Question 1

MARKS
b) Evaluate: i) $\int_{0}^{1} \frac{1}{e^{2 x}} d x$.
ii) $\int_{0}^{3} \frac{2 x-1}{x+4} d x$. $y \geq x+2$ hold simultaneously.
d) i) Show $\frac{d}{d x}(x \sqrt{2 x-4})=\frac{x}{\sqrt{2 x-4}}+\sqrt{2 x-4}$.
ii) Hence find $\int \frac{x}{\sqrt{2 x-4}} d x$.

Question 2 (Start a new page)

a)

In the above diagram, $A B C D$ and $D E B F$ are two congruent rectangles with sides 3 and 7 units as in the diagram. ($A B=D F=7, A D=D E=3$).

Copy the diagram onto your writing booklet.
i) Prove that $\triangle A T D \equiv \triangle F T B$.
ii) Show that $A T=\frac{20}{7}$.

Question 2 (continued)

b) Without using calculus, sketch $y=\frac{x+2}{x-3}$, showing all the essential features.
c) Simplify $\sum_{k=1}^{n} \log \left(\frac{k+1}{k}\right)$.
d)

The diagram shows parts of the curves $y=\sin x$ and $y=\cos x$.
i) Find the x-cordinates of the two points A and B.
ii) Calculate the area of the shaded region.

Question 3 (Start a new page)

a) Find $\int \frac{e^{\tan x}}{\cos ^{2} x} d x$.
b) The area bounded by curve $y=\mathrm{e}^{2 x}$, the y-axis and the line $y=3$ is rotated about the y-axis to give a solid.
i) Show that the volume V_{y} units 3 of the solid formed, is given by

$$
V_{y}=\frac{\pi}{4} \int_{1}^{3}(\ln y)^{2} d y
$$

ii) Use Simpson's rule with 5 function values to find the volume of this solid, correct to 2 decimal places.

Question 3 (continued)

c) Find the area bounded by the graph of $y=x(x-1)(x-2)$ and the x - axis.
d) Consider the geometric series $1+(3 x-2)+(3 x-2)^{2}+\ldots \ldots$
i) For what values of x does this series have a limiting sum?
ii) Find the value of x if this limiting sum has a value of $\frac{2}{3}$.

Question 4 (Start a new page)

a) $A B C D$ is a parallelogram and P is on $A B$ such that $P D$ bisects $\angle A D C$ and $P C$ bisects $\angle B C D$.

Copy the diagram onto your writing booklet.
Prove that $A B=2 \times A D$.

Question 4 (continued)

b) With the drought worsening, Ming has designed a counting generator that can simulate the number of rain drops per minute that fall over a pond during a storm.

The rain drops falling per minute forms the sequence:
$\{1,1,3,9,23, \ldots .$.
with the nth term given by the formula $R_{n}=1-2 n+2^{n}$.
i) Verify that 115 is a term of this sequence.
ii) Find the total number of rain drops which fall over the pond in the first twenty-five minutes.
iii) If the surface area of the pond is $250 \mathrm{~m}^{2}$ find the average number of rain drops per cm^{2} over the first twenty five minutes.
c) Katie has planned a holiday which she decides to take in 3 years time. She has estimated that the holiday will cost about $\$ 8000$ and plans to save a fixed amount each month for 36 months. She invests her savings at the beginning of each month in an account which pays interest at 6% p.a. compounded monthly at the end of each month.
i) Let the amount she saves each month be $\$ A$ and let $\$ V_{n}$ be the value of her investment after n months. Show that the value of her investment at the end of 3 months is given by

$$
V_{n}=A\left(1.005+1.005^{2}+1.005^{3}\right)
$$

ii) Find correct to the nearest dollar, the least amount of money that Katie would need to save each month to reach her target.
iii) If, after 2 years of her saving plan, the interest rate rose to 9% p.a., how much extra spending money would Katie have if she maintained the amount she was saving as calculated in part(ii) above?

END

JRAHS Yr 12 2n Tr-08
Q(ai)

$$
\begin{aligned}
& \int x^{2}-5 x-14 d x \\
= & \frac{x^{3}}{3}-\frac{5 x^{2}}{2}-14 x+c
\end{aligned}
$$

i)

$$
\begin{aligned}
& =\frac{(5-8 x)^{\circ}}{-8 \times 10}+c \\
& =\frac{(5-8 x)^{10}}{-80}+c
\end{aligned}
$$

bi) $=\frac{\left[e^{-2 x}\right]_{-2}^{1}}{0},=\frac{-1}{2}\left(-1+e^{-2}\right)=\frac{1}{2}\left(e^{-2}-1\right)$
ii)

$$
\text { i) } \begin{aligned}
& \int_{0}^{3} \frac{2(x+4)}{x+4}-\frac{9}{x+4} d x \\
= & \int_{0}^{3} 2-\frac{9}{x+4} d x \\
= & {[2 x-9 \ln (x+4)]_{0}^{3}, } \\
= & 6-9 \ln 7-0+9 \ln 4 \\
= & 6-9 \ln \frac{7}{4}
\end{aligned}
$$

c)

di)

$$
\begin{gathered}
\frac{d}{d x}(x \sqrt{2 x-4})=\frac{x \times \not 2}{\not x \sqrt{2 x-4}}+\sqrt{2 x-4} \times 1 \\
=\frac{x}{\sqrt{2 x-4}}+\sqrt{2 x-4}
\end{gathered}
$$

ii) FROM part (i)

$$
\begin{aligned}
& \int \frac{x d x}{\sqrt{2 x-4}}=x \sqrt{2 x-4}-\int \sqrt{2 x-4} d x \\
& =x \sqrt{2 x-4}-\frac{2}{3} \frac{(2 x-4)^{3 / 2}}{4}+c \\
& =x \sqrt{2 x-4}-\frac{(2 x-4)^{3 / 2}}{3}+c
\end{aligned}
$$

Q2

ㄷ) $A B C D$ and $D E B F$ are bothrectarglo $\angle B A D=D F B=90^{\circ}$ (aygl of reatangle), $\angle A T D=\angle B T F$ (vertically opporito anplece) $D E=F B$ (opposit sides of reotargle; $A D=D E=3$ (give.)

$$
\begin{aligned}
& \therefore A D=F G \\
& \therefore \triangle A T D \equiv \triangle F T B \text { (AAS) } \frac{1}{2}
\end{aligned}
$$

or alterratively:
$A B C D$ and $D E B F$ are congrent rectangles
$\triangle A D B \equiv \triangle D F B$ thoth equal half the congmentractangles)'

$$
\triangle A D B-\triangle T D B \equiv \triangle D F B-\triangle T D B
$$

$$
\therefore \triangle A T D \equiv \triangle F T B
$$

i7) Let $A T=x \quad T B=7^{-x}$
$T F=x$ (correspondin indes of cagruent triangle $A T D, F T B$)
By Pythagoras Th. $(7-x)^{2}=x^{2}+3^{2}$,

$$
\begin{gathered}
49-14 x+y^{2}=x^{2}+9 \\
14 x=49-9=40 \\
x=20 / 7
\end{gathered}
$$

Q 3
c)

Shaded Area $=\int_{0}^{1} x(x-1)(x-2) d x+$

$$
\begin{aligned}
& \left|\int_{1}^{2} x(x-1)(x-2) d x\right| \\
= & \int_{0}^{1} x^{3}-3 x^{2}+2 x d x+\int_{2}^{1} x^{3}-3 x^{2}+2 x d x \mid \\
= & {\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1}+\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{2}^{1} } \\
= & \left(\frac{1}{4}-x+y\right)+\left(\frac{1}{4}-x+1\right)-(4-8+4) \\
= & \frac{1}{4}+\frac{1}{4} \\
= & \frac{1}{2} \text { unit }^{2}
\end{aligned}
$$

$$
s=\frac{1}{1-r}
$$

$d i)$

$$
\begin{gathered}
r=3 x-2 \\
|3 x-2|<1 \\
-1<3 x-2<1 \\
1<3 x<3 \\
\frac{1}{3}<x<1 \\
\text { but } x \neq \frac{2}{3}
\end{gathered}
$$

i.)

$$
\begin{gathered}
\frac{2}{3}=\frac{1}{1-(3 x-2)} \\
2-(6 x-4)=3 \\
6-6 x=3 \\
3=6 x \\
x=\frac{1}{2}
\end{gathered}
$$

Qu
a)

To prove $A B=2 \times A D$.
Proof:
$A D \| B C$ (given)
$\angle A P D=\angle P D C$ (alternate angles, $A D \| P E$)

But $\angle A D P=\angle P D E$ (PD bisect i $\angle A D C$)
$\therefore A D=A P$ (side opporits equal/ bugle are equal)
similar $B C=R P$
But $A D=B C$ (opposites of park)
$A D+B C=A P+B P$
$2 A D=A B$
26)

asymptote $x=3$

$$
y=1
$$

$$
x=0, \quad y=-2 / 3
$$

$$
y=, \quad x=-2
$$

c)

$$
\begin{aligned}
& \log \frac{2}{1}+\log \frac{3}{2}+\log \frac{4}{3}+\cdots+\log \frac{n+1}{n} \\
= & \log \frac{3}{1} \times \frac{2}{2} \times \frac{3}{3} \times \cdots \times \frac{n}{n+1} \cdot \frac{n+1}{k} \\
= & \log (n+1)
\end{aligned}
$$

di) $\sin x=\cos x$ when $x=\frac{\pi}{4}$
$\therefore x$-condinate of $A=\frac{\pi}{4}$,
$\sin x=0 \quad$ when $x=\pi$
x-coordinate of $B=\pi \# /$
ii)

$$
\begin{aligned}
\text { Shaded } & =\int_{\frac{\pi}{4}}^{\pi} \sin x-\cos x d x \\
& =[-\cos x-\sin x]_{\frac{\pi}{4}}^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& =-[\cos x+\sin x]_{\frac{\pi}{4}}^{\pi} \\
& =-(-1+0)+\left(2 \times \frac{1}{\sqrt{2}}\right) \\
& =1+\frac{2}{\sqrt{2}} \text { unit }^{2} \text { \# } \\
& \text { (or } \left.1+\sqrt{2} \text { unit }^{2}\right)
\end{aligned}
$$

Q 3
a) $\int e^{\tan x} \sec ^{2} x d x$

$$
=e^{\tan x}+c
$$

$$
\text { bi) } y=e^{2 x}
$$

$$
\begin{aligned}
& \ln y=2 x \quad \therefore \quad x=\frac{1}{2} \ln y \\
& \text { when } x=0, \quad y=1
\end{aligned}
$$

when $x=0, y=1$

$$
\begin{aligned}
\operatorname{vd}(v) & =\int_{1}^{3} \pi x^{2} d y \frac{1}{2} \\
& =\pi \int_{1}^{\frac{1}{2}}\left(\frac{\ln y}{2}\right)^{2} d y \frac{1}{2} \\
& =\frac{\pi}{4} \int_{1}^{3}(l-y)^{2} d y
\end{aligned}
$$

ii)

y	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3
$(\ln y)^{2}$	0	0.1644	0.4805	0.8396	1.2069

$$
\begin{aligned}
v . l= & \frac{\pi}{4}\left(\frac{1}{6}\right)\left(\begin{array}{c}
0 \\
+
\end{array}+1.20 .1644+0.8396\right)+2 \times 0.4805 \\
& =\frac{\pi}{24}(4.016+0.961+1.2069) \\
& =0.81(2 \times p)
\end{aligned}
$$

- Qu
b) $R_{n}=1-2 n+2^{n}$
i) $115=1-2 n+2^{n}$
when $n=7$

$$
\begin{aligned}
1-2 \cdot 7+2^{1} & =1-14+128 \\
& =115
\end{aligned}
$$

$\therefore 115$ is a term in the series

$$
\text { if } \begin{aligned}
& \sum_{n=1}^{25} 1-2 n+2^{n} \\
= & 25-2\left(\frac{1+25}{7}\right) \cdot 25+\frac{2\left(2^{25}-1\right)}{2-1} \\
= & 25-26 \times 25+2\left(2^{25}-1\right) \\
= & 67108237
\end{aligned}
$$

$$
\text { iii) } 250 \mathrm{~m}^{2}=2,500000 \mathrm{~cm}^{2}
$$

$$
\therefore \text { Ave } N_{0} \text { of rain dropper }
$$

$$
\text { per } \mathrm{cm}^{2}=\frac{67108237}{2500000} / \mathrm{cm}_{1}^{-}
$$

$$
=26.84 / \mathrm{cm}^{2}
$$

$$
(2 d p)
$$

c) $6 \% \mathrm{p.a}=0.5 \%$ perminth

$$
\begin{gathered}
1+i=1.005 \\
(1.005)^{3}(1.001)^{2}(1.01)
\end{gathered}
$$

i) At the end of 36 month.

$$
\begin{aligned}
8000 & \leq A\left(1.005+1.005^{2}+\cdots+1.005^{36}\right. \\
8000 & \leq A \frac{1.005\left(1.005^{36}-1\right)}{1.005-1} \\
A & \geqslant \$ 202.36(2 d p),
\end{aligned}
$$

\therefore at least $\$ 203$ per month.
$i=-i=$

Savings at the end of $2 \operatorname{yr}\binom{$ use $A}{24}$
$=\$ 203)$

$$
=203(1.005)\left(\frac{1.005-1}{1+1.005}\right)=5188.5003
$$

Balance at the end of 3 yr

$$
\begin{aligned}
= & 203(1.0075)\left(\frac{1.0075^{12}-1}{1-1.075}\right)+ \\
& 5188.5003\left(1.0075^{12}\right. \\
= & 2558.0828+5675.2174 \\
= & 8233.3002
\end{aligned}
$$

Extra added value $=$

$$
8233.3002-203 \times 1.005\left(\frac{1.005^{36}-1}{-1+1.005}\right)
$$

$$
=8233.3002-8025.1555
$$

$$
=208.14(2 \mathrm{dp})
$$

