HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12

MATHEMATICS

Half Yearly Examination Term 1 2010 HSC COURSE

ASSESSMENT TASK 2

EXAMINERS ~ D. CRANCHER, S. HACKETT, P. BICZO, S. FAULDS, J. DILLON

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 2 hours.
- Attempt all questions.
- All questions are of equal value and are not necessarily arranged in order of difficulty.
- All necessary working should be shown in every question.
- This paper contains ten (10) questions.
- Total Marks 80 marks

- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and mathematical templates may be used.
- Each question is to be started in a new Answer Booklet.
- This examination paper must **NOT** be removed from the examination centre.

STUDENT NAME AND NUMBER:

TEACHER:

(a) Evaluate

(2 marks)

(2 marks)

 $\sqrt{\frac{275\cdot4}{5\cdot2\times3\cdot9}}$

correct to two significant figures.

(b) Express

 $\frac{(2x-3)}{2} - \frac{(x-1)}{5}$

as a single fraction in its simplest form.

(c) Solve

 $3-2x \ge 7$ (2 marks)

(d) Find the integers *a* and *b* such that:

$$\left(5 - \sqrt{2}\right)^2 = a + b\sqrt{2}$$
 (2 marks)

Question 2

- (a) Differentiate $(4x+3)(2x^3-5)$ with respect to x (2 marks)
- (b) Differentiate the following functions:
 - (i) (2 marks) $y = \frac{2x}{x^2 + 1}$

(ii)

$$f\left(x\right) = \left(3x^2 + 4\right)^5$$

(c) Find f'(2) if $f(x) = x^4 + 5x^{-1}$ (2 marks)

(2 marks)

In the diagram, the line l_1 passes through the points A(1, 0) and D(0, -2). The line l_2 is parallel to l_1 and passes through the point (5, -2).

(a)	Write down the equation of the line l_1 in the form $y = mx + b$.	(1 mark)
-----	--	----------

(b)	Show that the equation of the line l_2 is:	(2 marks)

$$2x - y - 12 = 0$$

- (c) Calculate, in **exact** form, the perpendicular distance between the point A(1, 0) and the line l_2 . (2 marks)
- (d) Find the length of AD. (1 mark)
- (e) Given $BC = 5\sqrt{5}$ units, calculate the area of the trapezium *ABCD*. (2 marks)

(a) Evaluate

(i)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$$
 (2 marks)

(ii)
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 - 5x}$$
 (1 mark)

(b) Find the co-ordinates of the point on $f(x) = x^2 + 4x - 9$ at which the tangent (2 marks) is parallel to the x axis.

Is this function continuous? Give a reason.

(d)

For what values of x satisfying 0 < x < 8 is the function f NOT differentiable ? (2 marks)

(a)		Trite the equation of the parabola with vertex at the origin, axis of symmetry (2 marks) e y axis and passing through the point $(-4, 8)$		
(b)		rabola has equation $x^2 = 8y$. The tangent at the point A(4,2) meets the trix at Q.		
	(i)	Draw a diagram showing this information	(1 mark)	
	(ii)	Find the co-ordinates of Q.	(2 marks)	
(c)	For th	ne parabola $x^2 - 6x + 41 = 8y$, find:		
	(i)	the focal length	(2 mark)	
	(ii)	the coordinates of the vertex	(1 mark)	
Ques	tion 6			
(a)	Solve	the quadratic equation	(2 marks)	
		$3x^2 = 5x - 2$		
(b)	Solve	e the inequality:	(2 marks)	
		$x^2 - 4x > 0$		

(c) Show the quadratic equation

 $3x^2 - 23x + 1 = 0$

has two unequal real and irrational roots.

(d) Find the value (s) of m for which the equation (2 marks)

 $4x^2 - mx + 9 = 0$

has exactly one real root.

(2 marks)

a)	The first term of an arithmetic series is 9 and the fourth term is 27. Find		
	(i)	the common difference	(2 marks)
	(ii)	the sum of the first 20 terms.	(2 marks)
b)		inite geometric series has a limiting sum of 24. First term is 15, find the common ratio.	(2 marks)
c)	a bask	are 15 apples in a row, 2 metres apart. The first apple is 2 metres from et. How far does a boy run who starts at the basket and returns the apples basket one by one?	(2 marks)
Quest	ion 8		
(a)		a neat sketch of the locus of a point $P(x, y)$ which moves on the Cartesian so that $y > x^2$.	(2 marks)
(b)		-1) and $N(2, 7)$ are two fixed points on the Cartesian Plane. $P(x, y)$ is a hat moves so that $PM \perp PN$.	
	(i)	Write down the condition for a pair of lines or intervals to be perpendicular.	(1 mark)
	(ii)	Use your answer from part (i) and the co-ordinates of M , N and P to show that the equation of the locus of P is :	(3 marks)
		$(x+1)^2 + (y-3)^2 = 25$	
	(iii)	The locus of P is a circle. State the centre and radius of the circle.	(2 marks)

(a) Let α and β be the roots of the equation $x^2 - 5x + 2 = 0$.

Find the values of

(i) $\alpha + \beta$ (1 mark)

(ii)
$$\alpha\beta$$
 (1 mark)

(iii)
$$\alpha^2 + \beta^2$$
 (2 marks)

(b) For what values of p is the expression (2 marks)

 $x^2 - 3x + 2p - 1$

positive for all real values of x?

(c) Solve the equation

(2 marks)

 $3^{2x} + 2 \times 3^{x} - 15 = 0$

An investor wants to borrow \$1 000 000 to purchase a block of units at Penrith from *Bank X* which offers an interest rate of 6% p.a. monthly reducible. The investor is to repay the loan in equal monthly instalments M, over 10 years.

(a) If A_n is the amount owing after *n* instalments, develop expressions for A_1 , (3 marks) A_2 , A_3 and show that:

$$A_n = 1000000(1.005)^n - M(1.005^{n-1} + ... + 1.005^2 + 1.005 + 1)$$

(b) Hence show that the monthly instalment, *M* is given by: (2 marks)

$$M = \frac{5000(1.005)^{120}}{1.005^{120} - 1}$$

- (c) Calculate the value of the monthly instalment, *M*, to the nearest cent. (1 mark)
- (d) Determine the amount still owing to *Bank X* after 5 years, to the nearest cent. (2 marks)

[End of exam]

Question N	0.1	Solutions and Marking		
Outcomes Addressed in this Question P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques				
Outcome		Solutions	Marking Guidelines	
P3	= 3	275.4 -2×3.9 -685089098 -7(to 3 significant figures)	2 marks awarded for complete correct solution 1 mark awarded for correct calculation but incorrectly rounded to 2 significant figures.	
P3, P4	$=\frac{5}{-1}$	$\frac{(x-3)}{2} - \frac{(x-1)}{5}$ $\frac{(2x-3) - 2(x-1)}{10}$ $\frac{(2x-3) - 2(x-1)}{10}$ $\frac{(2x-1) - 2x + 2}{10}$ $\frac{(x-1)}{10}$	2 marks awarded for complete correct solution1 mark awarded for partial correct solution	
P4	(c) 3-	$2x \ge 7$ $2x \ge 4$ $x \le -2$	2 marks awarded for complete correct solution1 mark awarded for partial correct solution	
Ρ3	25-	$(5-\sqrt{2})^2 = a + b\sqrt{2}$ $10\sqrt{2} + 2 = a + b\sqrt{2}$ $27 - 10\sqrt{2} = a + b\sqrt{2}$ = 27 and $b = -10$	 2 marks awarded for complete correct solution 1 mark awarded for partial correct solution 	

Year 12 Question No. 2		Mathematics Half Yearly Examination 2010 Solutions and Marking Guidelines			
P7 det	ermines t	Outcomes Addressed in this Que the derivative of a function through routine	Outcomes Addressed in this Question derivative of a function through routine application of the rules of differentiation		
	lerstands	and uses the language and notation of calc			
Outcome	2	Solutions	Marking Guidelines		
P7	2. (a)	$(4x+3)(6x^2)+(2x^3-5)(4)$ or equivalent answer.	2 marks awarded for complete correct solution1 mark awarded for partial correct solution		
P7	(b) (i)	$\frac{dy}{dx} = \frac{(x^2+1)(2) - (2x)(2x)}{(x^2+1)^2}$ or equivalent answer.	2 marks awarded for complete correct solution1 mark awarded for partial correct solution		
P7	(ii)	$f'(x) = 5(3x^2 + 4)^4(6x)$	2 marks awarded for complete correct solution1 mark awarded for partial correct solution		
P7, P8	(c)	$f'(x) = 4x^{3} - 5x^{-2}$ $f'(2) = \frac{123}{4}$	2 marks awarded for complete correct solution1 mark awarded for partial correct solution		

	Year 12 Mathematics Half Yearly Examinat	ion 2010		
Question N	In the second	on		
 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems 				
Outcome	Solutions	Marking Guidelines		
H5	3.(a) $l_1: y = 2x - 2$	1 mark Correct answer		
Н5	(b) l_2 : $m = 2$ (since $l_1 l_2$) passes through (5, -2) $y - y_1 = m(x - x_1)$ y + 2 = 2(x - 5) y + 2 = 2x - 10 2x - y + 12 = 0 as required	 2 marks Correct solution 1 mark Correctly states gradient of required line and point-gradient form of equation of straight line. 		
H5	(c) $d = \frac{ Ax_1 + By_1 + C }{\sqrt{A^2 + B^2}}$ $= \frac{ 2 \times 1 - 1 \times 0 - 12 }{\sqrt{2^2 + 1^2}}$ $= \frac{ -10 }{\sqrt{5}}$ $= \frac{10}{\sqrt{5}}$ $= 2\sqrt{5} \text{ units}$	2 marks Correct solution (not necessary to rationalise denominator) 1 mark Correctly states perpendicular distance formula and makes substantial progress towards a correct solution.		
Н5	(d) Using Pythagoras' Theorem in $\triangle ADO$ $AD^2 = 2^2 + 1^2$ $\therefore AD = \sqrt{5}$	1 mark Correct answer		
H5	(e) Area of Trapezium ABCD $=\frac{h}{2}(a+b)$ $=\frac{2\sqrt{5}}{2}(\sqrt{5}+5\sqrt{5})$ $=\sqrt{5}\times 6\sqrt{5}$ =30 units ² Note: Typographical error on examination paper. Distance BC = $6\sqrt{5}$ units, not $5\sqrt{5}$ as stated. This gives an area of 35 units ² . Both answers accepted as correct.	2 marks Correct solution 1 mark Substantial progress towards correct solution including area formula for trapezium.		

Year 12	Mathematics Task 2	2010	
Question No. 4	Solutions and Marking Guidelines	3	
Outcomes Addressed in this Question			

- P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
- P5 Understands the concept of a function and the relationship between a function and its graph
- P6 Relates the derivative of a function to the slope of its graph
- P7 Determines the derivative of a function through routine application of the rules of differentiation

Outcome	Solutions	Marking Guidelines
P4	4. a) (i) $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = \lim_{x \to 3} \frac{(x + 1)(x - 3)}{x - 3}$	2 marks: correct solution1 mark: partially correct solution
P4	$= \lim_{x \to 3} (x+1)$ = 3+1 = 4 (ii) $\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 - 5x} = \lim_{x \to \infty} \frac{3 + \frac{1}{x^2}}{1 - \frac{5}{x}}$ = $\frac{3+0}{1-0} = 3$	1 mark: correct solution
P6, P7	b) $f(x) = x^{2} + 4x - 9$ f'(x) = 2x + 4 Tangent parallel to x axis when gradient = 0. $\therefore 2x + 4 = 0$ $\therefore 2x = -4 \qquad \therefore x = -2$ When $\therefore x = -2, y = (-2)^{2} + 4 \times -2 - 9 = -13$	2 marks: correct solution1 mark: partially correct solution
P4	Co-ordinates are $(-2, -13)$	
Р5	c) Not continuous at $x=2$ as there is a gap in the graph.	1 mark: correct answer and explanation
P6	 d) Not differentiable if there is a sharp corner. At B and C this occurs. ∴ at x = 2 and x = 4 not differentiable. 	2 marks: correct solution 1 mark: partially correct solution

Year 12	Year 12 Mathematics Task 2 2010				
Question N	Question No. 5 Solutions and Marking Guidelines				
Techr P5 Under	Outcomes Addressed in this Questions set and applies appropriate arithmetic, algebraic, graphical, niques restands the concept of a function and the relationship betwee set the derivative of a function to the slope of its graph	trigonometric and geometric			
Outcome	Solutions	Marking Guidelines			
P4	5. a) Equation in form $x^2 = 4ay$ as must be concave up. (-4,8) lies on it. $\therefore 16 = 4.a.8$ $\therefore a = \frac{1}{2}$ $\therefore x^2 = 2y$ is the equation	2 marks: correct answer 1 mark: correctly finds <i>a</i> or equivalent			
Р5	b) (i) A(4,2)	1 mark: correctly marks given information			
P4, P6	(ii) Since $x^2 = 8y$, $y = \frac{x^2}{8}$ and $4a = 8$, $a = 2$ $\therefore \frac{dy}{dx} = \frac{2x}{8}$. At $x = 4$, $\frac{dy}{dx} = \frac{2 \times 4}{8} = 1$ Equation of tangent is $y - 2 = 1(x - 4)$ using $y - y_1 = m(x - x_1)$ \therefore tangent is $y = x - 2$ Tangent meets directrix $y = -2$ at Q. $\therefore -2 = x - 2$. $x = 0$. $\therefore Q(0, -2)$	2 marks: correct answer 1 mark: partially correct solution			
P4 P4	c) (i) $x^{2}-6x+41=8y$ $x^{2}-6x=8y-41$ $x^{2}-6x+9=8y-32$ $(x-3)^{2}=8(y-4)$ which is in the form $(x-h)^{2}=4a(y-k)$ with $4a=8$ \therefore focal length is $a=2$ units	2 marks: correct answer from correct method			
Г4	(ii) vertex (3,4)	1 mark: correct answer or equivalent			

Year 12	Mathematics	Half Yearly Examination 2010			
Question N		-			
	Outcomes Addressed in this Questio	n			
	iniques				
Outcome	structs arguments to prove and justify results Solutions	Marking Guidelines			
Outcome	6.				
P4	(a)				
	$3x^2 = 5x - 2$	Award 2 ~ correct answers			
	$3x^2 - 5x + 2 = 0$	Award 1 attempts to use			
	(3x-2)(x-1)=0	Award 1 ~ attempts to use appropriate method to solve the			
		equation			
	$\therefore x = \frac{2}{3}$ or 1	-			
	5				
P4	(b)	Award 2 ~ correct answers			
	$x^2 - 4x > 0$	Awaru 2 * contect answers			
	x(x-4) > 0	Award 1 ~ correct factorisation			
	$\therefore x < 0 \text{ or } x > 4$	or attempts to solve inequality			
		by an appropriate method.			
P4, H2	(c)				
	$\Delta = b^2 - 4ac$	Award 2 ~ correct solution			
	$=(-23)^2-4.3.1$	Award 1 ~ insufficient			
	= 517	justification provided.			
	Since $\Delta > 0 \Rightarrow$ two unequal roots.				
	And since Δ is not a perfect square \Rightarrow the roots are irrational.				
P4, H2	(d)	Award 2 ~ correct solution			
	$\Delta = b^2 - 4ac$				
	$=(-m)^2-4.4.9$	Award 1 ~ substantial progress			
	$= m^2 - 144$	towards solution.			
	One real root $\Rightarrow \Delta = 0$				
	$\therefore m^2 - 144 = 0$				
	$\therefore m = \pm 12$				

Year 12		Mathematics	Half Yearly Examination 2010	
Question No. 7			Solutions and Marking Guidelines	
117 1'		Outcomes Addressed in this Qu		
H5 – applie	es appro	opriate techniques from the study of series to	solve problems	
Outcome		Solutions	Marking Guidelines	
H5	7.		2 marks – correct solution	
	a)i)	- 0 T 27	<u>1 mark</u> – substantially correct solution	
		$a = 9, T_4 = 27$		
		a + 3d = 27		
		9 + 3d = 27		
		3d = 18		
		<i>d</i> = 6		
H5	a)ii)		<u>2 marks</u> – correct solution	
		$S_{20} = \frac{20}{2}(2(9) + 19(6))$	<u>1 mark</u> – substantially correct solution	
		—		
		=1320		
H5	b)		<u>2 marks</u> – correct solution	
		$S_{\infty} = 24, a = 15$	<u>1 mark</u> – substantially correct solution	
		s - a		
		$S_{\infty} = \frac{a}{1-r}$		
		$24 = \frac{15}{1-r}$		
		24 - 24r = 15		
		9 = 24r		
		$r = \frac{9}{2}$		
		$r = \frac{1}{24}$		
		$r = \frac{3}{8}$		
		$r = \frac{1}{8}$		
H5	c)		<u>2 marks</u> – correct solution	
		$Dist = 4 + 8 + 12 + \dots + 60$	<u>1 mark</u> – substantially correct solution	
		Arithmetic series, $a = 4, d = 4, n = 15$		
		$Dist = \frac{15}{2}(2(4) + 14(4))$		
		2		
		=480metres		

Year 12	Mathematics	Half Yearly Examination 2010
Question N		ines
	Outcomes Addressed in this Question	
	oses and applies appropriate arithmetic, algebraic, graph	ical, trigonometric and geometric
	nniques	
H2 con Outcome	structs arguments to prove and justify results Solutions	Morking Cuidoling
Outcome	9.	Marking Guidelines
(a) P4	(i) $\alpha + \beta = -\frac{-5}{1} = 5$	Award 1 ~ correct answer
	(ii) $\alpha\beta = \frac{2}{1} = 2$	Award 1 ~ correct answer
	(iii) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 5^2 - 2.2 = 21$	Award 2 ~ correct answers
		Award 1 ~ attempts to use an appropriate method.
(b) P4, H2	Since $a = 1$, we want $\Delta < 0$	Award 2 ~ correct solution
	$\Delta = b^{2} - 4ac = (-3)^{2} - 4.1.(2p - 1)$ $= 13 - 8p$	Award 1 ~ substantial progress towards solution.
	$\therefore 13-8p<0$	
	$\therefore 13 - 8p < 0$ $\therefore p > \frac{13}{8}$	
(c) P4	$3^{2x} + 2 \times 3^x - 15 = 0$	Award 2 ~ correct solution
	$(3^x)^2 + 2 \times 3^x - 15 = 0$	Award 1 ~ substantial progress
	Let $u = 3^x$, $u^2 + 2u - 15 = 0$	towards solution.
	(u+5)(u-3) = 0	
	$\therefore u = -5 \text{ or } 3$	
	$\therefore 3^x = -5 \text{ or } 3$	
	$\therefore x = 1$ (only valid solution)	

Year 12 Question No.10

Mathematics H Solutions and Marking Guidelines

Half Yearly Examination 2010

Outcomes Addressed in this QuestionH5 – applies appropriate techniques from the study of series to solve problems

Outcome	Solutions	Marking Guidelines
H5	10.	<u>3 marks</u> – correct solution for all parts
	a)	<u>2 marks</u> – substantially correct solution
	6% p.a. = 0.005 per month	Solution
	Let A_n = the amount owing after n instalments $A_1 = 1000000(1.005) - M$	<u>1 mark</u> – some progress towards correct solution
	$A_2 = A_1(1.005) - M$	
	= (100000(1.005) - M)(1.005) - M	
	$= 1000000(1.005)^2 - M(1.005+1)$	
	$A_3 = A_2(1.005) - M$	
	$= (100000(1.005)^2 - M(1.005+1))(1.005) - M$	
	$= 1000000(1.005)^{3} - M(1.005^{2} + 1.005 + 1)$	
	$A_n = 1000000(1.005)^n - M(1.005^{n-1} + \dots + 1.005^2 + 1.005 + 1.005^n)$	
H5	b)	<u>2 marks</u> – correct solution
	After n instalments, $A_n = 0$	<u>1 mark</u> – substantially correct solution
	After 10 years $n = 10 \times 12 = 120$.	
	$\therefore 0 = 1000000(1.005)^{120} - M(1.005^{119} + + 1.005^{2} + 1.005 + 1)$	
	$\therefore M = \frac{1000000(1.005)^{120}}{1.005^{119} + + 1.005^2 + 1.005 + 1}$	
	$1.005^{119} + + 1.005^2 + 1.005 + 1$	
	$1.005^{119} + + 1.005^{2} + 1.005 + 1$ is a geometric series, $a = 1, r = 1$.	
	$1000000(1.005)^{120}$	
	$\therefore M = \frac{1000000(1.005)^{120}}{1(\frac{1.005^{120} - 1}{0.005})}$	
	$1(\frac{1000}{0.005})$	
	5000(1 005) ¹²⁰	
	$\therefore M = \frac{5000(1.005)^{120}}{1.005^{120} - 1}$	
	1.005 -1	
117		1 months as we stand that
H5	c) $M = \$11102.05$ (to the nearest cent)	<u>1 mark</u> – correct solution
H5	d)	<u>2 marks</u> – correct solution
	After 5 years, $n = 5 \times 12 = 60$	<u>1 mark</u> – substantially correct solution
	$A_{60} \approx 100000(1.005)^{60} - 11102.05(1.005^{59} + + 1.005^{2} + 1.0)$	
	$=1000000(1.005)^{60}-11102.05(\frac{1.005^{60}-1}{0.005})$	
	= \$574 259.79 (to nearest cent)	