Year 12 Term 1 Assessment 2005 Mathematics (2 unit)

Qu	estion 1: (12 marks)	Marks
(a)) Find:	
	(i) $\int \left(x^2 + \frac{8}{x}\right) dx$.	2
	(ii) $\int \sin 3x dx$.	2
	(iii) $\int \left(e^{6x} + 4x\sqrt{x} \right) dx.$	2
(b)	Evaluate:	

(i)
$$\int_{-2}^{4} \frac{6}{3x+8} dx$$
.

(ii)
$$\int_{0}^{\pi} \sec^{2}\left(\frac{x}{3}\right) dx.$$
 2

(c) Find the value of x if 2x-1, x and 3x+2 are successive terms in an Arithmetic 2 Progression.

Question 2: (12 marks)

(a)	On a inequ	number plane clearly indicate the region defined by the intersection of the nalities $y \le 2 - x$ and $x^2 + y^2 \ge 16$.	4
(b)	Find	the 100 th term in the Arithmetic Progression { -29, -25, -21, }.	3
(c)	(i)	Sketch the curve $y = x^3 - 4x^2$ clearly showing any intercepts with the coordinate axes. (You are not required to show the position of the turning points)	2
	(ii)	Find the area bounded by the curve $y = x^3 - 4x^2$ and the x-axis.	3

Question 3: (12 marks)

(a) Intervals *AB* and *PQ* are parallel and XY = XZ.

Copy the diagram onto your answer sheet and prove that $\angle AXY$ and $\angle XZQ$ are supplementary.

- (b) Does a Geometric Progression exist with a first term equal to 9 and a limiting sum equal to 15? Justify your answer.
- (c) (i) Find the points of intersection of the curves y = 4 x and $y = x^2 3x 4$. 3
 - (ii) Find the area bounded by the curves y = 4 x and $y = x^2 3x 4$.

Question 4: (12 marks)

- (a) (i) Sketch the curve $y = 2 e^x$ clearly showing any intercepts with the coordinate 2 axes.
 - (ii) Find the volume of the solid formed when the area bounded by the curve $y = 2 e^x$ and the coordinate axes is rotated one revolution about the *x*-axis. Write your answer in the form $\pi(A + B \log_e 2)$ where *A* and *B* are rational numbers.
- (b) Find the sum of the first 5 terms of the Geometric Progression {32, 24, 18, ...}.
 Write your answer as a mixed numeral in simplest form.
- (c) *ABCD* is a rhombus whose diagonals intersect at *X*. *AP* is perpendicular to *BC* and intersects diagonal *BD* at *Q*.

Copy the diagram onto your answer sheet and prove that $\angle PAC = \angle ADB$.

Marks

3

3

4

(a)	(i)	Sketch the curve $y = 8 - x^3$ clearly showing any intercepts with the coordinate axes.	2
	(ii)	Find the volume of the solid formed when the area bounded by $y = 8 - x^3$ and the positive coordinate axes is rotated one revolution about the <i>y</i> -axis.	3
(b)	(i)	Peter Perfect sets up a bank account to save for a holiday. He decides to deposit \$100 in the account at the start of each month commencing on February 1 st 2005. Interest at a rate of 3% p.a. is paid at the end of each month on the balance in the account.	
		(α) Prove that the value A_n of the account at the end of the n^{th} month is given by the formula $A_n = 40100(1.0025^n - 1)$.	2
		(β) How many months will Peter need to contribute to the account if he needs \$3000 for his holiday? Give your answer correct to the nearest month.	2
	(ii)	In part (i) Peter decides to increase each monthly deposit by 2% with the first increase in March 2005.	
		(α) Find a formula for the value B_n of the account at the end of the n^{th} month.	2
		(β) Find the value of the account at the end of 24 months. Give your answer correct to the nearest dollar.	1

THIS IS THE END OF THE EXAMINATION QUESTIONS \bullet

Pattern number	<i>P</i> ₁	P 2	P 3
Button Pattern	•••		
Number of buttons used	5	8	11

- (i) Find the number of buttons needed for the 10^{th} pattern (P_{10}).
- (ii) What is the greatest number of different stages can be illustrated using 1000 buttons?
- (i) The area bounded by the curve $y = \log_3 x$, the coordinate axes and the line y = 2 is rotated one revolution about the *y*-axis. Find the volume of the solid formed. You may assume that $a^p = e^{p \ln a}$

(i)	On the same set of axes, sketch the curves $y = 2 \sin x$ and $y = \sin 2x$ for	2
	$0 \le x \le \pi$.	
(ii)	Find the area bounded by $y = 2\sin x$ and $y = \sin 2x$ for $0 \le x \le \pi$.	2

(i) Find the volume of the solid formed when the area bounded by the curve $2 = (x-2)^2$ and the positive coordinate axes is rotated one revolution about the *y*-axis.

4