centre (3,-2) and radius $\frac{17}{\sqrt{10}}$

$$
(x-3)^{2}+(y+2)^{2}=\frac{17^{2}}{10}
$$

P4 - Chooses and applies appropriate arithmetic and algebraic techniques

Outcome	Solutions	Marking Guidelines
P4	Question 3 (a) Using quad formula $\begin{aligned} x & =\frac{6 \pm \sqrt{36-4 \times 3 \times 1}}{6} \\ & =\frac{6 \pm \sqrt{24}}{6} \\ & =1.82 \text { or } 0.18 \end{aligned}$	Award 1 for correct substitution into correct formula Award 2 for correct substitution and at least one correctly evaluated answer
	$\text { (b) (i) } \quad \begin{aligned} \alpha+\beta & =-\frac{b}{a} \\ & =5 \end{aligned}$	Award 1 for correct answer.
	(ii) $\begin{aligned} \alpha \beta & =\frac{c}{a} \\ & =2\end{aligned}$	Award 1 for correct answer.
	$\text { (iii) } \begin{aligned} (\alpha+1)(\beta+1) & =\alpha \beta+(\alpha+\beta)+1 \\ & =2+5+1 \\ & =8 \end{aligned}$	Award 1 for simplification Award 2 for simplification and correct substitution (subsequent errors are not penalised)
	(c) $\begin{aligned} \Delta & =b^{2}-4 a c \\ & =(k+2)^{2}-4 \times 1 \times 4 \\ & =k^{2}+4 k-12 \\ & =(k+6)(k-2) \end{aligned}$ (i) $\begin{aligned} \text { Equal roots } \quad \Delta & =0 \\ \therefore(k+6)(k-2) & =0 \\ \therefore k=2 \text { or } \quad k & =-6 \end{aligned}$	Award 1 for correct calculation of Δ. Award 1 for correct answer
	(ii) Distinct real roots $\Delta>0$ $\begin{aligned} & \therefore(k+6)(k-2)>0 \\ & \therefore k>2 \text { or } k<-6 \end{aligned}$	Award 1 for stating $\Delta>0$ (Deduct mark for $\Delta \geq 0$)
	(d) Let $3^{x}=u$ $\therefore 3^{x \times 2}+2 \times 3^{x}-15=0$ becomes $u^{2}+2 u-15=0$ $\begin{aligned} & \therefore(u+5)(u-3)=0 \\ & \therefore 3^{x}=-5 \text { or } 3^{x}=3 \\ & \text { no solutions } \end{aligned}$ Ie the only solution is $x=1$	Award 1 for correct substitution Award 2 for correct solutions for "u" Award 3 for both correct solutions for x . (ie. some indication that student considered $3^{x}=-5$, but decided that this would yield NO solution)

(e) $5 x^{2}+x-2 \equiv A+B(x+1)+C x(x+1)$

$$
\begin{array}{rlc}
& =A+B x+B+C x^{2}+C x \\
& =C x^{2}+(B+C) x+(A+B) \\
\therefore C=5 \quad & B+C=1 & A+B=-2 \\
& B+5=1 & A-4=-2 \\
& \therefore B=-4 & A=2
\end{array}
$$

OR

By substitution :
Let $x=-1$

$$
\begin{gathered}
5(-1)^{2}+(-1)-2=A \\
\therefore \quad A=2
\end{gathered}
$$

Let $x=0$

$$
\begin{aligned}
& \therefore \quad-2=A+B \\
&=2+B \\
& \therefore \quad B=-4
\end{aligned}
$$

Award 1 for correct expansion
Award 2 for correct expansion and collecting like terms

Award 3 for at least one correct solution resulting from equating coefficients

Award 1 each for each correct substitution and at least one correct solution

Year 12 Question No.4	Mathematics	
Solutions and Marking Guidelines		

(a) (i) H 9	$\begin{aligned} & x^{2}=12 y=4 \cdot 3 \cdot y \\ & \therefore a=3 \\ & \therefore \text { Focus }=(0,3) \end{aligned}$	Award 1 for correct answer
(ii) H 9	The directrix is $y=-3$	Award 1 for correct answer
(b) (i) H 9	$\begin{aligned} & x^{2}=8(2-y)=-8(y-2)=-4 \cdot 2 \cdot(y-2) \\ & \therefore a=2 \\ & \text { Vertex }=(0,2) \end{aligned}$	Award 1 for correct answer
(ii) H 9	Focus $=(0,0)$	Award 1 for correct answer
(iii) H 9	The directrix is $y=4$	Award 1 for correct answer
(iv) H 9	When $y=0, x^{2}=8(2-0)$ $\begin{aligned} & \therefore x^{2}=16 \\ & \therefore x= \pm 4 \end{aligned}$ The x intercepts are $(4,0)$ and $(-4,0)$. When $y=0,0^{2}=8(y-2)$ $\therefore y=2$ The y intercept is $(0,2)$.	Award 2 for correct intercepts Award 1 for correct x - intercept or Award 1 for correct y intercept
(v) H 9	*	Award 1 for correct answer

Outcomes Addressed in this Question

H2 constructs arguments to prove and justify results
H4 expresses practical problems in mathematical terms based on simple given models
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

Year 12 Mathematics Half-Yearly Examination 2006
 Question 6 solutions and marking guidelines

Outcomes addressed in this question
P5 understands the concept of a function and the relationship between a function and its graph
P6 relates the derivative of a function to the slope of its graph
P7 determines the derivative of a function through routine application of the rules of differentiation
P8 understands and uses the language and notation of calculus
H5 applies appropriate techniques from the study of calculus to solve problems
H6 uses the derivative to determine the features of the graph of a function
H7 uses the features of a graph to deduce information about the derivative

\section*{| Solution | Outcome, marking guidelines, |
| :--- | :--- | $\checkmark=1$ mark examiner's comment}

(a) (i) $y=9 x(x+2)^{2}$

$$
\begin{array}{ll}
u=9 x & v=(x+2)^{2} \\
u^{\prime}=9 & v^{\prime}=2(x+2)
\end{array}
$$

$y^{\prime}=9 x .2(x+2)+9(x+2)^{2}$

$$
=18 x(x+2)+9\left(x^{2}+4 x+4\right)
$$

$$
=27 x^{2}+72 x+36
$$

y^{\prime} is increasing when $y^{\prime}>0$.

$$
\begin{aligned}
27 x^{2}+72 x+36 & >0 \\
3 x^{2}+8 x+4 & >0 \\
(3 x+2)(x+2) & >0 \\
x<-2 \text { or } x> & -\frac{2}{3}
\end{aligned}
$$

(ii) $y^{\prime \prime}=54 x+72$

Concave down when $y^{\prime \prime}<0$

$$
\begin{aligned}
54 x+72 & <0 \\
x & <-\frac{72}{54} \\
x & <-1 \frac{1}{3}
\end{aligned}
$$

(b) $y^{\prime}=3 x^{2}-2 x+1$
$y=x^{3}-x^{2}+x+c$
When $x=2, y=3$:

$$
\begin{aligned}
& 3=2^{3}-2^{2}+2+c \\
& c=-3
\end{aligned}
$$

$\therefore y=x^{3}-x^{2}+x-3$
(c)

- where $f(x)$ is a stationary point, $f^{\prime}(x)=0(x$-intercepts)
- where $f(x)$ is a maximum point, $f^{\prime}(x)$ changes from positive to negative

In Q6, responses ranged from students who were careful, precise and knew exactly what they were doing to students with a limited or careless understanding of basic calculus concepts.

P5, P6, P7, P8, H5, H6: 3 marks

3 marks: correct inequality found
2 marks: quadratic expression factorised 1 mark: derivative found

Students made most errors here, with many not differentiating correctly. Some did not understand the theory behind increasing curves $\left(y^{\prime}>0\right)$ and found stationary points instead. Sloppy algebra led to long incorrect solutions. If the algebra looks wrong and complicated, check it!

P5, P6, P7, P8, H5, H6: 2 marks

2 marks: correct inequality found 1 mark: second derivative found

Again, some students did not understand the theory behind 'concavity'. Careless errors included forgetting the '-' sign in the answer or not simplifying the fraction.

P6, H5, H6: 2 marks

2 marks: primitive with c evaluated
1 mark: primitive with c not evaluated
Quite well done, though some students did not understand this question and found the equation of a tangent instead.

P6, H5, H6, H7: 2 marks

2 marks: correct graph
1 mark: any graph with correct x-intercepts Very well done!

- where $f(x)$ is a minimum point, $f^{\prime}(x)$ changes from negative to positive
- where $f(x)$ is a point of inflexion, $f^{\prime \prime}(x)=0$ so $f^{\prime}(x)$ has a stationary point
(d) (i) $y=x^{3}-6 x^{2}+9 x-4$
$y^{\prime}=3 x^{2}-12 x+9$
$y^{\prime \prime}=6 x-12$
Stationary points where $y^{\prime}=0$
$3 x^{2}-12 x+9=0$
$x^{2}-4 x+3=0$
$(x-3)(x-1)=0$
$x=1$ or 3 . \checkmark
When $x=1, y=1-6+9-4=0$

$$
\begin{equation*}
y^{\prime \prime}=6-12=-6<0 \tag{1,0}
\end{equation*}
$$

$\therefore(1,0)$ is a maximum point.
When $x=3, y=27-54+27-4=-4$

$$
\begin{equation*}
y^{\prime \prime}=18-12=6>0 \tag{3,-4}
\end{equation*}
$$

$\therefore(3,-4)$ is a minimum point.
(ii) Point of inflexion where $y^{\prime \prime}=0$.

$$
\begin{aligned}
& 6 x-12=0 \\
& x=2 . \\
&
\end{aligned}
$$

When $x=2, y=8-24+18-4=-2$.
$(2,-2)$ is the point of inflexion.
(iii) y-intercept is -4 .

P5, P6, P7, P8, H5, H6: 3 marks
3 marks: both stationary points determined
2 marks: one stationary point determined or both stationary points found but not determined
1 mark: x-coordinates of stationary points Generally well done: students know the process well.

H5, H6: 2 marks

2 marks: point of inflexion found and tested 1 mark: x-coordinate found only Many students lost a mark for not testing the point for change in concavity.

H5, H6: 1 mark

1 mark: graph shown with y-intercept and both stationary points marked
Many students did not get the mark because they did not show the y-intercept, which was easy to find. Some Extension 1 students used polynomial division to find the other x-intercept: this was not necessary here.

