Year 12 Term 1 Assessment 2005
 Mathematics (2 unit)

Question 1: (12 marks)
(a) Find:
(i) $\int\left(x^{2}+\frac{8}{x}\right) d x$.
(ii) $\int \sin 3 x d x$.
(iii) $\int\left(e^{6 x}+4 x \sqrt{x}\right) d x$.
(b) Evaluate:
(i) $\int_{-2}^{4} \frac{6}{3 x+8} d x$.
(ii) $\int_{0}^{\pi} \sec ^{2}\left(\frac{x}{3}\right) d x$.
(c) Find the value of x if $2 x-1, x$ and $3 x+2$ are successive terms in an Arithmetic Progression.

Question 2: (12 marks)

(a) On a number plane clearly indicate the region defined by the intersection of the inequalities $y \leq 2-x$ and $x^{2}+y^{2} \geq 16$.
(b) Find the $100^{\text {th }}$ term in the Arithmetic Progression $\{-29,-25,-21, \ldots\}$.
(c) (i) Sketch the curve $y=x^{3}-4 x^{2}$ clearly showing any intercepts with the coordinate axes.
(You are not required to show the position of the turning points)
(ii) Find the area bounded by the curve $y=x^{3}-4 x^{2}$ and the x-axis.
(a) Intervals $A B$ and $P Q$ are parallel and $X Y=X Z$.

Copy the diagram onto your answer sheet and prove that $\angle A X Y$ and $\angle X Z Q$ are supplementary.

(b) Does a Geometric Progression exist with a first term equal to 9 and a limiting sum equal to 15 ? Justify your answer.
(c) (i) Find the points of intersection of the curves $y=4-x$ and $y=x^{2}-3 x-4$.
(ii) Find the area bounded by the curves $y=4-x$ and $y=x^{2}-3 x-4$.

Question 4: (12 marks)

(a) (i) Sketch the curve $y=2-e^{x}$ clearly showing any intercepts with the coordinate axes.
(ii) Find the volume of the solid formed when the area bounded by the curve $y=2-e^{x}$ and the coordinate axes is rotated one revolution about the x-axis. Write your answer in the form $\pi\left(A+B \log _{e} 2\right)$ where A and B are rational numbers.
(b) Find the sum of the first 5 terms of the Geometric Progression $\{32,24,18, \ldots\}$.

Write your answer as a mixed numeral in simplest form.
(c) $A B C D$ is a rhombus whose diagonals intersect at X. $A P$ is perpendicular to $B C$ and intersects diagonal $B D$ at Q.

Copy the diagram onto your answer sheet and prove that $\angle P A C=\angle A D B$.

(a) (i) Sketch the curve $y=8-x^{3}$ clearly showing any intercepts with the coordinate axes.
(ii) Find the volume of the solid formed when the area bounded by $y=8-x^{3}$ and the positive coordinate axes is rotated one revolution about the y-axis.
(b) (i) Peter Perfect sets up a bank account to save for a holiday. He decides to deposit $\$ 100$ in the account at the start of each month commencing on February $1^{\text {st }}$ 2005. Interest at a rate of 3% p.a. is paid at the end of each month on the balance in the account.
(α) Prove that the value $\$ A_{n}$ of the account at the end of the $n^{\text {th }}$ month is given by the formula $A_{n}=40100\left(1.0025^{n}-1\right)$.
(β) How many months will Peter need to contribute to the account if he needs $\$ 3000$ for his holiday? Give your answer correct to the nearest month.
(ii) In part (i) Peter decides to increase each monthly deposit by 2% with the first increase in March 2005.
(α) Find a formula for the value $\$ B_{n}$ of the account at the end of the $n^{\text {th }}$ month.
(β) Find the value of the account at the end of 24 months. Give your answer correct to the nearest dollar.

- THIS IS THE END OF THE EXAMINATION QUESTIONS

The table below shows the first three stages in a pattern constructed using buttons.

Pattern number	P_{1}	P_{2}	P_{3}
Button Pattern			
Number of buttons used	5	8	11

(i) Find the number of buttons needed for the $10^{\text {th }}$ pattern $\left(P_{10}\right)$.
(ii) What is the greatest number of different stages can be illustrated using 1000 buttons?
(i) The area bounded by the curve $y=\log _{3} x$, the coordinate axes and the line $y=2$ is rotated one revolution about the y-axis. Find the volume of the solid formed. You may assume that $a^{p}=e^{p \ln a}$
(i) On the same set of axes, sketch the curves $y=2 \sin x$ and $y=\sin 2 x$ for $0 \leq x \leq \pi$.
(ii) Find the area bounded by $y=2 \sin x$ and $y=\sin 2 x$ for $0 \leq x \leq \pi$.
(i) Find the volume of the solid formed when the area bounded by the curve $y=(x-2)^{2}$ and the positive coordinate axes is rotated one revolution about the y-axis.

