(a) Integrate with respect to x :
(i) $x^{2}-\sqrt{x}$
(ii) $\sin 8 x$
(iii) $\frac{6}{1-3 x}$
(b) Evaluate:
(i) $\int_{0}^{3} e^{2 x+1} d x$
(ii) $\int_{0}^{\pi} \cos \left(\frac{1}{4} x\right) d x$
(iii) $\int_{1}^{4} \frac{2 x^{2}-3}{x} d x$
(c) (i) Evaluate $\sum_{r=1}^{5} r^{2}$
(ii) Find the sum of the first 200 terms of the arithmetic series: $3+7+11+15+\ldots$

Question 2 (15 Marks)

(a) Find:
(i) $\int(3 x-2)^{8} d x$

2
(ii) $\int \frac{e^{3 x}}{5+e^{3 x}} d x$
(b) (i) Sketch the curve $y=6 x-x^{2}$. Clearly show its intercepts with the coordinate axes.
(ii) Find the area bounded by the curve $y=6 x-x^{2}$ and the x-axis.
(c) In $\triangle A B C, A P \perp B C$ and $B Q \perp A C$.
(i) Prove that $\triangle A Q R \| \Delta B P R$.
(ii) If $A Q=12, R Q=9$ and $R P=6$, find the area of $\triangle A B R$.

(a) The area bounded by the curve $y=\sqrt{4-x}$ and the coordinate axes is rotated one revolution about the y-axis. Find the volume of the solid formed.
(b) (i) Show that the curves $y=\cos x$ and $y=\sin 2 x$ meet at a point where $x=\frac{\pi}{6}$.
(ii) On the same set of axes draw a neat half page diagram of the curves $y=\cos x$ and $y=\sin 2 x$ for $0 \leq x \leq \frac{\pi}{2}$ clearly showing their points of intersection.
(iii) Find the area bounded by the above curves for $0 \leq x \leq \frac{\pi}{2}$.
(c) Mr. Green sets up a fund to pay for a future holiday by paying $\$ 500$ into the fund at the start of each month. The fund pays 0.5% interest at the end of each month on the balance of money in the fund.
(i) Find the value of the fund at the end of the first year.
(ii) How long must Mr. Green pay into the fund if he needs $\$ 20000$ for his holiday. Give your answer to the nearest month.

Question 4 (15 Marks)
(a) An artist decides to make a design showing a sequence of concentric rope circles. The inner most circle has a radius of 40 cm and each extra circle has a radius that is 10 cm larger than the radius of the previous circle.
(i) Find the amount of rope used to make the tenth circle. Give your answer to the nearest metre.
(ii) If the artist has 2 km of rope, how many complete circles will be in the design?
(b) (i) Given that $f(x)=\ln (\cos 2 x)$, find $f^{\prime}(x)$.
(ii) Prove that the equation of the tangent to $y=\tan 2 x$ at the point $P\left(\frac{\pi}{8}, 1\right)$ has the equation $y=4 x+1-\frac{\pi}{2}$.
(iii) Find the coordinates of Q, the point where the tangent at P crosses the x-axis.
(iv) On a neat half page diagram, sketch the curve $y=\tan 2 x$ for $0 \leq x \leq \frac{\pi}{4}$ and the tangent at P.
(v) Find the area bounded by the curve $y=\tan 2 x$, the tangent at P and the x-axis. Express your answer in the form $a+b \ln (2)$, where a and b are rational numbers.

This is the end of the Examination Paper

SOLUTIONS

Question 1 (15 Marks)
(a) Integrate with respect to x :
(i) $\frac{1}{3} x^{3}-\frac{2}{3} x \sqrt{x}+c$
(ii) $-\frac{1}{8} \cos 8 x+c$
(iii) $-2 \ln (1-3 x)+c$ or $-2 \ln |1-3 x|+c$

$$
\begin{array}{|ll}
\text { each part = } 1 \text { mark } & \mathbf{2} \\
-1 \text { for no "c" only once in part (a) } & \\
\cos 8 x=1 \text { mark } & \mathbf{2} \\
-1 / 8 \ldots \ldots=1 \text { mark } & \\
\ln (1-3 x)=1 \text { mark } & \mathbf{2} \\
-2 \ldots . .=1 \text { mark } &
\end{array}
$$

primitive $=1$ mark
evaluation $=1$ mark
primitive $=1$ mark
evaluation $=1$ mark
primitive $=1$ mark
evaluation = 1 mark
accept correct answer with no working
sub. into correct formula $=1$ mark
correct sum $=1$ mark
(a) Find:
(i) $\int(3 x-2)^{8} d x=\frac{1}{27}(3 x-2)^{9}+c$
(ii) $\int \frac{e^{3 x}}{5+e^{3 x}} d x=\frac{1}{3} \ln \left(5+e^{3 x}\right)+c$

(c) In $\triangle A B C, A P \perp B C$ and $B Q \perp A C$.
(i)

In $\triangle A Q R||\mid A B P R$
$A \hat{Q} R=B \hat{P} R \quad$ (both $\left.90^{\circ}\right)$
$A \hat{R} Q=B \hat{R} P \quad\binom{$ vertically opposite }{ angles are equal }
$\therefore \Delta A \hat{Q} R \mid \| \Delta B \hat{P} R \quad$ (equiangular)
(ii)

Area $\triangle A B R=\frac{B R \times A Q}{2}$
$\frac{B P}{12}=\frac{6}{9}\left(\begin{array}{l}\text { ratio of corresponding } \\ \text { sides in similar triangles } \\ \text { are equal }\end{array}\right)$
$B P=8$
$B R^{2}=8^{2}+6^{2}$ (Pythagoras' Theorem)
$B R=10$
Area $=\frac{10 \times 12}{2} u^{2}$
$=60 u^{2}$
(a) $\quad V=\pi \int_{0}^{2} x^{2} d y$ where $y=\sqrt{4-x}$

$$
\begin{aligned}
& y^{2}=4-x \\
& x=4-y^{2}
\end{aligned}
$$

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left(4-y^{2}\right)^{2} d y \\
& =\pi \int_{0}^{2}\left(16-8 y^{2}+y^{4}\right) d y \\
& =\pi\left[16 y-\frac{8}{3} y^{3}+\frac{1}{5} y^{5}\right]_{0}^{2} \\
& =\pi\left\{\left(16 \times 2-\frac{8}{3} \times 8+\frac{1}{5} \times 32\right)-0\right\} \\
& =\frac{256 \pi}{15}
\end{aligned}
$$

\therefore Volume $=\frac{256 \pi}{15} u^{3}$
(b) (i) when $x=\frac{\pi}{6} \quad \cos x=\cos \frac{\pi}{6}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2} \\
\sin 2 x & =\sin \frac{2 \pi}{6} \\
& =\sin \frac{\pi}{3} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

\therefore both curves meet at $\left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right)$
(ii)

1 mark for each curve no penalty if domain extends beyond $\frac{\pi}{2}$ no penalty for missing intersection point
(iii)

$$
\begin{aligned}
A & =\int_{\pi / 6}^{\pi / 2}(\sin 2 x-\cos x) d x \\
& =\left[-\frac{1}{2} \cos 2 x-\sin x\right]_{\pi / 6}^{\pi / 2} \\
& =\left(-\frac{1}{2} \cos \pi-\sin \left(\frac{\pi}{2}\right)\right)-\left(-\frac{1}{2} \cos \left(\frac{2 \pi}{6}\right)-\sin \left(\frac{\pi}{6}\right)\right) \\
& =\frac{1}{4}
\end{aligned}
$$

\therefore Area $=\frac{1}{4} u^{2}$
(c) (i) Let value of fund at end of $\mathrm{n}^{\text {th }}$ month $=$ $\$ A_{\mathrm{n}}$

$$
\begin{aligned}
& A_{1}=500 \times 1.005 \\
& A_{2}=\left(A_{1} \times 1.005+500\right) \times 1.005 \\
&=500\left(1.005^{2}+1.005\right) \\
& \vdots \\
& \vdots \\
& A_{12}=500\left(1.005^{12}+1.005^{11}+\ldots+1.005\right) \\
&=500 \times 1.005 \frac{\left(1.005^{12}-1\right)}{1.005-1} \\
&=6167.78
\end{aligned}
$$

Value $=\$ 6167.78$
(ii) $\quad A_{n}=500\left(1.005^{n}+1.005^{n-1}+\ldots+1.005\right)$
$=500 \times 1.005 \frac{\left(1.005^{n}-1\right)}{0.005}$
$=100500\left(1.005^{n}-1\right)$
$\therefore 20000=100500\left(1.005^{n}-1\right)$
$1.005^{n}=\frac{241}{201}$
$n \ln (1.005)=\ln \left(\frac{241}{201}\right)$
$n=\frac{\ln \left(\frac{241}{201}\right)}{\ln (1.005)}$
≈ 36.39
no. months $=36$
integral $=1$ mark
integration $=1 \mathrm{mark}$
evaluation = 1 mark no penalty for missing units
correct expression $=1$ mark
evaluation of sum $=1$ mark
correct general expression $=1$ mark
simplified equation $=1$ mark
solve equation = 1 mark (by trial and error or logs) accept 37 months
(a) (i) circumferences: $\{80 \pi, 100 \pi, 120 \pi, \ldots\}$

$$
\begin{aligned}
a & =80 \pi, d=20 \pi \\
T_{10} & =80 \pi+9 \times 20 \pi \\
& =260 \pi
\end{aligned}
$$

Length $=260 \pi \mathrm{~cm}$

$$
\begin{aligned}
& \approx 816.81 \mathrm{~cm} \\
& =8 \mathrm{~m}(\text { to nearest metre })
\end{aligned}
$$

(ii) $\quad S_{n}=\frac{n}{2}\{2 \times 80 \pi+(n-1) \times 20 \pi\}$
when $S_{n}=200000$
$\frac{n}{2}\{2 \times 80 \pi+(n-1) \times 20 \pi\}=200000$
$\pi n^{2}+7 \pi n-20000=0$
$n=\frac{-7 \pi \pm \sqrt{80049 \pi}}{2 \pi}$
$n \approx-83.2$ or 76.3
but $n>0$
\therefore no. completecircles $=76$
(b) (i) $f(x)=\ln (\cos 2 x)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-2 \sin 2 x}{\cos 2 x} \\
& =-2 \tan 2 x
\end{aligned}
$$

(ii) $y=\tan 2 x$
$y^{\prime}=2 \sec ^{2} 2 x$
when $x=\frac{\pi}{8} \quad y^{\prime}=2 \sec ^{2}\left(\frac{\pi}{4}\right)$

$$
\begin{aligned}
& =2(\sqrt{2})^{2} \\
& =4
\end{aligned}
$$

tangent is: $y-1=4\left(x-\frac{\pi}{8}\right)$

$$
\begin{aligned}
y-1 & =4 x-\frac{\pi}{2} \\
y & =4 x+1-\frac{\pi}{2}
\end{aligned}
$$

(iii) at $Q, y=0$

$$
\begin{aligned}
& \therefore 4 x+1-\frac{\pi}{2}=0 \\
& x=\frac{\pi}{8}-\frac{1}{4} \\
& Q \text { is }\left(\frac{\pi}{8}-\frac{1}{4}, 0\right)
\end{aligned}
$$

(iv)

(v)

$$
\begin{aligned}
A & =\int_{0}^{\pi / 8} \tan 2 x d x-\frac{Q R \times P R}{2} \\
& =\int_{0}^{\pi / 8} \tan 2 x d x-\frac{\frac{1}{4} \times 1}{2} \\
& =\left[-\frac{1}{2} \ln (\cos 2 x)\right)_{0}^{7 / 8}-\frac{1}{8} \\
& =-\frac{1}{2}\left\{\ln \left(\cos \frac{\pi}{4}\right)-\ln (\cos 0)\right\}-\frac{1}{8} \\
& =-\frac{1}{2}\left\{\ln \left(\frac{1}{\sqrt{2}}\right)-\ln (1)\right\}-\frac{1}{8} \\
& =-\frac{1}{2}\left\{-\frac{1}{2} \ln 2-0\right\}-\frac{1}{8} \\
& =-\frac{1}{8}+\frac{1}{4} \ln 2
\end{aligned}
$$

\therefore Area $=\left(-\frac{1}{8}+\frac{1}{4} \ln 2\right) u^{2}$
$\tan 2 x$ graph $=1$ mark
graph of tangent line $=1$ mark
no penalty if domain extends beyond $\frac{\pi}{4}$
area of triangle $=1$ mark
$\left[-\frac{1}{2} \ln (\cos 2 x)\right]_{0}^{7 / 8}=1$ mark
correct values for " a " and " b " = 1 mark

This is the end of the Examination Paper

