Marks

(b) Evaluate $\int_{1}^{3} \frac{x^{5}-x}{x^{2}} d x$.
(c) (i) Show that $\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}$.
(ii) Hence, or otherwise, find the exact value of $\int_{0}^{1} \frac{1}{1+e^{-x}} d x$.
(d) Shade the region, on a number plane, described by the intersection of

$$
y \leq \sqrt{4-x^{2}} \text { and } x \geq 0
$$

(e) Find the centre and radius of the circle which has the equation of

$$
x^{2}+6 x+y^{2}-4 y=12
$$

(f) In $\triangle A B C, A B=A C, \angle B A C=52^{\circ}$ and $C D$ is drawn so that $\angle A C D=\angle B C D$.

Copy the diagram and find the size of $\angle A D C$, giving reasons.

QUESTION 2 (15 Marks) START A NEW PAGE

(a) Given $f(x)=\sqrt{x^{2}+4}$.
(i) Copy and complete the table with exact values.

x	0	1	2	3	4
$f(x)$					

(ii) Using the trapezoidal rule, with 5 function values, find an approximation
(b) At the beginning of Year 7, Sam decided to study for 5 minutes in the first week of school. In each of the succeeding weeks he increased his study time by 2 minutes per week.
(i) How many hours and minutes will he be studying during week 40 ?
(ii) Find the total number of hours Sam will have studied by the end of Term 3 in Year 12, where there are 230 school weeks after starting Year 7.
(c) $A B C D$ is a parallelogram. Diagonals $A C$ and $B D$ intersect at $E . \angle A C D=90^{\circ}$.

(i) Copy the diagram and show that $A D^{2}=D C^{2}+4 \times C E^{2}$, giving reasons.
(ii) Prove that $A D^{2}-D E^{2}=3 \times C E^{2}$, giving reasons.
(d) The graphs of $y=4 x-x^{2}$ and $y=6-3 x$ are shown below.

(i) Find the x-coordinates of the points of intersection for these graphs.
(ii) Calculate the area bounded by the parabola $y=4 x-x^{2}$ and the line $y=6-3 x$.

QUESTION 3 (15 Marks) START A NEW PAGE

Marks

(a) The area bounded by the curve $y=\frac{x^{2}-1}{2}$ and the y-axis, from $y=1$ to $y=5$, is rotated about the y-axis.

Calculate the volume of the solid formed.
(b) (i) Show that $1-\frac{3}{x+1}=\frac{x-2}{x+1}$.
(ii) Sketch, on a number plane, the graph of $y=\frac{x-2}{x+1}$.

Label any asymptotes and the x and y intercepts.
(c) $A B C D$ is a regular pentagon. Sides $B C$ and $E D$ are produced to meet at F.

(i) Copy the diagram and prove that $C F=D F$, giving reasons.
(ii) Prove that $A F$ bisects $\angle B A E$, giving reasons.
(d) John bought a pine-tree plantation which had 100000 trees on 1st January 2001. At the beginning of each succeeding year (including 2001) he planted 1000 new trees. At the end of each year he removed 5% of the trees growing on the plantation.

Let A_{n} be the number of trees on the plantation at the end of the nth year.
(i) Show that $A_{2}=100000(0 \cdot 95)^{2}+1000(0 \cdot 95)^{2}+1000(0 \cdot 95)$.
(ii) Hence, show that $\quad A_{n}=81000(0 \cdot 95)^{n}+19000$.
(iii) Calculate the number of trees that John expects to have at the end of 2020, after he has removed the trees for that year.

QUESTION 4 (15 Marks) START A NEW PAGE

Marks

(a) The curve $y=f(x)$ has a local minimum at $(1,5)$ and $\frac{d^{2} y}{d x^{2}}=6 x+1$.

Find the equation of the curve.
(b) The graph of $y=2 \cos x-1$ for $0 \leq x \leq \frac{5 \pi}{3}$ is shown below.

(i) Show that the graph crosses the x-axis at $x=\frac{\pi}{3}$.
(ii) Show that the area enclosed by $y=2 \cos x-1$, the x-axis and the lines
$x=0$ and $x=\frac{5 \pi}{3}$ is $(3 \sqrt{3}+\pi)$ square units.
(c) The sum of the first n terms of a series is given by $S_{n}=\frac{1}{n(n+1)}$.
(i) Show that $\quad S_{n-1}=\frac{1}{(n-1) n} \quad$ for $n \geq 2$.
(ii) Show that the nth term $\left(T_{n}\right)$ can be written as $T_{n}=\frac{2}{n\left(1-n^{2}\right)}$ for $n \geq 2$.
(iii) Hence, or otherwise, evaluate $\sum_{n=10}^{30} \frac{1}{n\left(1-n^{2}\right)}$.

END OF EXAMINATION

2 unit Maths HEC Term 12007
1 (a)

$$
\begin{aligned}
& \int(5 x+3)^{2} d x \\
= & \frac{(5 x+3)^{3}}{3 \times 5}+c \\
= & \frac{(5 x+3)^{3}}{15}+c
\end{aligned}
$$

I(b)

$$
\begin{aligned}
& \int_{1}^{3} \frac{x^{5}-x}{x^{2}} d x \\
= & \int_{1}^{3}\left(x^{3}-\frac{1}{x}\right) d x \\
= & {\left[\frac{x^{4}}{4}-\ln x\right]_{1}^{3} } \\
= & \left(\frac{3^{4}}{4}-\ln 3\right)-\left(\frac{1}{4}-\ln 1\right) \\
= & \frac{81}{4}-\frac{1}{4}-\ln 3 \\
= & 20-\ln 3
\end{aligned}
$$

I(c)

$$
\begin{aligned}
& \text { (i) } \frac{1}{1+e^{-x}} \times \frac{e^{x}}{e^{x}}=\frac{e^{x}}{e^{x}+1} \\
& \int_{0}^{1} \frac{1}{1+e^{-x}} d x=\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x \\
& =\left[\ln \left(e^{x}+1\right)\right]_{0}^{1} \\
& =\ln (e+1)-\ln 2
\end{aligned}
$$

(1) power
(1) denominato
(1) simplifying
(1) integration
(1) Answer.
(1) integration
(1) answer

Id)

1 (e)

$$
\begin{gathered}
x^{2}+6 x+y^{2}-4 y=12 \\
x^{2}+6 x+9+y^{2}-4 y+4=25 \\
(x+3)^{2}+(y-2)^{2}=5^{2}
\end{gathered}
$$

centre $(-3,2)$ radius 5 units
(f)

$\angle A C B=\angle A B C$ (equal angles opposite equal sides in $\triangle A B C$)
$\angle B A C+\angle A C B+\angle C A B=180^{\circ}$
(angle sum of $\triangle A B C=180^{\circ}$)

$$
\therefore \quad 2 \times \angle A C B+52^{\circ}=180^{\circ}
$$

$$
\angle A C B=64^{\circ}
$$

$\angle A C D+\angle B C D=64^{\circ}$

$$
\begin{aligned}
& \angle A C D=\angle B C D \text { (given) } \\
& \angle A C D=32^{\circ}
\end{aligned}
$$

$$
\therefore \angle A C D=32^{\circ}
$$

$\angle A C D+\angle A D C+\angle B A C=180^{\circ}$
(angle sum of $\triangle A C D=180^{\circ}$)
$\therefore 32+52+\angle A D C=180^{\circ}$

$$
\begin{aligned}
& \therefore 32+52+\angle A D C=180^{\circ} \\
& \therefore \angle A D C=96^{\circ}
\end{aligned}
$$

(1) Semicircle
(1) correct shading
(1) centre
(1) radio's
($\frac{1}{2}$
($\frac{1}{2}$)
($\frac{1}{2}$
(1)
$2(a)$
$f(x)=\sqrt{x^{2}+4}$

x	0	1	2	3	4
$f(x)$	2	$\sqrt{5}$	$\sqrt{8}$	$\sqrt{13}$	$\sqrt{20}$

$$
\begin{aligned}
& \int_{0}^{4} f(x) d x= \\
&=\frac{1}{2}[2+2[\sqrt{5}+\sqrt{8}+\sqrt{13}]+\sqrt{20}] \\
&=11.90611436 \\
&=11.91 \quad(2 d p)
\end{aligned}
$$

(b)

$$
\text { (i) A.P. } \begin{aligned}
a & =5 \quad d=2 \quad n=40 \\
t_{n} & =a+(n-1) d \\
& =5+39 \times 2 \\
& =83 \\
t_{\text {me }} & =1 \text { hour } 23 \text { muns }
\end{aligned}
$$

(iv)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(b-1) \alpha] \\
S_{230} & =\frac{230}{2}(2 \times 5+229 \times 2) \\
& =53820 \text { mins } \\
& =897 \text { Hours }
\end{aligned}
$$

(c)

(i) $A D^{2}=D C^{2}+A C^{2}$ (Pythay theorem) $2 \times C E=A C$ (diagonals of parallelogip busect each other)

$$
\begin{aligned}
& \therefore A D^{2}=D C^{2}+(2 C E)^{2} \\
& \therefore A D^{2}=D C^{2}+4^{*} C E^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
D C^{2}+C E^{2}= & D E^{2} \text { (Pythay, } \\
\therefore A D^{2}-D E^{2}= & 3 C E^{2} \\
& \text { (bysubtraction) }
\end{aligned}
$$

(1) for
(1) Use of trapezoidal mul
(1) answer (to any numba of $d P$)
(1)
(1)
(1) correct use σ Sn formula
(1) correct no of hours
(d)
(i)

$$
\begin{aligned}
& y=4 x-x^{2} \\
& y=6-3 x \\
& 4 x-x^{2}=6-3 x \\
& 0=x^{2}-7 x+6 \\
& 0=(x-1)(x-6) \\
& \therefore x=x \text { or } x=6
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\int_{1}^{6}\left[\left(4 x-x^{2}\right)-(6-3 x)\right] d x \\
& =\int_{1}^{6}\left(7 x-x^{2}-6\right) d x \\
& =\left[\frac{7 x^{2}}{2}-\frac{x^{3}}{3}-6 x\right]_{1}^{6} \\
& =\left[\frac{7 \times 36}{2}-\frac{6^{3}}{3}-36\right]-\left[\frac{7}{2}-\frac{1}{3}-6\right] \\
& =18-(-25 / 6)
\end{aligned}
$$

(a)

$$
\begin{array}{rl}
V & =\pi \int x^{2} d y \quad y=\frac{x^{2}-1}{2} \\
V & 2 y+1=x^{2} \\
V & =\pi \int_{1}^{5}(2 y+1) d y \\
& =\pi\left[\frac{2 y^{2}}{7}+y\right]_{1}^{5} \\
& =\pi[25+[1]-[1+1]\} \\
& =\pi \times 28 \\
V_{01} & =28 \pi u^{3}
\end{array}
$$

(1) equation
(1) x values
(1) integral
(1) inlegration
(1) answer
(1) integral
(1) integration
(1) answer

(d) $\quad A_{1}=(100000+1000) 0.95$
(i)

$$
\begin{align*}
& A_{2}=[(100000+1000)(0.95)+1000](0.95) \tag{1}\\
& =100000(0.95)^{2}+1000(0.95)^{2}+1000(0.25)
\end{align*}
$$

(ii)

$$
\begin{aligned}
A_{n}= & 100000(0.95)^{n}+1000(0.95)^{n}+ \\
& 1000(0.95)^{n-1} \cdots 1000(0.95) \\
= & 100000(0.95)^{n}+1000(0.95)\left[\frac{\left.1-(95)^{n}\right]}{1-(-95)}\right. \\
= & 100000(0.95)^{n}+19000\left(1-(.9 .5)^{n}\right) \\
= & 81000(0.95)^{n}+19000
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& n= 20 \\
& A_{20}=81000(0.95)^{20}+19000 \\
&=48037.35972 \\
&=48037 \text { (mearest } \\
& \text { tree) }
\end{aligned}
$$

(4)
(a)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=6 x+1 \\
& \frac{d y}{d x}=\frac{6 x^{2}}{2}+x+c \\
&=3 x^{2}+x+c \\
& \frac{d y}{d x}=0 \quad x=1 \\
& \therefore 0=3+1+c \\
& \therefore=c=-4 \\
& \frac{d y}{d x} y=3 x^{2}+\frac{3 x^{3}}{3}+\frac{x^{2}}{2}-4 x+k \\
& x=1 y=5 \\
& 5=1+\frac{1}{2}-4+k \\
& y=x^{3}+\frac{1}{2} x^{2}-4 x+7 \frac{1}{2}
\end{aligned}
$$

(i)
(1) C value
(1) paniture
(1) answer
4. (b) (i)

$$
\begin{aligned}
y & =2 \cos x-1 \\
x & =\pi / 3 \\
y & =2 \cos \left(\frac{\pi}{3}\right)-1 \\
& =2 \times \frac{1}{2}-1 \\
& =0 \\
\therefore \quad x & =\pi / 3 \quad y=0 \quad \text { (crosses } x \text { caxis) }
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& A=\int_{0}^{\pi / 3}(2 \cos x-1) d x+\left|\int_{\pi / 3}^{5 / 3}(2 \cos x-1) d x\right| \\
&= {[2 \sin x-x]_{0}^{\pi / 3}+|(2 \sin x-x)|_{\pi / 3}^{\pi / 3} } \\
&=\left(2 \times \sin \frac{\pi}{3}-\frac{\pi}{3}\right)-(0-0)+\left\lvert\,\left(2 \sin \frac{\pi \pi}{3}-\frac{5 \pi}{3}\right)-\right. \\
& \left.=\left(2 \sin \frac{\pi}{3}-\frac{\pi}{3}\right) \right\rvert\, \\
&=\left(2 \times \frac{\sqrt{3}}{2}-\frac{\pi}{3}\right)+\left|\left(-\frac{2 \times \sqrt{3}}{2}-\frac{5 \pi}{3}\right)-\left(\frac{2 x \sqrt{3}}{2}-\frac{\pi}{3}\right)\right| \\
&=\left(\sqrt{3}-\frac{\pi}{3}\right)+\left\lvert\,\left(\left.-\frac{\left.\sqrt{3}-\frac{5 \pi}{3}-\sqrt{3}+\frac{\pi}{3}\right) \mid}{} \right\rvert\,\right.\right. \\
&=\left(\sqrt{3}-\frac{\pi}{3}\right)+\left|\left(-2 \sqrt{3}-\frac{4 \pi}{3}\right)\right| \\
&= \sqrt{3}-\frac{\pi}{3}+2 \sqrt{3}+\frac{4 \pi}{3} \\
&= 3 \sqrt{3}+\pi
\end{aligned}
$$

(1) correct set of integras and correct use of absolute.
(1) integration and substituta
(1) evalution: of ting values
(i) working

$$
\text { (c)(i) } \begin{aligned}
S_{n} & =\frac{1}{n(n+1)} \\
S_{n-1} & =\frac{1}{(n-1)(n-1+1)} \\
& =\frac{1}{(n-1) n}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
t_{n} & =S_{n}-s_{n-1} \\
& =\frac{1}{n(n+1)}-\frac{1}{(n-1) n} \\
& =\frac{(n-1)-(n+1)}{n(n+1)(n-1)} \\
& =\frac{-2}{n\left(n^{2}-1\right)} \\
& =\frac{2}{n\left(1-n^{2}\right)}
\end{aligned}
$$

(iii)

$$
\left.\begin{array}{l}
\sum_{n=10}^{30} \frac{1}{n\left(1-n^{2}\right)}=\frac{1}{2} \sum_{n=10}^{30} \frac{2}{n\left(1-n^{2}\right)} \\
=\frac{1}{2}\left[S_{30}-S_{9}\right] \\
=\frac{1}{2}\left[\frac{1}{30(31)}-\frac{1}{9(10)}\right] \\
\frac{1}{2}\left[\frac{1}{930}-\frac{1}{90}\right] \\
=
\end{array} \frac{-7}{1395}\right]
$$

(1) mustshow some working (substitution)
(1) Pormula and correct substitution
(1) simplificate of algebra.
(1)

SDifference
of sums)
(1) correct
sums $\frac{1}{2}\left(S_{30}-S_{9}\right)$
(1) Answer.

