HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12

MATHEMATICS

Half Yearly Examination Term 12010
 HSC COURSE

ASSESSMENT TASK 2

Examiners ~ D. Crancher, S. Hackett, P. Biczo, S. Faulds, J. Dillon

General Instructions

- Reading Time - 5 minutes.
- Working Time -2 hours.
- Attempt all questions.
- All questions are of equal value and are not necessarily arranged in order of difficulty.
- All necessary working should be shown in every question.
- This paper contains ten (10) questions.
- Total Marks - 80 marks
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- Each question is to be started in a new Answer Booklet.
- This examination paper must NOT be removed from the examination centre.

Student Name and Number:

Teacher:

Question 1

(a) Evaluate

$$
\sqrt{\frac{275 \cdot 4}{5 \cdot 2 \times 3 \cdot 9}}
$$

correct to two significant figures.
(b) Express

$$
\frac{(2 x-3)}{2}-\frac{(x-1)}{5}
$$

as a single fraction in its simplest form.
(c) Solve

$$
3-2 x \geq 7
$$

(d) Find the integers a and b such that:

$$
\begin{equation*}
(5-\sqrt{2})^{2}=a+b \sqrt{2} \tag{2marks}
\end{equation*}
$$

Question 2

(a) Differentiate $(4 x+3)\left(2 x^{3}-5\right)$ with respect to x
(b) Differentiate the following functions:
(i)

$$
y=\frac{2 x}{x^{2}+1}
$$

(ii)

$$
f(x)=\left(3 x^{2}+4\right)^{5}
$$

(c) Find $f^{\prime}(2)$ if $f(x)=x^{4}+5 x^{-1}$

Question 3

In the diagram, the line l_{1} passes through the points $A(1,0)$ and $D(0,-2)$. The line l_{2} is parallel to l_{1} and passes through the point $(5,-2)$.
(a) Write down the equation of the line l_{1} in the form $y=m x+b$.
(b) Show that the equation of the line l_{2} is:

$$
2 x-y-12=0
$$

(c) Calculate, in exact form, the perpendicular distance between the point $A(1,0)$ and the line l_{2}.
(d) Find the length of $A D$.
(e) Given $B C=5 \sqrt{5}$ units, calculate the area of the trapezium $A B C D$.

Question 4

(a) Evaluate
(i) $\quad \lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$
(ii) $\quad \lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{x^{2}-5 x}$
(b) Find the co-ordinates of the point on $f(x)=x^{2}+4 x-9$ at which the tangent is parallel to the x axis.
(c)

Is this function continuous? Give a reason.
(d)

For what values of x satisfying $0<x<8$ is the function f NOT differentiable ?

Question 5

(a) Write the equation of the parabola with vertex at the origin, axis of symmetry the y axis and passing through the point $(-4,8)$
(b) A parabola has equation $x^{2}=8 y$. The tangent at the point $\mathrm{A}(4,2)$ meets the directrix at Q .
(i) Draw a diagram showing this information
(ii) Find the co-ordinates of Q .
(c) For the parabola $x^{2}-6 x+41=8 y$, find:
(i) the focal length
(ii) the coordinates of the vertex

Question 6

(a) Solve the quadratic equation

$$
3 x^{2}=5 x-2
$$

(b) Solve the inequality:

$$
x^{2}-4 x>0
$$

(c) Show the quadratic equation

$$
3 x^{2}-23 x+1=0
$$

has two unequal real and irrational roots.
(d) Find the value (s) of m for which the equation

$$
4 x^{2}-m x+9=0
$$

has exactly one real root.

Question 7

a) The first term of an arithmetic series is 9 and the fourth term is 27 . Find
(i) the common difference
(ii) the sum of the first 20 terms.
b) An infinite geometric series has a limiting sum of 24 . If the first term is 15 , find the common ratio.
c) There are 15 apples in a row, 2 metres apart. The first apple is 2 metres from a basket. How far does a boy run who starts at the basket and returns the apples to the basket one by one?

Question 8

(a) Draw a neat sketch of the locus of a point $P(x, y)$ which moves on the Cartesian Plane so that $y>x^{2}$.
(b) $\quad M(-4,-1)$ and $N(2,7)$ are two fixed points on the Cartesian Plane. $P(x, y)$ is a point that moves so that $P M \perp P N$.
(i) Write down the condition for a pair of lines or intervals to be perpendicular.
(ii) Use your answer from part (i) and the co-ordinates of M, N and P to show that the equation of the locus of P is :

$$
(x+1)^{2}+(y-3)^{2}=25
$$

(iii) The locus of P is a circle. State the centre and radius of the circle.

Question 9

(a) Let α and β be the roots of the equation $x^{2}-5 x+2=0$.

Find the values of
(i) $\alpha+\beta$
(1 mark)
(ii) $\alpha \beta$
(1 mark)
(iii) $\alpha^{2}+\beta^{2}$
(2 marks)
(b) For what values of p is the expression

$$
x^{2}-3 x+2 p-1
$$

positive for all real values of x ?
(c) Solve the equation

$$
3^{2 x}+2 \times 3^{x}-15=0
$$

Question 10

An investor wants to borrow \$1000 000 to purchase a block of units at Penrith from Bank X which offers an interest rate of 6% p.a. monthly reducible.
The investor is to repay the loan in equal monthly instalments M, over 10 years.
(a) If A_{n} is the amount owing after n instalments, develop expressions for A_{1}, A_{2}, A_{3} and show that:

$$
A_{n}=1000000(1.005)^{n}-M\left(1.005^{n-1}+\ldots+1.005^{2}+1.005+1\right)
$$

(b) Hence show that the monthly instalment, M is given by:

$$
M=\frac{5000(1.005)^{120}}{1.005^{120}-1}
$$

(c) Calculate the value of the monthly instalment, M, to the nearest cent.
(d) Determine the amount still owing to Bank X after 5 years, to the nearest cent.

Year 12 Mathematics Half Yearly Examination 2010		
Question	0. 3 Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems		
Outcome	Solutions	Marking Guidelines
H5	3.(a) $l_{1}: y=2 \mathrm{x}-2$	1 mark Correct answer
H5	$\text { (b) } \begin{aligned} l_{2}: \quad m=2 & \left(\text { since } l_{1}\| \| l_{2}\right) \text { passes through }(5,-2) \\ y-y_{1} & =m\left(x-x_{1}\right) \\ y+2 & =2(x-5) \\ y+2 & =2 x-10 \\ 2 x-y+12 & =0 \quad \text { as required } \end{aligned}$	2 marks Correct solution 1 mark Correctly states gradient of required line and point-gradient form of equation of straight line.
H5	(c) $\begin{aligned} d & =\frac{\left\|A x_{1}+B y_{1}+C\right\|}{\sqrt{A^{2}+B^{2}}} \\ & =\frac{\|2 \times 1-1 \times 0-12\|}{\sqrt{2^{2}+1^{2}}} \\ & =\frac{\|-10\|}{\sqrt{5}} \\ & =\frac{10}{\sqrt{5}} \\ & =2 \sqrt{5} \text { units } \end{aligned}$	2 marks Correct solution (not necessary to rationalise denominator) 1 mark Correctly states perpendicular distance formula and makes substantial progress towards a correct solution.
H5	(d) Using Pythagoras' Theorem in $\triangle \mathrm{ADO}$ $\begin{aligned} & A D^{2}=2^{2}+1^{2} \\ & \therefore A D=\sqrt{5} \end{aligned}$	1 mark Correct answer
H5	(e) $\begin{aligned} \text { Area of Trapezium ABCD } & =\frac{h}{2}(a+b) \\ & =\frac{2 \sqrt{5}}{2}(\sqrt{5}+5 \sqrt{5}) \\ & =\sqrt{5} \times 6 \sqrt{5} \\ & =30 \text { units }^{2} \end{aligned}$ Note: Typographical error on examination paper. Distance $B C=6 \sqrt{5}$ units,	2 marks Correct solution 1 mark Substantial progress towards correct solution including area formula for trapezium.

Year 12	Mathematics Task 2		
Question No. 4	Solutions and Marking Guidelines		
Outcomes Addressed in this Question			

P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
P5 Understands the concept of a function and the relationship between a function and its graph
P6 Relates the derivative of a function to the slope of its graph
P7 Determines the derivative of a function through routine application of the rules of differentiation

\begin{tabular}{|c|c|c|}
\hline Outcome \& Solutions \& Marking Guidelines \\
\hline P4 \& \begin{tabular}{l}
4. \\
a) (i)
\[
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3} \& =\lim _{x \rightarrow 3} \frac{(x+1)(x-3)}{x-3} \\
\& =\lim _{x \rightarrow 3}(x+1) \\
\& =3+1=4
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
2 marks: correct solution \\
1 mark: partially correct solution
\end{tabular} \\
\hline P4 \& (ii)
\[
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{x^{2}-5 x}=\lim _{x \rightarrow \infty} \frac{3+\frac{1}{x^{2}}}{1-\frac{5}{x}} \\
=\frac{3+0}{1-0}=3
\end{array}
\] \& 1 mark: correct solution \\
\hline P6, P7

P4 \& \begin{tabular}{l}
b)
$$
\begin{aligned}
& f(x)=x^{2}+4 x-9 \\
& f^{\prime}(x)=2 x+4
\end{aligned}
$$

Tangent parallel to x axis when gradient $=0$.
$$
\begin{aligned}
& \therefore 2 x+4=0 \\
& \therefore 2 x=-4 \quad \therefore x=-2
\end{aligned}
$$

When $\therefore x=-2, y=(-2)^{2}+4 \times-2-9=-13$

Co-ordinates are $(-2,-13)$

 \&

2 marks: correct solution

1 mark: partially correct solution
\end{tabular}

\hline P5 \& c) Not continuous at $x=2$ as there is a gap in the graph. \& 1 mark: correct answer and explanation

\hline P6 \& d) Not differentiable if there is a sharp corner. At B and C this occurs. \therefore at $x=2$ and $x=4$ not differentiable. \& | 2 marks: correct solution |
| :--- |
| 1 mark: partially correct solution |

\hline
\end{tabular}

P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric Techniques
P5 Understands the concept of a function and the relationship between a function and its graph
P6 Relates the derivative of a function to the slope of its graph

Outcome	Solutions	
P4	5.	a)
	Equation in form $x^{2}=4 a y$ as must be concave up	

$\therefore 16=4 . a .8$
$\therefore a=\frac{1}{2}$
$\therefore x^{2}=2 y$ is the equation
b) (i)

P5

(ii) Since $x^{2}=8 y, \quad y=\frac{x^{2}}{8} \quad$ and $4 a=8, a=2$
$\therefore \frac{d y}{d x}=\frac{2 x}{8}$. At $x=4, \frac{d y}{d x}=\frac{2 \times 4}{8}=1$
Equation of tangent is
$y-2=1(x-4)$ using $y-y_{1}=m\left(x-x_{1}\right)$
\therefore tangent is $y=x-2$
Tangent meets directrix $y=-2$ at Q .
$\therefore-2=x-2 . \quad x=0$.
$\therefore Q(0,-2)$
c)
(i) $x^{2}-6 x+41=8 y$

$$
\begin{aligned}
x^{2}-6 x & =8 y-41 \\
x^{2}-6 x+9 & =8 y-32 \\
(x-3)^{2} & =8(y-4) \text { which is in the form } \\
(x-h)^{2} & =4 a(y-k) \text { with } 4 a=8
\end{aligned}
$$

P4
\therefore focal length is $a=2$ units
(ii) vertex $(3,4)$

2 marks: correct answer
1 mark: correctly finds a or equivalent

1 mark: correctly marks given information

2 marks: correct answer
1 mark: partially correct solution

2 marks: correct answer from correct method

1 mark: correct answer or equivalent

Year 12 Question	Mathematics Solutions and Marking G 	Half Yearly Examination 2010
Outcomes Addressed in this Que		
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques H2 constructs arguments to prove and justify results		
Outcome	Solutions	Marking Guidelines
P4	6. (a) $\begin{aligned} & 3 x^{2}=5 x-2 \\ & 3 x^{2}-5 x+2=0 \\ & (3 x-2)(x-1)=0 \\ & \therefore x=\frac{2}{3} \text { or } 1 \end{aligned}$	Award 2 ~ correct answers Award 1 ~ attempts to use appropriate method to solve the equation
P4	(b) $\begin{aligned} & x^{2}-4 x>0 \\ & x(x-4)>0 \\ & \therefore x<0 \text { or } x>4 \end{aligned}$	Award 2 ~ correct answers Award 1 ~ correct factorisation or attempts to solve inequality by an appropriate method.
P4, H2	(c) $\begin{aligned} \Delta & =b^{2}-4 a c \\ & =(-23)^{2}-4.3 .1 \\ & =517 \end{aligned}$ Since $\Delta>0 \Rightarrow$ two unequal roots. And since Δ is not a perfect square \Rightarrow the roots are irrational.	Award 2 ~ correct solution Award 1 ~ insufficient justification provided.
P4, H2	(d) $\begin{aligned} \Delta & =b^{2}-4 a c \\ & =(-m)^{2}-4.4 .9 \\ & =m^{2}-144 \end{aligned}$ One real root $\Rightarrow \Delta=0$ $\begin{aligned} & \therefore m^{2}-144=0 \\ & \therefore m= \pm 12 \end{aligned}$	Award 2 ~ correct solution Award 1 ~ substantial progress towards solution.

H5 - applies appropriate techniques from the study of series to solve problems

Outcome	Solutions	Marking Guidelines
H5	7. a)i) $\begin{aligned} a=9, T_{4} & =27 \\ a+3 d & =27 \\ 9+3 d & =27 \\ 3 d & =18 \\ d & =6 \end{aligned}$	$\underline{\mathbf{2} \text { marks }}$ - correct solution $\underline{\mathbf{1} \text { mark }}$ - substantially correct solution
H5	a)ii) $\begin{aligned} S_{20} & =\frac{20}{2}(2(9)+19(6)) \\ & =1320 \end{aligned}$	$\mathbf{2}$ marks - correct solution $\underline{\mathbf{1} \text { mark }}$ - substantially correct solution
H5	b) $\begin{aligned} S_{\infty}=24, a & =15 \\ S_{\infty} & =\frac{a}{1-r} \\ 24 & =\frac{15}{1-r} \\ 24-24 r & =15 \\ 9 & =24 r \\ r & =\frac{9}{24} \\ r & =\frac{3}{8} \end{aligned}$	$\mathbf{2}$ marks - correct solution $\underline{\mathbf{1} \text { mark }}$ - substantially correct solution
H5	c) $\text { Dist }=4+8+12+\ldots+60$ Arithmetic series, $a=4, d=4, n=15$ $\begin{aligned} \text { Dist } & =\frac{15}{2}(2(4)+14(4)) \\ & =480 \text { metres } \end{aligned}$	$\underline{\mathbf{2} \text { marks }}$ - correct solution $\underline{\mathbf{1} \text { mark }}-$ substantially correct solution

Year 12	Mathematics	Half Yearly Examination 2010
Question	o. 9 Solutions and Marking	
Outcomes Addressed in this Question		
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques H2 constructs arguments to prove and justify results		
Outcome	Solutions	Marking Guidelines
(a) P4	(i) $\alpha+\beta=-\frac{-5}{1}=5$	Award 1 ~ correct answer
	(ii) $\alpha \beta=\frac{2}{1}=2$	Award $1 \sim$ correct answer
(b) P4, H2	(iii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=5^{2}-2.2=21$	Award 2 ~ correct answers
		Award 1 ~ attempts to use an appropriate method.
	Since $a=1$, we want $\Delta<0$	Award 2 ~ correct solution
	$\begin{aligned} \Delta=b^{2}-4 a c & =(-3)^{2}-4 \cdot 1 \cdot(2 p-1) \\ & =13-8 p \end{aligned}$	Award 1 ~ substantial progress towards solution.
	$\begin{aligned} & \therefore 13-8 p<0 \\ & \therefore p>\frac{13}{8} \end{aligned}$	
(c) P4	$3^{2 x}+2 \times 3^{x}-15=0$	Award $2 \sim$ correct solution
	$\left(3^{x}\right)^{2}+2 \times 3^{x}-15=0$	Award 1 ~ substantial progress towards solution.
	Let $u=3^{x}, u^{2}+2 u-15=0$ $(u+5)(u-3)=0$ $\therefore u=-5$ or 3 $\therefore 3^{x}=-5$ or 3 $\therefore x=1$ (only valid solution)	

Year 12 Mathematics		Half Yearly Examination 2010
Question	o. 10 Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
H5 - applies appropriate techniques from the study of series to solve problems		
Outcome	Solutions	Marking Guidelines
H5	10. a) 6% p.a. $=0.005$ per month Let $\mathrm{A}_{\mathrm{n}}=$ the amount owing after n instalments $\begin{aligned} A_{1} & =1000000(1.005)-M \\ A_{2} & =A_{1}(1.005)-M \\ & =(1000000(1.005)-M)(1.005)-M \\ & =1000000(1.005)^{2}-M(1.005+1) \\ A_{3} & =A_{2}(1.005)-M \\ & =\left(1000000(1.005)^{2}-M(1.005+1)\right)(1.005)-M \\ & =1000000(1.005)^{3}-M\left(1.005^{2}+1.005+1\right) \\ A_{n} & =1000000(1.005)^{n}-M\left(1.005^{n-1}+\ldots+1.005^{2}+1.005+1\right. \end{aligned}$	$\begin{aligned} & \mathbf{3 \text { marks }}-\text { correct solution for all parts } \\ & \frac{\mathbf{2} \text { marks }}{\text { solution }}-\text { substantially correct } \\ & \underline{\mathbf{1 ~ m a r k}}-\text { some progress towards } \\ & \text { correct solution } \end{aligned}$
H5	b) After n instalments, $A_{n}=0$ After 10 years $n=10 \times 12=120$. $\begin{aligned} & \therefore 0=1000000(1.005)^{120}-M\left(1.005^{119}+\ldots+1.005^{2}+1.005+1\right) \\ & \therefore M=\frac{1000000(1.005)^{120}}{1.000{ }^{119}+\ldots+1.005^{2}+1.005+1} \\ & 1.005^{119}+\ldots+1.005^{2}+1.005+1 \text { is a geometric series, } a=1, r=1 . \\ & \therefore M=\frac{1000000(1.005)^{120}}{1\left(\frac{1.005^{120}-1}{0.005}\right)} \\ & \therefore M=\frac{5000(1.005)^{120}}{1.005^{120}-1} \end{aligned}$	2 marks - correct solution $\underline{\mathbf{m a r k}}$ - substantially correct solution
H5	c) $\quad M=\$ 11102.05$ (to the nearest cent)	$\underline{\mathbf{1 m a r k}}$ - correct solution
H5	d) $\begin{aligned} & \text { After } 5 \text { years, } n=5 \times 12=60 \\ & \begin{aligned} A_{60} \quad & \approx 1000000(1.005)^{60}-11102.05\left(1.005^{59}+\ldots+1.005^{2}+1.0\right. \\ & =1000000(1.005)^{60}-11102.05\left(\frac{1.005^{60}-1}{0.005}\right) \\ & =\$ 574259.79 \text { (to nearest cent) } \end{aligned} \end{aligned}$	$\mathbf{2}$ marks - correct solution $\underline{\mathbf{1} \text { mark }}$ - substantially correct solution

