Question 1 (15 Marks) Marks

Integrate with respect to *x*: (a)

(i)
$$x^2 - \sqrt{x}$$
 2

(ii)
$$\sin 8x$$
 2
(iii) $\frac{6}{1-3x}$ 2

(b) Evaluate:

(i)
$$\int_0^3 e^{2x+1} dx$$
 2

(ii)
$$\int_0^\pi \cos\left(\frac{1}{4}x\right) dx$$
 2

(iii)
$$\int_{1}^{4} \frac{2x^2 - 3}{x} dx$$
 2

(c) (i) Evaluate
$$\sum_{r=1}^{5} r^2$$
 1

Find the sum of the first 200 terms of the arithmetic series: 3 + 7 + 11 + 15 + ...(ii) 2

Question 2 (15 Marks)

(a) Find:

(i)
$$\int (3x-2)^8 dx$$

(ii)
$$\int \frac{e}{5+e^{3x}} dx$$

In $\triangle ABC$, $AP \perp BC$ and $BQ \perp AC$. (c)

~

- (i) Prove that $\Delta AQR \parallel \mid \Delta BPR$.
- (ii) If AQ = 12, RQ = 9 and RP = 6, find the area of $\triangle ABR$.

2

Marks

(a)	The area bounded by the curve $y = \sqrt{4-x}$ and the coordinate axes is rotated one revolution about the y-axis. Find the volume of the solid formed.		
(b)	(i)	Show that the curves $y = \cos x$ and $y = \sin 2x$ meet at a point where $x = \frac{\pi}{6}$.	2
	(ii)	On the same set of axes draw a neat <u>half page</u> diagram of the curves $y = \cos x$ and $y = \sin 2x$ for $0 \le x \le \frac{\pi}{2}$ clearly showing their points of intersection.	2
	(iii)	Find the area bounded by the above curves for $0 \le x \le \frac{\pi}{2}$.	3
(c)	Mr. Green sets up a fund to pay for a future holiday by paying \$500 into the fund at the start of each <u>month</u> . The fund pays 0.5% interest at the end of each <u>month</u> on the balance of money in the fund.		
	(i)	Find the value of the fund at the end of the first year.	2
	(ii)	How long must Mr. Green pay into the fund if he needs \$20000 for his holiday. Give your answer to the nearest month.	3
<u>Que</u>	estion 4	<u>4</u> (15 Marks)	Marks
(a)	An a inner large	rtist decides to make a design showing a sequence of concentric rope circles. The r most circle has a radius of 40 cm and each extra circle has a radius that is 10 cm er than the radius of the previous circle.	
	(i)	Find the amount of rope used to make the tenth circle. Give your answer to the nearest <u>metre</u> .	2
	(ii)	If the artist has 2 km of rope, how many complete circles will be in the design?	3
(b)	(i)	Given that $f(x) = \ln(\cos 2x)$, find $f'(x)$.	1
	(ii)	Prove that the equation of the tangent to $y = \tan 2x$ at the point $P(\frac{\pi}{8}, 1)$ has the equation $y = 4x + 1 - \frac{\pi}{2}$.	3
	(iii)	Find the coordinates of Q, the point where the tangent at P crosses the x-axis.	1
	(iv)	On a neat <u>half page</u> diagram, sketch the curve $y = \tan 2x$ for $0 \le x \le \frac{\pi}{4}$ and the tangent at <i>P</i> .	2
	(v)	Find the area bounded by the curve $y = \tan 2x$, the tangent at <i>P</i> and the <i>x</i> -axis. Express your answer in the form $a + b \ln(2)$, where <i>a</i> and <i>b</i> are rational numbers.	3

This is the end of the Examination Paper

SOLUTIONS

Question 1 (15 Marks) Marks Integrate with respect to *x*: (a) (i) $\frac{1}{3}x^3 - \frac{2}{3}x\sqrt{x} + c$ 2 each part = 1 mark - 1 for no "c" only once in part (a) $\cos 8x = 1$ mark (ii) $-\frac{1}{8}\cos 8x + c$ 2 -1/8 = 1 mark (iii) $-2\ln(1-3x)+c$ or $-2\ln|1-3x|+c$ $\ln(1-3x) = 1$ mark 2 -2 = 1 mark Evaluate: (b) (i) $\int_{0}^{3} e^{2x+1} dx = \left[\frac{1}{2}e^{2x+1}\right]_{0}^{3}$ primitive = 1 mark 2 $=\frac{1}{2}(e^{7}-e^{1})$ evaluation = 1 mark(ii) $\int_0^{\pi} \cos(\frac{1}{4}x) dx = [4\sin(\frac{1}{4}x)]_0^{\pi}$ primitive = 1 mark 2 $=4(\sin(\frac{\pi}{4})-\sin 0)$ $=4 \times \frac{1}{\sqrt{2}} - 0$ evaluation = 1 mark $=2\sqrt{2}$ (iii) $\int_{1}^{4} \frac{2x^2 - 3}{x} dx = \int_{1}^{4} \left(2x - \frac{3}{x}\right) dx$ 2 $= \left[x^2 - 3 \ln x \right]^4$ primitive = 1 mark $=(16-3\ln 4) - (1-3\ln 1)$ $= 15 - 3 \ln 4$ evaluation = 1 mark(i) $\sum_{r=1}^{5} r^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$ accept correct answer with no working 1 (c) = 55(ii) n = 200, a = 3, d = 42 $S_{200} = \frac{200}{2} \{2 \times 3 + 199 \times 4\}$ sub. into correct formula = 1 mark= 80200correct sum = 1 mark

Question 2 (15 Marks)

Marks

$\langle \cdot \rangle$	
In $\Delta AQR \parallel \Delta BPR$	3
$A\hat{Q}R = B\hat{P}R \text{(both 90°)}$ $A\hat{R}Q = B\hat{R}P \left(\begin{array}{c} \text{vertically opposite} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	angle pairs (= 1 mark each) = 2 marks
(angles are equal) $\therefore \Delta A \hat{Q} R \parallel \Delta B \hat{P} R (equiangular)$	test = 1 mark
(ii) $BR \times AO$	
Area $\triangle ABR = \frac{BR^2 R}{2}$ $\frac{BP}{12} = \frac{6}{9}$ (ratio of corresponding sides in similar triangles are equal BP = 8 $BR^2 = 8^2 + 6^2$ (Pythagoras' Theorem) BR = 10	3 calculating 2 needed lengths (= 1 mark each) = 2 marks several pairs of sides and various triangle combinations can be used to find the required area
Area $= \frac{10 \times 12}{2} u^2$ $= 60 u^2$	

3

2

2

(iii)
$$A = \int_{N_{c}}^{N_{c}} (\sin 2x - \cos x) dx$$

 $= [-\frac{1}{2} \cos 2x - \sin x]_{N_{c}}^{N_{c}}$
 $= (-\frac{1}{2} \cos x - \sin (\frac{x}{2})) - (-\frac{1}{2} \cos (\frac{2x}{6}) - \sin (\frac{5}{6}))$
 $= \frac{1}{4}$
 $\therefore \text{ Area } = \frac{1}{4} u^{2}$
(c) (i) Let value of fund at end of nth month =
 SA_{n}
 $A_{1} = 500 \times 1.005$
 $A_{2} = (A_{1} \times 1.005 + 500) \times 1.005$
 $= 500(1.005^{12} + 1.005^{11} + ... + 1.005)$
 $= 500 \times 1.005 \frac{(1.005^{12} - 1)}{1.005 - 1}$
 $= 6167.78$
Value $= 86167.78$
(ii) $A_{n} = 500(1.005^{n} + 1.005^{n-1} + + 1.005)$
 $= 500 \times 1.005 \frac{(1.005^{n} - 1)}{0.005}$
 $= 100500(1.005^{n} - 1)$
 $\therefore 20000 = 100500(1.005^{n} - 1)$
 $1.005^{n} = \frac{2}{301}$
 $n = \frac{\ln(\frac{2}{301})}{\ln(1.005)}$
 $n = \frac{\ln(\frac{2}{301})}{\ln(1.005)}$
 $n = \frac{\ln(\frac{2}{301})}{\ln(1.005)}$
 $n = 0.0050(1.005 + 0.005)$
 $n = 100500(1.005^{n} - 1)$
 $n = \frac{\ln(\frac{2}{301})}{\ln(1.005)}$
 $n = \frac{\ln(\frac{2}{301})}{\ln(1.005)}$
 $n = 0.0050(1.005 + 0.005)$
 $n = 10050(1.005^{n} - 1)$
 $n = \frac{\ln(\frac{2}{301})}{\ln(1.005)}$
 $n = 0.0050(1.005 + 0.005)$
 $n = 0.0050(1.005 + 0.005)$
 $n = 10050(1.005 + 0.005)$
 $n = 10050(1.0$

Question 4 (15 Marks)

Marks

(a)	(i)	circumferences: $\{80\pi, 100\pi, 120\pi,\}$		2
		$a = 80\pi, d = 20\pi$ $T_{10} = 80\pi + 9 \times 20\pi$ $= 260\pi$	indication of correct " a " and " d " = 1 mark	
		Length = $260\pi \ cm$	evaluate length = 1 mark (using their " <i>a</i> " and " <i>d</i> ")	
		$\approx 816.81 cm$ $= 8m (to nearest metre)$	correct decimal approx. = 1 mark	
	(ii)	$S_{n} = \frac{n}{2} \{ 2 \times 80\pi + (n-1) \times 20\pi \}$ when $S_{n} = 200000$	sum formula with substitution = 1 mark	3
		when $S_n = 200000$ $\frac{n}{2} \{2 \times 80\pi + (n-1) \times 20\pi\} = 200000$		
		$\frac{2}{\pi n^2 + 7\pi n - 20000 = 0}$	simplified quadratic equation = 1 mark	
		$n = \frac{-7\pi \pm \sqrt{80049\pi}}{2\pi}$ $n \approx -83.2 \text{ or } 76.3$		
		but $n > 0$ \therefore no. completecircles = 76	correct approximation = 1 mark	
(b)	(i)	$f(x) = \ln(\cos 2x)$		1
		$f'(x) = \frac{-2\sin 2x}{\cos 2x}$ $= -2\tan 2x$		
	(ii)	$y = \tan 2x$ $y' = 2\sec^2 2x$	derivative = 1 mark	3
		when $x = \frac{\pi}{8}$ $y' = 2 \sec^2(\frac{\pi}{4})$ $2(\sqrt{2})^2$		
		$= 2(\sqrt{2})$ $= 4$ tangent is : $v - 1 - 4(r - \pi)$	gradient = 1 mark	
		$y - 1 = 4x - \frac{\pi}{2}$		
	(:::)	$y = 4x + 1 - \frac{\pi}{2}$	tangent equation = 1 mark	1
	(111)	at Q , $y = 0$ $\therefore 4x + 1 - \frac{\pi}{2} = 0$		I
		$x = \frac{\pi}{8} - \frac{1}{4}$		
		$Q \operatorname{is}\left(\frac{\pi}{8} - \frac{1}{4}, 0\right)$		
			•	

This is the end of the Examination Paper