HURLSTONE AGRICULTURAL HIGH SCHOOL



## **MATHEMATICS – ADVANCED**

# 2014 HSC HALF YEARLY EXAMINATION

### ASSESSMENT TASK 2

Examiners ~ G Huxley, S Hackett, S Faulds, D. Crancher, P. Biczo

#### **GENERAL INSTRUCTIONS**

- Reading Time 5 minutes.
- Working Time 2 hours.
- Attempt **all** questions.
- All necessary working should be shown in every question.
- This paper contains six (6) multiple choice questions, and 6 extended response questions, worth 11 marks each. Total = 72 marks.
- Multiple choice is to be answered on the sheet provided. The extended response questions are to be answered in the booklets provided.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used. Approved templates are optional.
- Each question is to be started in a new booklet.
- This examination paper must **NOT** be removed from the examination room.
- Write your student number/name on each answer sheet.

STUDENT NAME:\_\_\_\_\_

TEACHER: \_\_\_\_\_\_

#### Multiple Choice (Complete on the answer sheet provided)

#### PART A

#### **QUESTION 1**

Given  $y = (5 - 3x^2)^6$ ,  $\frac{dy}{dx} = ?$ A.  $-6x(5 - 3x^2)^5$ B.  $-36x(5 - 3x^2)^5$ C.  $-6(5 - 3x^2)^5$ D.  $-36(5 - 3x^2)^5$ 

#### **QUESTION 2**

What is the gradient of the normal to the function y=7x-6 at the point where x = a?

A. 7a B.  $-\frac{a}{7}$  C.  $-\frac{1}{7}$  D.  $\frac{1}{7}$ 

#### **QUESTION 3**

The quadratic equation in x with roots  $2+\sqrt{3}$  and  $2-\sqrt{3}$  is

A.  $x^2 - 4x + 1 = 0$ B.  $x^2 + 4x + 1 = 0$ 

C.  $x^2 - 4x - 1 = 0$  D.  $x^2 + 4x - 1 = 0$ 

#### **QUESTION 4**

A point P(x, y) moves so that its distance from the point (0, 2) is 2 units. The equation of the locus of point P is:

- A.  $x^2 = 8y$  B.  $x^2 + (y-2)^2 = 4$
- C.  $(x-2)^2 + y^2 = 4$  D.  $x^2 = -8y$

### **QUESTION 5**



Which of the following could be used to calculate the shaded area above?

A. 
$$\int_{0}^{2} (x-2)^{2} dx$$
  
B.  $\int_{0}^{2} 2x (x-2) dx$   
C.  $\int_{0}^{2} -2x (x-2) dx$   
D.  $\int_{0}^{2} -x (x-2) dx$ 

### **QUESTION 6**

The fourth term of an arithmetic series is 27 and the seventh term is 12. What is the common difference?

| A: | 42 | B: | 13 | C. | 5 | D. | -5 |
|----|----|----|----|----|---|----|----|
|----|----|----|----|----|---|----|----|

#### PART B:

#### **QUESTION 7** 11 marks Start a SEPARATE booklet.

Consider the function 
$$f(x) = \frac{x-1}{x^2}$$
.  
(i) Show that  $f'(x) = \frac{2-x}{x^3}$ .  
(ii) Find the coordinates of the stationary point on  $y = f(x)$  and determine its nature.  
2  
(iii) Find the coordinates of *P*, the only point where  $y = f(x)$  meets the *x*-axis  
1  
(iv) Calculate  $\lim_{x \to \infty} f(x)$   
(v) Show that the equation of the tangent at *P* is given by the equation  $y = x - 1$ .  
(vi) Find the coordinates of the other point where this tangent meets the curve.  
3

### QUESTION 8 BEGINS ON THE NEXT PAGE

Marks

#### **QUESTION 8** 11 marks Start a SEPARATE booklet.

- (a) The curve  $y = ax^3 + bx 3$  has a local minimum turning point at (-1, -4). Find *a* and *b*.
- (b) A box in the shape of a square prism is open at one of the square ends. It has a volume of  $32 \text{ cm}^3$ . The square base has length x cm and the box is h cm high.



- (i) Show that the surface area (A) of the box is given by:  $A = x^2 + \frac{128}{x}$ . 1
- (ii) Find the dimensions of the box that has the least surface area.

Marks

3

3

Marks



The diagram shows the graph of a function y = f(x).

| (i)   | For which values of x is the derivative, $f'(x)$ positive? | 1 |
|-------|------------------------------------------------------------|---|
| (ii)  | What happens to $f'(x)$ for large values of x?             | 1 |
| (iii) | Sketch the graph $y = f'(x)$ .                             | 2 |

### QUESTION 9 BEGINS ON THE NEXT PAGE

#### **QUESTION 9** 11 marks Start a SEPARATE booklet.

(a) If  $\alpha$  and  $\beta$  are the two roots of  $2x^2 - 3x + 4 = 0$ 

find the value of  $\alpha + \beta + \alpha \beta$ 

(b) Solve for x: 
$$x^2 + 1 + \frac{25}{x^2 + 1} = 10.$$

(Hint: You may choose to use the substitution  $X = x^2 + 1$ ) 2



The diagram shows a square inscribed in a square of side length 1 unit. The four triangles shown are congruent, with one side of the triangle x units as shown.

(i) Show that the area of the shaded square is given by

$$A = 2x^2 - 2x + 1 \tag{1}$$

- (ii) Without using Calculus, find the minimum value of *A*. 2
- (d) Find the values of *a* and *b* if

$$20x - 17 \equiv a(x - 4) - b(5x + 1).$$

(e) Find the values of k for which  

$$x^{2} + 2kx + k + 20 = 0$$
 has real roots. 3

#### QUESTION 10 BEGINS ON THE NEXT PAGE

Marks

1





(b) For the parabola  $(x-3)^2 = -12y$ :

|     | (i)   | state the co-ordinates of the focus.                                   | 1 |
|-----|-------|------------------------------------------------------------------------|---|
|     | (ii)  | state the equation of the directrix                                    | 1 |
|     | (iii) | sketch the parabola                                                    | 1 |
|     | (iv)  | show that a general point $Q(x, y)$ that is equidistant from the focus |   |
|     |       | and the directrix, also lies on the given parabola.                    | 2 |
| (c) | (i)   | Show that $5x + 2y = 6$ is a focal chord of the parabola $x^2 = 12y$ . | 2 |
|     | (ii)  | If $ax + by = 6$ is to be a focal chord of the parabola $x^2 = 12y$ ,  |   |
|     |       | comment upon the range of possible values for <i>a</i> and <i>b</i> .  | 2 |

#### QUESTION 11 BEGINS ON THE NEXT PAGE

2

Marks

| QUESTION | <b>11 11</b> | marks Start a SEPARATE booklet.                                                                                                                                        | Marks |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a)      | (i)          | Show that $y = x^3 + x$ is an odd function.                                                                                                                            | 1     |
|          | (ii)         | Hence or otherwise, evaluate: $\int_{-2}^{2} x^{3} + x  dx$                                                                                                            | 1     |
| (b)      | (i)          | Draw the graph of the function $y = \sqrt{4 - x^2}$                                                                                                                    | 1     |
|          | (ii)         | Hence or otherwise, evaluate: $\int_{0}^{2} \sqrt{4-x^{2}} dx$                                                                                                         | 1     |
| (c)      | (i)          | Show that the points of intersection of the curves                                                                                                                     |       |
|          |              | $y=2x-2$ and $y=8x-7-x^2$<br>are (1,0) and (5,8)                                                                                                                       | 2     |
|          | (ii)         | Sketch the curves on the same diagram and shade the region<br>enclosed between them. Mark the intercepts on the axes,<br>and the points of intersection of the curves. | 2     |
|          | (iii)        | By evaluating an appropriate integral,<br>calculate the area of the shaded region in (ii)                                                                              | 3     |

### QUESTION 12 BEGINS ON THE NEXT PAGE

c)

a) Evaluate 
$$\sum_{k=1}^{4} (-1)^k k^2$$
 1

b) Heather decides to swim every day to improve her fitness level.
On the first day she swims 750 metres, and on each day after that she swims 100 metres more than the previous day.
That is, she swims 850 metres on the second day, 950 metres on the third day and so on.

| (i)              | Write down a formula for the distance she swims on the <i>n</i> th day.                                                                                                                                                                                                                                | 1 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (ii)             | How far does she swim on the 10 <sup>th</sup> day?                                                                                                                                                                                                                                                     | 1 |
| (iii)            | What is the total distance she swims in the first 10 days?                                                                                                                                                                                                                                             | 1 |
| (iv)             | After how many days does the total distance she has swum<br>equal the width of the English Channel, a distance of 34 kilometres?                                                                                                                                                                       | 2 |
| The in<br>It can | borrows \$200 000 which is to be repaid in equal monthly instalments.<br>Interest rate is 7.2% per annum reducible, calculated monthly.<br>be shown that the amount, $A_n$ , owing after the <i>n</i> th repayment is given<br>the formula:<br>$A_n = 200\ 000r^n - M(1 + r + r^2 + \dots + r^{n-1}),$ |   |

where r = 1.006 and M is the monthly repayment. (Do NOT show this.)

- (i) The minimum monthly repayment is the amount required to repay the loan in 300 instalments.
   Find the minimum monthly repayment.
   3
- (ii) Joe decides to make repayments of \$2800 each month from the start of the loan.How many months will it take for Joe to repay the loan?

### END OF EXAMINATION

2

#### Marks

STUDENT NAME:

### HURLSTONE AGRICULTURAL HIGH SCHOOL



#### 2014 HSC Half Yearly Examination

#### **ADVANCED MATHEMATICS**



#### STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

 $\int \frac{1}{x} \, dx \qquad \qquad = \ln x, \ x > 0$ 

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

- $\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax, \ a \neq 0$
- $\int \sin ax \, dx \qquad \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$
- $\int \sec^2 ax \, dx \qquad \qquad = \frac{1}{a} \tan ax, \ a \neq 0$
- $\int \sec ax \tan ax \, dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$
- $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$
- $\int \frac{1}{\sqrt{a^2 x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$
- $\int \frac{1}{\sqrt{x^2 a^2}} dx = \ln\left(x + \sqrt{x^2 a^2}\right), \ x > a > 0$
- $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE: 
$$\ln x = \log_e x, x > 0$$

## **QUESTION 7 – Year 12 Mathematics Half Yearly 2014**

#### Outcomes Addressed in this Question: P7 determines the derivative of a fun

determines the derivative of a function through routine application of the rules of differentiation.

| P/ | SAMPLE SOLUTION                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | a) (i)                                                                                                                                                                 | <b>2 marks</b> – correct answer clearly showing how the answer was reached                                                                                                                                                                                                                                                                         |
|    | $f'(x) = \frac{x^2 \cdot 1 - (x - 1) \cdot 2x}{(x^2)^2}$                                                                                                               | <b>1 mark</b> – substantial progress towards correct answer                                                                                                                                                                                                                                                                                        |
|    | $=\frac{x^2 - 2x^2 + 2x}{x^4}$ $=\frac{-x^2 + 2x}{x^4}$ $=\frac{-x + 2}{x^3}$                                                                                          | This part was generally done well when the<br>quotient rule was used; however a number of<br>students opted to use the product rule with<br>negative indices. This method was not as<br>successful.<br>In a "show that" question, it is essential that<br>enough steps are shown.                                                                  |
|    | $=\frac{2-x}{x^3}$                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                    |
|    | a) (ii)<br>Stationary $pt: f'(x) = 0$ $\therefore x = 2 \rightarrow y = \frac{1}{4}$                                                                                   | 2 marks – correct stationary point<br>with nature correctly determined<br>1 marks – substantial progress                                                                                                                                                                                                                                           |
|    | $\frac{x  1  2  3}{f'(x)  1  0  -\frac{1}{27}}$<br>$\therefore Max \ at\left(2, \frac{1}{4}\right)$                                                                    | towards correct solution<br>Many students chose to use f"(x) to determine<br>the nature of the stationary point, but did not<br>find the second derivative or evaluate it<br>correctly.                                                                                                                                                            |
|    |                                                                                                                                                                        | A number of students did not find the y coordinate of the point.                                                                                                                                                                                                                                                                                   |
|    | a) (iii) When $f(x) = 0, x = 1 \therefore P(1,0)$                                                                                                                      | 1 mark – correct answer                                                                                                                                                                                                                                                                                                                            |
|    | a) (iv)<br>$\lim_{x \to \infty} \frac{x-1}{x^2} = \lim_{x \to \infty} \frac{\frac{x}{x^2} - \frac{1}{x^2}}{\frac{x^2}{x^2}}$                                           | 2 marks – correct answer clearly<br>showing how the answer was reached<br>1 mark – substantial progress towards<br>correct answer                                                                                                                                                                                                                  |
|    | $= \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{1}{x^2}}{1}$ $= \frac{0 - 0}{1} \qquad (as \ x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{x^2} \to 0)$ $= 0$ | Many students correctly found the limit as<br>zero, but did not provide an explanation of how<br>they arrived at their answer. Some justification<br>was necessary to be awarded the two marks for<br>this question.                                                                                                                               |
|    | a) (v)<br>When $x = 1$ , $f'(x) = \frac{1}{1} = 1$<br>Eqn: $y - 0 = 1(x - 1)$                                                                                          | <b>1 mark</b> – correct answer clearly<br>showing how the given equation was<br>reached                                                                                                                                                                                                                                                            |
|    | y = x - 1                                                                                                                                                              | Most students did this part well. In a "show that" question, steps MUST be shown.                                                                                                                                                                                                                                                                  |
|    | a) (vi)<br>y = x - 1 -(1)<br>$y = \frac{x - 1}{x^2}$ -(2)<br>Solving:<br>$x - 1 = \frac{x - 1}{x^2}$                                                                   | <ul> <li>3 marks – correct point obtained with a correct method of solving the equations</li> <li>2 marks – correct point with an error in the method of solution</li> <li>1 mark – substantial progress towards</li> </ul>                                                                                                                        |
|    | $x^{2}(x-1) = x-1$ $x^{2}(x-1) - (x-1) = 0$ $(x-1)(x^{2}-1) = 0$ $(x-1)(x-1)(x+1) = 0$ $\therefore x = 1, 1, -1$ Since P(1,0), the other pt is (-1,-2)                 | correct answerStudents used a wide range of methods to solve<br>these equations – some of which were very<br>complicated. Many of the methods lost a<br>solution, or resulted in a contradiction where<br>x=1 was given as a solution but they had<br>divided by x-1 to get that solution. Some<br>students neglected to provide the y coordinate. |

| comes nuu                                                        | <b>Iressed in this Question:</b><br><b>H7</b> Uses the features of a graph to d                                                                          | educe information about the derivative.                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | SAMPLE SOLUTION                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                |
| Thro<br>y'=                                                      | $ax^{3} + bx - 3$ $ugh (-1,-4) -4 = a(-1)^{3} + b(-1) - 3$ $-4 = -a - b - 3$ $a + b = 1 -(1)$ $3ax^{2} + b$ $Pt (-1,-4) 0 = 3a(-1)^{2} + b$ $0 = 3a + b$ | <ul> <li>3 marks – correct values for a and obtained with a correct method of solving the equations</li> <li>2 marks – substantial progress towards correct solution</li> <li>1 mark – one correct equation established</li> </ul>                                                                                                                                                             |
|                                                                  | $3a + b = 0 -(2)$ (2)-(1) $2a = -1$ $a = -\frac{1}{2}$ in (1) $b = \frac{3}{2}$                                                                          | Many students made basic errors in their<br>solutions, including errors in working with<br>negative numbers and errors in solving<br>simultaneous equations.                                                                                                                                                                                                                                   |
| <b>b</b> ) (i)<br>V =                                            | $x^2h$ $\therefore 32 = x^2h$ $\rightarrow h = \frac{32}{x^2}$                                                                                           | <b>1 mark</b> – correct answer clearly showin how the given equation was reached.                                                                                                                                                                                                                                                                                                              |
|                                                                  | A = x2 + 4xh<br>= x <sup>2</sup> + 4x, $\frac{32}{x^2}$<br>= x <sup>2</sup> + $\frac{128}{x}$                                                            | This part was done well by most students.                                                                                                                                                                                                                                                                                                                                                      |
| b) (ii)                                                          | $A = x^{2} + \frac{128}{x}$ $A' = 2x - \frac{128}{x^{2}}$ $A'' = 2 + \frac{256}{x^{3}}$                                                                  | 3 marks – correct dimensions<br>obtained with minimum area being<br>confirmed<br>2 marks – substantial progress<br>towards correct solution<br>1 mark – using a correct method to                                                                                                                                                                                                              |
| Stat<br>Test                                                     | Pt A'= 0<br>$2x - \frac{128}{x^2} = 0$ $2x^3 = 128$ $x^3 = 64$ $x = 4$ A''(4) = 2 + \frac{256}{4^3} = 6 > 0 :: Minimum                                   | establish that $x=4$<br>Students made a number of errors in this<br>question. There were difficulties in<br>differentiating using the quotient rule – it w<br>much simpler to differentiate the two terms<br>separately in this question. Many students a<br>not test to check that this was a minimum, a                                                                                      |
| -) (*)                                                           | When $x = 4$ , $h = \frac{32}{4^2} = 2$<br>$\therefore$ Dimensions $4cm \times 4cm \times 2cm$                                                           | many students did not give the dimensions of<br>the box, just giving the value for x or<br>unnecessarily calculating the surface area.                                                                                                                                                                                                                                                         |
| <b>c</b> ) ( <b>i</b> ) $x < x < x < x < x < x < x < x < x < x $ | < 0 and x > 2                                                                                                                                            | <b>1 mark</b> – correct answer<br><i>This question was well done by most studen</i>                                                                                                                                                                                                                                                                                                            |
| c) (ii)                                                          | as $x \to \infty$ , $f'(x) \to \infty$<br>or<br>f'(x) increases as x increases                                                                           | 1 mark – correct answer         Some students complicated their responses giving too much unnecessary information.                                                                                                                                                                                                                                                                             |
| c) (iii)                                                         |                                                                                                                                                          | <ul> <li>2 marks – correctly shaped graph showing intercepts at 0 and 2 and clearl showing the minimum point at x=1.</li> <li>1 marks – substantial progress towards the correct graph</li> <li>The best graphs were drawn with a template using a pencil and a ruler to draw the axes, measuring the positions of 0, 1 and 2 and clearly showing the minimum value occurri at x=1.</li> </ul> |

| Year 12 Ha | •                                                                                                                                    | Examination 2014                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Question N | ě                                                                                                                                    |                                    |
|            | Addressed in this Question<br>es and applies appropriate algebraic and graphical                                                     |                                    |
| techni     |                                                                                                                                      |                                    |
| P5 Under   | stands the concept of a function and the relationship                                                                                |                                    |
|            | en a function and its graph<br>Solutions                                                                                             | Marking Cuidelines                 |
| Outcome    | (a) For $2x^2 - 3x + 4 = 0$ , $a = 2$ , $b = -3$ , $c = 4$ .                                                                         | Marking Guidelines                 |
| P 5        |                                                                                                                                      | 1 mark : correct answer            |
|            | $\alpha\beta = \frac{c}{a} = \frac{4}{2} = 2.$ $\alpha + \beta = \frac{-b}{a} = \frac{3}{2}.$                                        |                                    |
|            | $\therefore \alpha + \beta + \alpha \beta = 2 + \frac{3}{2} = 3\frac{1}{2}.$                                                         |                                    |
|            |                                                                                                                                      |                                    |
|            | (b) $x^2 + 1 + \frac{25}{x^2 + 1} = 10$                                                                                              |                                    |
|            |                                                                                                                                      | 2 marks : correct solution         |
|            | Let $y = x^2 + 1$ , then $y + \frac{25}{y} = 10$                                                                                     | solution                           |
|            | $y^2 - 10y + 25 = 0$                                                                                                                 | 1 mark : substantial               |
|            | $(y-5)^2 = 0$ : $y = 5$ , and so $x^2 + 1 = 5$                                                                                       | progress toward correct solution   |
|            | $(y^2 - 5)^2 = 0^2 + (y^2 - 5)^2$ , and so $x^2 + 1 = 5^2$<br>$\therefore x^2 = 4$ and $x = \pm 2$ .                                 | Solution                           |
|            | (c) (i) Length of the square $l =$ hypotenuse of a right triangle                                                                    | 1 1 /                              |
|            | with shorter sides x and $1-x$ .                                                                                                     | 1 mark : correct solution          |
| P 4        | Area of shaded square $A = l^2 = x^2 + (1-x)^2$ (Pythagoras)                                                                         |                                    |
|            | $\therefore A = x^2 + 1 - 2x + x^2$                                                                                                  |                                    |
|            | $\therefore A = 2x^2 - 2x + 1.$                                                                                                      |                                    |
|            | <ul><li>(ii) A is a quadratic, whose minimum value occurs on the<br/>axis of symmetry. It is a minimum as the co-efficient</li></ul> |                                    |
|            | of $x^2$ is positive.                                                                                                                | 2 marks : correct                  |
| P 4        |                                                                                                                                      | answer                             |
|            | $x = \frac{-b}{2a} = \frac{2}{4} = \frac{1}{2}.$                                                                                     | 1 marks : substantial              |
|            | When $x = \frac{1}{2}$ , $A = \frac{1}{2} - 1 + 1 = \frac{1}{2}$ .                                                                   | progress toward correct<br>answer  |
|            | $\therefore$ minimum value of A is $\frac{1}{2}$ .                                                                                   |                                    |
| P 4        | (d) $20x - 17 \equiv a(x-4) - b(5x+1)$ .                                                                                             |                                    |
|            | $\equiv ax - 4a - 5bx - b$                                                                                                           | 2 marks : correct                  |
|            | $\equiv (a-5b)x + (-4a-b)$                                                                                                           | solution                           |
|            | Equating like coefficients, $20 = a - 5b$ [1]                                                                                        | 1 mark : substantial               |
|            | -17 = -4a - b  [2]                                                                                                                   | progress toward correct            |
|            | $\therefore 80 = 4a - 20b  4 \times [1]$                                                                                             | solution                           |
|            | $\therefore 63 = -21b$                                                                                                               |                                    |
|            | $\therefore b = -3$ and substituting in [1], $a = 5$ .                                                                               |                                    |
|            | (e) $x^2 + 2kx + k + 20 = 0$ has real roots when $\Delta \ge 0$ .                                                                    | 3 marks : correct<br>answer        |
|            | $\Delta = b^2 - 4ac = (2k)^2 - 4.1.(k + 20)$                                                                                         | 2 marks : substantial              |
|            | Solving $4k^2 - 4k - 80 \ge 0$ ,                                                                                                     | progress toward correct            |
|            | $(k+4)(k-5) \ge 0,$ $(k+4)(k-5) \ge 0,$                                                                                              | solution<br>1 mark : some progress |
| P 4        | From the graph $k \le -4$ and $k \ge 5$ .                                                                                            | toward correct solution            |

| Year 12 Ma | athematics Half Yearly Examination 2014                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question N |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| H5 appli   | Outcomes Addressed in this Questic<br>les appropriate techniques from the study of calculus, geometry,                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |
| · ·        | lve problems                                                                                                                                                                                                                                                                                                                                                                                                        | probability, urgonometry and series                                                                                                                                                   |
| Outcome    | Solutions                                                                                                                                                                                                                                                                                                                                                                                                           | Marking Guidelines                                                                                                                                                                    |
| Н5         | (a) Parabola is of the form:<br>$x^2 = 4ay$ passing through (6, 2) with vertex at the origin<br>$\therefore 36 = 8a$<br>$a = \frac{9}{2}$<br>Focus is then $S\left(0, \frac{9}{2}\right)$                                                                                                                                                                                                                           | <ul> <li>2 marks</li> <li>Correct solution stating both the focal length and co-ordinates of focus.</li> <li>1 mark</li> <li>Substantial progress towards correct solution</li> </ul> |
| Н5         | (b) (i)<br>$(x-3)^2 = -12y$<br>Here, <i>a</i> = 3, vertex (3,0), concave down<br>∴ Focus is (3,-3)                                                                                                                                                                                                                                                                                                                  | <b>1 mark</b><br>Correct answer                                                                                                                                                       |
| Н5         | (ii) Directrix: $y = 3$                                                                                                                                                                                                                                                                                                                                                                                             | 1 mark<br>Correct answer                                                                                                                                                              |
| Н5         | (iii)<br>6<br>4<br>y = 3<br>2<br>N(x, 3)<br>N(x, 3)                                                                                                                                                                                                                                                                                                                                                                 | <b>1 mark</b><br>Graph sketched correctly showing<br>important features. Some regard must<br>have been given to scale and<br>positioning of focus and y intercept.                    |
|            | -4 -2 0 2 4 6 8 10<br>-4 -2 -2 - 5 (3, -3)<br>-6                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                       |
| H5         | (iv)<br>$QS = \sqrt{(x-3)^{2} + (y+3)^{2}} \qquad QN = \sqrt{(x-x)^{2} + (y-3)^{2}}$ $= \sqrt{-12y + (y+3)^{2}} \qquad = \sqrt{(y-3)^{2}}$ $= \sqrt{-12y + y^{2} + 6y + 9} \qquad = y - 3$ $= \sqrt{y^{2} - 6y + 9} \qquad = QS$ $= \sqrt{(y-3)^{2}}$ $= y - 3$ $\therefore \text{ Q is equidistant from the focus and directrix}$ Alternatively, assume $QS = QN$ and show equation of locus is $(x-3)^{2} = -12y$ | 2 marks<br>Correct solution showing $QS = QN$<br>or alternative solution.<br>1 mark<br>Substantial progress towards correct<br>solution.                                              |

| H5 | (c) (i)<br>$x^{2} = 12y$ Focus (0, 3)<br>Sub. in $5x + 2y = 6$<br>0 + 6 = 6<br>True<br>$\therefore 5x + 2y = 6$ is a focal chord.                                                | <ul> <li>2 marks</li> <li>Correct solution stating co-ordinates of focus and showing correct substitution.</li> <li>1 mark</li> <li>Substantial progress towards correct solution.</li> </ul> |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H5 | (ii)<br>If $ax + by = 6$ is a focal chord it passes through $(0,3)$<br>ie. $a.0+b.3=6$<br>b=2<br>$\therefore$ <i>a</i> can be any value, and $b=2$ for line to be a focal chord. | <ul> <li>2 marks</li> <li>Correct solution</li> <li>1 mark</li> <li>Substantial progress towards correct solution.</li> </ul>                                                                 |

| Year 1 | 2 Mathematics -Advanced<br>Solutions and Marking Guidelines                                                                                        | Task 2 Half Yearly 2014                                                                                                                                                     |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Multiple Choice: 1.A 2C 3A 4B 5C 6D                                                                                                                |                                                                                                                                                                             |
| Qu     | estion 11<br>Outcome Addressed in this Question                                                                                                    |                                                                                                                                                                             |
| H8     | Uses techniques of integration to calculate areas and volumes.                                                                                     |                                                                                                                                                                             |
|        | Solutions                                                                                                                                          | Marking Guidelines                                                                                                                                                          |
| H8     | (a) (i)<br>$f(-x) = (-x)^{3} + (-x)$ $= -x^{3} - x$ $= -(x^{3} + x)$ $\therefore f(-x) = -f(x)$ So $f(x)$ is an odd function                       | (a) (i) <b>1 mark:</b> correct answer                                                                                                                                       |
| H8     | (ii) Since the function is odd, $\int_{-a}^{a} f(x) dx = 0$<br>$\therefore \int_{-2}^{2} x^{3} + x dx = 0$<br>(b) (i)                              | (ii) <b>1 mark:</b> correct answer                                                                                                                                          |
| H8     | $\begin{pmatrix} \mathbf{y} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                              | (b) (i) <b>1 mark:</b> correct answer<br>(Diagrams should include<br>intersections on axes, and the<br>function should be a <u>neat</u> semi-<br>circle.)                   |
| H8     | (ii) Integral will have the same value as the quarter circle, radius 2<br>units.<br>$\therefore \int_{0}^{2} \sqrt{4-x^{2}} dx = \pi$              | <ul> <li>(ii) 1 mark: correct answer</li> <li>(c) (i)</li> <li>2 marks: complete correct</li> </ul>                                                                         |
| H8     | (c) (i)<br>$2x-2=8x-7x-x^{2}$ $x^{2}-6x+5=0$ $(x-5)(x-1)=0$ $x=1,5$ When $x = 1, y=2(1)-2=0$ Hence (1, 0)<br>When $x = 5, y=2(5)-2=8$ Hence (5, 8) | 2 marks: complete correct<br>solution, including substitution.<br>1 mark: Partially correct<br>solution.<br>( <i>"Show that" questions require</i><br><i>full working</i> ) |



### Task 2 Half Yearly 2014

| Outcome Addressed in this Question           H5         applies appropriate techniques from the study of calculus, geometry, probability, trigonome series to solve problems         Marking G           H5         12.<br>a)         Solutions         Marking G           H5         12.<br>a)         (-1) <sup>4</sup> k <sup>2</sup> = (-1) <sup>1</sup> .(1) <sup>2</sup> + (-1) <sup>2</sup> .(2) <sup>2</sup> + (-1) <sup>3</sup> .(3) <sup>2</sup> + (-1) <sup>4</sup> .(4) <sup>2</sup> )         I mark for constraints           H5         i)         The series is 750, 850, with a = 750, d = 100         I mark for constraints           H5         i)         The series is 750, 850, with a = 750, d = 100         I mark for constraints           H5         ii)         The series is 750, 850, with a = 750, d = 100         I mark for constraints           H5         ii)         Use n = 10, $T_n = 100n + 650$ I mark for constraints           H5         iii)         Use n = 10, $T_n = 100n + 650$ I mark for constraints           H5         iii)         Using $S_n = \frac{n}{2} [2a + (n - 1)d]$ I mark for constraints         I mark for constraints           H5         iv)         Using $S_n = \frac{n}{2} [2a + (n - 1)d]$ I mark for constraints         I mark for constraints           H5         iv)         Using $S_n = \frac{n}{2} [2a + (n - 1)d]$ I mark for constraints         I mark for constraints           H5 </th <th></th> <th></th> <th></th> <th></th> <th>tics -Advanced<br/>d Marking Guide</th> <th>elines</th> <th>Task 2 Half Yearly 2014</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                              |                                                                                             |                                                                                                                    | tics -Advanced<br>d Marking Guide | elines                         | Task 2 Half Yearly 2014                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|
| Series to solve problems       Solutions       Marking G         H5       12.<br>a)<br>$\sum_{n=1}^{4} (-1)^n k^2 = (-1)^1 \cdot (1)^2 + (-1)^2 \cdot (2)^2 + (-1)^3 \cdot (3)^2 + (-1)^4 \cdot (4)^2$<br>= -1 + 4 - 9 + 16<br>= 10       1 mark for constant for const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                                                                              |                                                                                             |                                                                                                                    | ~                                 |                                |                                                                                               |
| Solutions         Marking G           H5         12.<br>a)<br>$\sum_{k=1}^{4} (-1)^k k^2 = (-1)^1 (1)^2 + (-1)^2 (2)^2 + (-1)^3 (3)^2 + (-1)^4 (4)^2$<br>= -1 + 4 - 9 + 16<br>= 10         I mark for constant for c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and |                                                                                                                              |                                                                                             |                                                                                                                    |                                   |                                |                                                                                               |
| H5 $\begin{bmatrix} 12. \\ a) \\ \sum_{k=1}^{4} (-1)^{k} k^{2} = (-1)^{1} (1)^{2} + (-1)^{2} (2)^{2} + (-1)^{3} (3)^{2} + (-1)^{4} (4)^{2} \\ = -1 + 4 - 9 + 16 \\ = 10 \end{bmatrix}$<br>H5 $\begin{bmatrix} b) \\ b) \\ \hline b) \\ \hline b) \\ \hline b) \\ \hline c) \\ T_{n} = a + (n - 1)d \\ = 750 + (n - 1) \times 100 \\ = 750 + (n - 1) \times 100 \\ = 750 + (n - 1) \times 100 \\ = 750 + (n - 1) \times 100 \\ = 100n + 650 \end{bmatrix}$<br>H5 $\begin{bmatrix} ii \end{pmatrix} \\ Use n = 10, \\ T_{n} = 100n + 650 \\ T_{10} = 100 \times 10 + 650 \\ = 1650 \end{bmatrix}$<br>H5 $\begin{bmatrix} ii \end{pmatrix} \\ Use n = 10, \\ T_{n} = \frac{n}{2} [2a + (n - 1)d] \\ \text{with } a = 750, d = 100 \text{ and } n = 10 \\ S_{10} = \frac{n}{2} [2(750) + (10 - 1)100] \\ = 5(1500 + 900) \\ = 12 000 \\ \therefore \text{ distance is } 12 000 \text{ m or } 12 \text{ km} \end{bmatrix}$<br>H5 $\begin{bmatrix} iv \end{pmatrix} \\ Using S_{n} = \frac{n}{2} [2a + (n - 1)d] \\ \text{with } a = 750, d = 100 \text{ and } S_{n} = 34 000 \\ 34 000 = \frac{n}{2} [2(750) + (n - 1)100] \\ 68 000 = n(1400 + 100n - 100] \\ 68 000 = n(1400 + 100n - 100] \\ (n + 34) (n - 20) = 0 \\ n = -34, 20 \end{bmatrix}$<br>H $\begin{bmatrix} 1mark \text{ for constants} \\ 1mark  for substituting in the substituting in the substitution in the substitute in the substitut$ | ries to solv                                                                                          | olve proble                                                                                                                  | ems                                                                                         |                                                                                                                    |                                   |                                |                                                                                               |
| H5       a)       Image: mark for constraints in the equation of the equatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                                                                              |                                                                                             | Solutions                                                                                                          |                                   |                                | Marking Guidelines                                                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a)                                                                                                    | $k^{k}k^{2} = (-$                                                                                                            | $(-1)^1 \cdot (1)^2 +$                                                                      | $(-1)^2 \cdot (2)^2 + $                                                                                            | $(-1)^3 \cdot (3)^2 + (-1)^4$     | <sup>4</sup> .(4) <sup>2</sup> | 1 mark for correct answer                                                                     |
| H5       b)       i). The series is 750, 850, with $a = 750, d = 100$ 1 mark for contrast fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       | = -                                                                                                                          | -1 + 4 - 9                                                                                  | + 16                                                                                                               |                                   |                                |                                                                                               |
| H5       i). The series is 750, 850, with $a = 750, d = 100$ 1 mark for contrast for con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       | = 10                                                                                                                         | 0                                                                                           |                                                                                                                    |                                   |                                |                                                                                               |
| $T_{10} = 100 \times 10 + 650$<br>= 1650<br>I mark for con-<br>:. she swims 1650m on 10 <sup>th</sup> day<br>H5<br>iii). Using $S_n = \frac{n}{2}[2a + (n - 1)d]$<br>with $a = 750, d = 100$ and $n = 10$<br>$S_{10} = \frac{10}{2}[2(750) + (10 - 1)100]$<br>= 5(1500 + 900)<br>= 12 000<br>:. distance is 12 000m or 12 km<br>H5<br>iv). Using $S_n = \frac{n}{2}[2a + (n - 1)d]$<br>with $a = 750, d = 100$ and $S_n = 34\ 000$<br>$34\ 000 = \frac{n}{2}[2(750) + (n - 1)100]$<br>$68\ 000 = n[1500 + 100n - 100]$<br>$68\ 000 = n[1400 + 100n]$<br>$100n^2 + 1400n - 68\ 00 = 0$<br>$n^2 + 14n - 680 = 0$<br>$(n + 34)\ (n - 20) = 0$<br>n = -34, 20<br>I mark for con-<br>substituting in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ). The $T_n = a$<br>= 7<br>= 7                                                                        | a + (n - 1)<br>750 + (n - 1)<br>750 + 100                                                                                    | $(1)d = -1) \times 100 = 0n - 100$                                                          |                                                                                                                    | = 750, <i>d</i> = 100             |                                | 1 mark for correct answer                                                                     |
| with a = 750, d = 100 and n = 10<br>$S_{10} = \frac{10}{2} [2(750) + (10 - 1)100]$ $= 5(1500 + 900)$ $= 12 000$ ∴ distance is 12 000m or 12 km<br>H5 iv). Using $S_n = \frac{n}{2} [2a + (n - 1)d]$<br>with a = 750, d = 100 and $S_n = 34 000$<br>$34 000 = \frac{n}{2} [2(750) + (n - 1)100]$<br>68 000 = n[1500 + 100n - 100]<br>68 000 = n[1400 + 100n]<br>$100n^2 + 1400n - 68 000 = 0$<br>$n^2 + 14n - 680 = 0$<br>(n + 34) (n - 20) = 0<br>n = -34, 20<br>1 mark for substituting in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                                                                              |                                                                                             | $T_{10} = 100$<br>= 165                                                                                            | $0 \times 10 + 650$               |                                | 1 mark for correct answer                                                                     |
| with $a = 750$ , $d = 100$ and $S_n = 34\ 000$<br>$34\ 000 = \frac{n}{2}[2(750) + (n-1)100]$<br>$68\ 000 = n[1500 + 100n - 100]$<br>$68\ 000 = n[1400 + 100n]$<br>$100n^2 + 1400n - 68\ 000 = 0$<br>$n^2 + 14n - 680 = 0$<br>$(n + 34)\ (n - 20) = 0$<br>n = -34, 20<br><b>1 mark for</b><br><b>substituting in</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       | with<br>S                                                                                                                    | $h a = 750, a$ $f_{10} = \frac{10}{2} [2]$ $= 5(15)$ $= 12.00$                              | d = 100  and  n<br>2(750) + (10 -<br>(00 + 900)<br>00                                                              |                                   |                                | 1 mark for correct answer                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $100n^2 +$                                                                                            | with $r + 1400n - n^2 + 1400n^2 + 1400n^2 + 1400n^2 + 1400n^2 + 14000n^2 + 14000n^2 + 1400000000000000000000000000000000000$ | $h a = 750, a$ $34\ 000 =$ $68\ 000 =$ $68\ 000 =$ $-\ 68\ 000 =$ $4n - 680 =$ $(n - 20) =$ | d = 100  and  S<br>= $\frac{n}{2}[2(750) + 10]$<br>= $n[1500 + 10]$<br>= $n[1400 + 10]$<br>= $0$<br>= $0$<br>= $0$ | (n-1)100]<br>(0n-100]             |                                | 2 marks for complete correct<br>solution<br>1 mark for correctly<br>substituting into formula |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       | As $n >$                                                                                                                     |                                                                                             | ,                                                                                                                  |                                   |                                | substituting into formula                                                                     |
| ∴ 20 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       | ∴ 20 da                                                                                                                      | ays                                                                                         |                                                                                                                    |                                   |                                |                                                                                               |

|    | c)                                                                                          |                                                         |
|----|---------------------------------------------------------------------------------------------|---------------------------------------------------------|
| H5 | i). As $7.2\%$ p.a. = 0.006 per month                                                       |                                                         |
|    | $A_n = 200\ 000r^n - M(1 + r + r^2 + \cdots + r^{n-1}),$                                    | 3 marks for complete correct solution                   |
|    | $A_{300} = 200\ 000 \times 1.006^{300} - M(1 + 1.006 + 1.006^2 + \dots + 1.006^{299})$      | 2 marks for correct equation                            |
|    | $0 = 200\ 000 \times 1.006^{300} - M(1 + 1.006 + 1.006^2 + \dots + 1.006^{299})$            | for M                                                   |
|    | $\therefore M = 200\ 000 \times 1.006^{300} \div (1 + 1.006 + \dots + 1.006^{299})$         | 1 mark for correct equation                             |
|    | Now, for $1 + 1.006 + + 1.006^{299}$ , $a = 1$ , $r = 1.006$<br>and $n = 300$               | for $A_{300}$                                           |
|    | and $S_n = \frac{a(r^n - 1)}{r - 1}$                                                        |                                                         |
|    | $S_n = \frac{1(1.006^{300} - 1)}{1.006 - 1}$                                                |                                                         |
|    | $\therefore M = 200\ 000 \times 1.006^{300} \div \frac{1(1.006^{300} - 1)}{1.006 - 1}$      |                                                         |
|    | = 1439.177383<br>= 1439.18 (2 dec pl)                                                       |                                                         |
|    | $\therefore$ the repayment is \$1439.18                                                     |                                                         |
| Н5 | ii). Use $M = 200\ 000 \times 1.006^n \div \frac{1(1.006^n - 1)}{1.006 - 1}$ and $M = 2800$ | 2 marks for complete correct solution                   |
|    | $2800 = 200\ 000 \times 1.006^n \times \frac{0.006}{1.006^n - 1}$                           |                                                         |
|    | $2800(1.006^{n} - 1) = 1200 \times 1.006^{n}$                                               | 1 mark for correctly<br>substituting 2800 into equation |
|    | $2800 \times 1.006^{n} - 2800 = 1200 \times 1.006^{n}$                                      | for M                                                   |
|    | $1600 \times 1.006^n = 2800$                                                                |                                                         |
|    | $1.006^n = \frac{2800}{1600}$                                                               |                                                         |
|    | $1.006^n = 1.75$<br>log1.006 <sup>n</sup> = log 1.75                                        |                                                         |
|    | $n \log 1.006 = \log 1.75$<br>$n \log 1.006 = \log 1.75$                                    |                                                         |
|    | $n = \frac{\log 1.75}{\log 1.006}$                                                          |                                                         |
|    | = 93.54882691                                                                               |                                                         |
|    | ∴ repaid after 94 months                                                                    |                                                         |