HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS - ADVANCED

2014 HSC
 HALF YEARLY EXAMINATION

ASSESSMENT TASK 2

Examiners ~ G Huxley, S Hackett, S Faulds, D. Crancher, P. Biczo

General Instructions

- Reading Time -5 minutes.
- Working Time -2 hours.
- Attempt all questions.
- All necessary working should be shown in every question.
- This paper contains six (6) multiple choice questions, and 6 extended response questions, worth 11 marks each. Total $=72$ marks.
- Multiple choice is to be answered on the sheet provided. The extended response questions are to be answered in the booklets provided.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used. Approved templates are optional.
- Each question is to be started in a new booklet.
- This examination paper must NOT be removed from the examination room.
- Write your student number/name on each answer sheet.
\qquad
\qquad

PART A

QUESTION 1

Given $y=\left(5-3 x^{2}\right)^{6}, \quad \frac{d y}{d x}=$?
A. $-6 x\left(5-3 x^{2}\right)^{5}$
B. $-36 x\left(5-3 x^{2}\right)^{5}$
C. $\quad-6\left(5-3 x^{2}\right)^{5}$
D. $-36\left(5-3 x^{2}\right)^{5}$

QUESTION 2

What is the gradient of the normal to the function $y=7 x-6$ at the point where $x=a$?
A. $7 a$
B. $-\frac{a}{7}$
C. $-\frac{1}{7}$
D. $\frac{1}{7}$

QUESTION 3

The quadratic equation in x with roots $2+\sqrt{3}$ and $2-\sqrt{3}$ is
A. $x^{2}-4 x+1=0$
B. $x^{2}+4 x+1=0$
C. $x^{2}-4 x-1=0$
D. $x^{2}+4 x-1=0$

QUESTION 4

A point $\mathrm{P}(x, y)$ moves so that its distance from the point $(0,2)$ is 2 units. The equation of the locus of point P is:
A. $x^{2}=8 y$
B. $x^{2}+(y-2)^{2}=4$
C. $(x-2)^{2}+y^{2}=4$
D. $x^{2}=-8 y$

QUESTION 5

Which of the following could be used to calculate the shaded area above?
A. $\int_{0}^{2}(x-2)^{2} d x$
B. $\int_{0}^{2} 2 x(x-2) d x$
C. $\int_{0}^{2}-2 x(x-2) d x$
D. $\int_{0}^{2}-x(x-2) d x$

QUESTION 6

The fourth term of an arithmetic series is 27 and the seventh term is 12 . What is the common difference?
A: $\quad 42$
B: 13
C. 5
D. -5

PART B:

QUESTION 711 marks Start a SEPARATE booklet.

Consider the function $f(x)=\frac{x-1}{x^{2}}$.
(i) Show that $f^{\prime}(x)=\frac{2-x}{x^{3}}$.
(ii) Find the coordinates of the stationary point on $y=f(x)$ and determine its nature.
(iii) Find the coordinates of P, the only point where $y=f(x)$ meets the x-axis
(iv) Calculate $\quad \lim _{x \rightarrow \infty} f(x)$ 2
(v) Show that the equation of the tangent at P is given by the equation $y=x-1$.
(vi) Find the coordinates of the other point where this tangent meets the curve.

QUESTION 811 marks Start a SEPARATE booklet.

(a) The curve $y=a x^{3}+b x-3$ has a local minimum turning point at ($-1,-4$). Find a and b.
(b) A box in the shape of a square prism is open at one of the square ends. It has a volume of $32 \mathrm{~cm}^{3}$.
The square base has length $x \mathrm{~cm}$ and the box is $h \mathrm{~cm}$ high.

(i) Show that the surface area (A) of the box is given by: $A=x^{2}+\frac{128}{x}$.
(ii) Find the dimensions of the box that has the least surface area.

QUESTION 8 continued

(c)

The diagram shows the graph of a function $y=f(x)$.
(i) For which values of x is the derivative, $f^{\prime}(x)$ positive? $\quad 1$
(ii) What happens to $f^{\prime}(x)$ for large values of x ? 1
(iii) Sketch the graph $y=f^{\prime}(x)$.

QUESTION 911 marks \quad Start a SEPARATE booklet.

(a) If α and β are the two roots of $2 x^{2}-3 x+4=0$
find the value of $\alpha+\beta+\alpha \beta$
(b) Solve for $x: x^{2}+1+\frac{25}{x^{2}+1}=10$.
(Hint: You may choose to use the substitution $X=x^{2}+1$)
2
(c)

The diagram shows a square inscribed in a square of side length 1 unit. The four triangles shown are congruent, with one side of the triangle x units as shown.
(i) Show that the area of the shaded square is given by

$$
A=2 x^{2}-2 x+1
$$

(ii) Without using Calculus, find the minimum value of A.
(d) Find the values of a and b if

$$
20 x-17 \equiv a(x-4)-b(5 x+1)
$$

(e) Find the values of k for which
$x^{2}+2 k x+k+20=0 \quad$ has real roots. 3

QUESTION 10 BEGINS ON THE NEXT PAGE

QUESTION 1011 marks Start a SEPARATE booklet.

(a) Find the co-ordinates of the focus of the parabola shown below.

(b) For the parabola $(x-3)^{2}=-12 y$:
(i) state the co-ordinates of the focus. 1
(ii) state the equation of the directrix $\quad \mathbf{1}$
(iii) sketch the parabola $\mathbf{1}$
(iv) show that a general point $Q(x, y)$ that is equidistant from the focus and the directrix, also lies on the given parabola.
(c) (i) Show that $5 x+2 y=6$ is a focal chord of the parabola $x^{2}=12 y$.
(ii) If $a x+b y=6$ is to be a focal chord of the parabola $x^{2}=12 y$, comment upon the range of possible values for a and b.

QUESTION 1111 marks Start a SEPARATE booklet.

(a) (i) Show that $y=x^{3}+x$ is an odd function.
(ii) Hence or otherwise, evaluate: $\int_{-2}^{2} x^{3}+x d x$
(b) (i) Draw the graph of the function $y=\sqrt{4-x^{2}}$
(ii) Hence or otherwise, evaluate: $\int_{0}^{2} \sqrt{4-x^{2}} d x$
(c) (i) Show that the points of intersection of the curves

$$
\begin{aligned}
& y=2 x-2 \text { and } y=8 x-7-x^{2} \\
& \text { are }(1,0) \text { and }(5,8)
\end{aligned}
$$

$$
2
$$

(ii) Sketch the curves on the same diagram and shade the region enclosed between them. Mark the intercepts on the axes, and the points of intersection of the curves.
(iii) By evaluating an appropriate integral, calculate the area of the shaded region in (ii)

QUESTION 1211 marks Start a SEPARATE booklet.

a) Evaluate $\sum_{k=1}^{4}(-1)^{k} k^{2}$

1
b) Heather decides to swim every day to improve her fitness level.

On the first day she swims 750 metres, and on each day after that she swims 100 metres more than the previous day. That is, she swims 850 metres on the second day, 950 metres on the third day and so on.
(i) Write down a formula for the distance she swims on the nth day.
(ii) How far does she swim on the $10^{\text {th }}$ day?
(iii) What is the total distance she swims in the first 10 days?
(iv) After how many days does the total distance she has swum equal the width of the English Channel, a distance of 34 kilometres?
c) Joe borrows $\$ 200000$ which is to be repaid in equal monthly instalments. The interest rate is 7.2% per annum reducible, calculated monthly.
It can be shown that the amount, $\$ A_{n}$, owing after the nth repayment is given by the formula:

$$
A_{n}=200000 r^{n}-M\left(1+r+r^{2}+\cdots+r^{n-1}\right)
$$

where $r=1.006$ and $\$ M$ is the monthly repayment. (Do NOT show this.)
(i) The minimum monthly repayment is the amount required to repay the loan in 300 instalments.
Find the minimum monthly repayment.
3
(ii) Joe decides to make repayments of \$2800 each month from the start of the loan.
How many months will it take for Joe to repay the loan?

END OF EXAMINATION

HURLSTONE AGRICULTURAL HIGH SCHOOL

2014 HSC
Half Yearly Examination

ADVANCED MATHEMATICS

PART A Answers

1 (A)
B
C) D
2 A
B
C) D
3 (A B C D
4
(A) B
C D
5 A
B
C $\quad \mathrm{D}$
6 (A) B (D)

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

QUESTION 7 - Year 12 Mathematics Half Yearly 2014

Outcomes Addressed in this Question:

P7 determines the derivative of a function through routine application of the rules of differentiation.

SAMPLE SOLUTION

a) (i)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{2} \cdot 1-(x-1) \cdot 2 x}{\left(x^{2}\right)^{2}} \\
& =\frac{x^{2}-2 x^{2}+2 x}{x^{4}} \\
& =\frac{-x^{2}+2 x}{x^{4}} \\
& =\frac{-x+2}{x^{3}} \\
& =\frac{2-x}{x^{3}}
\end{aligned}
$$

a) (ii)

Stationary pt: $f^{\prime}(x)=0 \quad \therefore x=2 \rightarrow y=\frac{1}{4}$
$\begin{array}{llll}x & 1 & 2\end{array}$
$f^{\prime}(x) \quad 1 \quad 0 \quad-\frac{1}{27}$
\therefore Max at $\left(2, \frac{1}{4}\right)$
a) (iii) When $f(x)=0, x=1 \therefore P(1,0)$
a) (iv)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x-1}{x^{2}} & =\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{1}{x^{2}}}{1} \\
& =\frac{0-0}{1} \quad\left(\text { as } x \rightarrow \infty, \frac{1}{x} \rightarrow 0 \text { and } \frac{1}{x^{2}} \rightarrow 0\right) \\
& =0
\end{aligned}
$$

a) (v)

$$
\begin{gathered}
\text { When } \quad x=1, \quad f^{\prime}(x)=\frac{1}{1}=1 \\
\text { Eqn: } y-0=1(x-1) \\
y=x-1
\end{gathered}
$$

a) (vi)

$$
\begin{align*}
& y=x-1-(1) \\
& \text { Solving: } \quad \begin{aligned}
y=\frac{x-1}{x^{2}} & -(2) \\
x-1 & =\frac{x-1}{x^{2}} \\
x^{2}(x-1) & =x-1 \\
x^{2}(x-1)-(x-1) & =0 \\
(x-1)\left(x^{2}-1\right) & =0 \\
(x-1)(x-1)(x+1) & =0 \\
\therefore x=1,1, & -1
\end{aligned} \tag{2}
\end{align*}
$$

Since $P(1,0)$, the other pt is $(-1,-2)$

2 marks - correct stationary point with nature correctly determined 1 marks - substantial progress towards correct solution
Many students chose to use f " (x) to determine the nature of the stationary point, but did not find the second derivative or evaluate it correctly.
A number of students did not find the y coordinate of the point.
1 mark - correct answer

2 marks - correct answer clearly showing how the answer was reached 1 mark - substantial progress towards correct answer

Many students correctly found the limit as zero, but did not provide an explanation of how they arrived at their answer. Some justification was necessary to be awarded the two marks for this question.
1 mark - correct answer clearly showing how the given equation was reached

Most students did this part well. In a "show that" question, steps MUST be shown.
3 marks - correct point obtained with a correct method of solving the equations
2 marks - correct point with an error in the method of solution 1 mark - substantial progress towards correct answer

Students used a wide range of methods to solve these equations - some of which were very complicated. Many of the methods lost a solution, or resulted in a contradiction where $x=1$ was given as a solution but they had divided by $x-1$ to get that solution. Some students neglected to provide the y coordinate.

QUESTION 8 - Year 12 Mathematics Half Yearly 2014

Outcomes Addressed in this Question:
H7 Uses the features of a graph to deduce information about the derivative.

Outcomes Addressed in this Question

P4 Chooses and applies appropriate algebraic and graphical techniques
P5 Understands the concept of a function and the relationship between a function and its graph

Outcome	Solutions
P 5	(a) For $2 x^{2}-3 x+4=0, a=2, b=-3, c=4$ $\begin{aligned} & \alpha \beta=\frac{c}{a}=\frac{4}{2}=2 . \quad \alpha+\beta=\frac{-b}{a}=\frac{3}{2} . \\ & \therefore \alpha+\beta+\alpha \beta=2+\frac{3}{2}=3 \frac{1}{2} . \end{aligned}$ (b) $x^{2}+1+\frac{25}{x^{2}+1}=10$ Let $y=x^{2}+1$, then $y+\frac{25}{y}=10$ $\begin{aligned} & y^{2}-10 y+25=0 \\ & (y-5)^{2}=0 \quad \therefore y=5, \text { and so } x^{2}+1=5 \\ & \therefore x^{2}=4 \quad \text { and } \quad x= \pm 2 . \end{aligned}$

(c) (i) Length of the square $l=$ hypotenuse of a right triangle with shorter sides x and $1-x$.
Area of shaded square $A=I^{2}=x^{2}+(1-x)^{2}$ (Pythagoras)

$$
\begin{aligned}
& \therefore A=x^{2}+1-2 x+x^{2} \\
& \therefore A=2 x^{2}-2 x+1 .
\end{aligned}
$$

(ii) A is a quadratic, whose minimum value occurs on the axis of symmetry. It is a minimum as the co-efficient of x^{2} is positive.
$x=\frac{-b}{2 a}=\frac{2}{4}=\frac{1}{2}$.
When $x=\frac{1}{2}, \quad A=\frac{1}{2}-1+1=\frac{1}{2}$.
\therefore minimum value of A is $\frac{1}{2}$.
P 4
(d) $20 x-17 \equiv a(x-4)-b(5 x+1)$.

$$
\begin{aligned}
& \equiv a x-4 a-5 b x-b \\
& \equiv(a-5 b) x+(-4 a-b)
\end{aligned}
$$

Equating like coefficients, $20=a-5 b \quad[1]$

$$
-17=-4 a-b \quad[2]
$$

$\therefore 80=4 a-20 b \quad 4 \times[1]$
$\therefore 63=-21 b$
$\therefore b=-3$ and substituting in [1], $a=5$.
(e) $x^{2}+2 k x+k+20=0$ has real roots when $\Delta \geq 0$.
$\Delta=b^{2}-4 a c=(2 k)^{2}-4 \cdot 1 \cdot(k+20)$
Solving $4 k^{2}-4 k-80 \geq 0$,

$$
(k+4)(k-5) \geq 0
$$

From the graph $k \leq-4$ and $k \geq 5$.

Marking Guidelines
1 mark : correct answer

2 marks : correct solution

1 mark : substantial progress toward correct solution

1 mark : correct solution

2 marks : correct answer

1 marks : substantial progress toward correct answer

2 marks : correct solution

1 mark : substantial progress toward correct solution

3 marks : correct
answer
2 marks : substantial progress toward correct solution
1 mark : some progress toward correct solution

Outcomes Addressed in this Question
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

(c) (i)

$$
x^{2}=12 y \quad \text { Focus }(0,3)
$$

Sub. in $5 x+2 y=6$

$$
0+6=6
$$

True
$\therefore 5 x+2 y=6$ is a focal chord.
(ii)

If $a x+b y=6$ is a focal chord it passes through $(0,3)$
ie. $a .0+b .3=6$
$b=2$
$\therefore a$ can be any value, and $b=2$ for line to be a focal chord.

Correct solution stating co-ordinates of focus and showing correct substitution. 1 mark
Substantial progress towards correct solution.

2 marks

Correct solution
1 mark
Substantial progress towards correct solution.
Multiple Choice:
1.A 2C
3A
5C
6D

Question 11

Outcome Addressed in this Question

H8 Uses techniques of integration to calculate areas and volumes.

Solutions

(a) (i)

H8

$$
\begin{aligned}
f(-x)= & (-x)^{3}+(-x) \\
& =-x^{3}-x \\
& =-\left(x^{3}+x\right) \\
\therefore f(-x) & =-f(x)
\end{aligned}
$$

So $f(x)$ is an odd function
(b) (i)

$$
\therefore \int_{-2}^{2} x^{3}+x d x=0
$$

(ii) Since the function is odd, $\int_{-a}^{a} f(x) d x=0$

H8 (ii) Integral will have the same value as the quarter circle, radius 2 units.

$$
\therefore \int_{0}^{2} \sqrt{4-x^{2}} d x=\pi
$$

(c) (i)

$$
\begin{gathered}
2 x-2=8 x-7 x-x^{2} \\
x^{2}-6 x+5=0 \\
(x-5)(x-1)=0 \\
x=1,5
\end{gathered}
$$

When $x=1, y=2(1)-2=0$ Hence (1, 0)
When $x=5, y=2(5)-2=8$
Hence (5, 8)

Marking Guidelines

(a) (i) $\mathbf{1}$ mark: correct answer
(ii) $\mathbf{1}$ mark: correct answer
(b) (i) $\mathbf{1}$ mark: correct answer (Diagrams should include intersections on axes, and the function should be a neat semicircle.)
(ii) $\mathbf{1}$ mark: correct answer
(c) (i)

2 marks: complete correct solution, including substitution.
1 mark: Partially correct solution.
("Show that" questions require full working)
H8

Outcome Addressed in this Question

H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

Solutions

Marking Guidelines
12.

H5
a)

$$
\begin{aligned}
\sum_{k=1}^{4}(-1)^{k} k^{2} & =(-1)^{1} \cdot(1)^{2}+(-1)^{2} \cdot(2)^{2}+(-1)^{3} \cdot(3)^{2}+(-1)^{4} \cdot(4)^{2} \\
& =-1+4-9+16 \\
& =10
\end{aligned}
$$

b)
iii). Using $S_{n}=\frac{\mathrm{n}}{2}[2 a+(n-1) d]$ with $a=750, d=100$ and $n=10$

$$
\begin{aligned}
S_{10} & =\frac{10}{2}[2(750)+(10-1) 100] \\
& =5(1500+900) \\
& =12000
\end{aligned}
$$

\therefore distance is 12000 m or 12 km

H5
iv).

$$
\text { Using } S_{n}=\frac{\mathrm{n}}{2}[2 a+(n-1) d]
$$

$$
\begin{aligned}
T_{n} & =100 n+650 \\
T_{10} & =100 \times 10+650 \\
& =1650
\end{aligned}
$$

$$
\text { with } a=750, d=100 \text { and } S_{n}=34000
$$

$34000=\frac{\mathrm{n}}{2}[2(750)+(n-1) 100]$
$68000=n[1500+100 n-100]$
$68000=n[1400+100 n]$
$100 n^{2}+1400 n-68000=0$
$n^{2}+14 n-680=0$
$(n+34)(n-20)=0$

$$
n=-34,20
$$

As $n>0$, then $n=20$

1 mark for correctly substituting into formula
i). As 7.2% p.a. $=0.006$ per month

$$
A_{n}=200000 r^{n}-M\left(1+r+r^{2}+\cdots+r^{n-1}\right),
$$

$A_{300}=200000 \times 1.006^{300}-M\left(1+1.006+1.006^{2}+\cdots+1.006^{299}\right)$

$$
0=200000 \times 1.006^{300}-M\left(1+1.006+1.006^{2}+\cdots+1.006^{299}\right)
$$

$$
\therefore M=200000 \times 1.006^{300} \div\left(1+1.006+\ldots+1.006^{299}\right)
$$

Now, for $1+1.006+\ldots+1.006^{299}, a=1, r=1.006$ and $n=300$
and $\quad S_{n}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}$

$$
S_{n}=\frac{1\left(1.006^{300}-1\right)}{1.006-1}
$$

$$
\begin{aligned}
\therefore M & =200000 \times 1.006^{300} \div \frac{1\left(1.006^{300}-1\right)}{1.006-1} \\
& =1439.177383 \\
& =1439.18 \quad(2 \mathrm{dec} \mathrm{pl})
\end{aligned}
$$

\therefore the repayment is $\$ 1439.18$

H5
ii). Use $M=200000 \times 1.006^{n} \div \frac{1\left(1.006^{n}-1\right)}{1.006-1}$ and $M=2800$

$$
\begin{aligned}
2800 & =200000 \times 1.006^{n} \times \frac{0.006}{1.006^{n}-1} \\
2800\left(1.006^{n}-1\right) & =1200 \times 1.006^{n} \\
2800 \times 1.006^{n}-2800 & =1200 \times 1.006^{n} \\
1600 \times 1.006^{n} & =2800 \\
1.006^{n} & =\frac{2800}{1600} \\
1.006^{n} & =1.75 \\
\log 1.006^{n} & =\log 1.75 \\
n \log 1.006 & =\log 1.75 \\
n & =\frac{\log 1.75}{\log 1.006} \\
& =93.54882691
\end{aligned}
$$

\therefore repaid after 94 months

3 marks for complete correct solution

2 marks for correct equation for M

1 mark for correct equation

for A_{300}

2 marks for complete correct solution

1 mark for correctly substituting 2800 into equation for M

