QUESTION 1 (15 Marks) (Start a new sheet of paper)

MARKS
i) Integrate with respect to x :
a) $\int e^{3 x}-\sec ^{2} 2 x d x$
b) $\int \pi+\cos 3 x d x$
c) $\int \frac{x^{2}+1}{x \sqrt{x}} d x$
ii) a) Show that $\frac{1}{x-1}-\frac{1}{x+1}=\frac{2}{x^{2}-1}$.
b) Hence evaluate $\int_{3}^{5} \frac{d x}{x^{2}-1}$
iii) Differentiate $x \sin x$ and hence find $\int x \cos x d x$
iv) The gradient function of a curve is given by $\frac{d y}{d x}=3 x^{2}-8 x+3$ and it is known that the original curve passes through the origin. Find the other points where the original curve crosses the x axis.

QUESTION 2 (15 Marks) (Start a new sheet of paper)

i) Evaluate $\sum_{r=4}^{7} \frac{r^{2}}{2}$.
ii) The sum of the first n terms of a particular sequence is given by $S_{n}=n^{2}+2^{n}$. Find the first two terms of the sequence (ie Find T_{1} and T_{2}).
iii) In an Arithmetic Sequence, the thirteenth term is 27 and the seventh term is three times the second term. Find the sum of the first ten terms.
iv) The curve $2 y=x^{2}-5$ and the line $y=x-1$ intersect at A and B (see Figure 1).
a) Show that the coordinates of A and B are $(-1,-2)$ and $(3,2)$. 2
b) Find the area (shown shaded in Figure 1) between the curve and line. 3

Figure 1
v) The curve $y=\frac{\sin \pi x}{x+1}$ is shown in Figure 2 for $0 \leq x \leq 1$. Use Simpson's Rule with 5 function values to find the area between the curve and the x axis.
i) The curve $y=\sqrt{x-1}$ between $x=1$ and $x=5$ is rotated about the x axis to form a solid of revolution. Find the exact volume of the solid formed.
ii) a) Sketch the curve $y=\sqrt{9-x^{2}}$ and, on the same diagram, draw the line $y=x+1$.
b) On your diagram, shade the region or regions where

$$
y \geq x+1 \text { and } y \leq \sqrt{9-x^{2}} \text { simultaneously. }
$$

iii) George starts to save $\$ 160$ per month and invests it in a savings account which earns 6% pa, compounded monthly.
a) Show that, three months after his first deposit and just before the fourth deposit, his savings are worth $\$ 484.82$ (to the nearest cent).

When he has accumulated $\$ 5000$, George is able to transfer his money into a higher yielding account which pays 9% pa, compounded monthly.
b) $\quad \alpha)$ At the start of which month will George be able to transfer his money (including that month's $\$ 160$) into the new account.
β) Show that the initial investment in the new account will be $\$ 5164.80$ (to the nearest cent).
c) Assuming that no further payments are made to the account, how much will George's money be worth 18 months after he transferred to the transferred to the new account?

QUESTION 4 (15 Marks) (Start a new sheet of paper)

i) The diagram in Figure 3 (below) shows part of the graph of $y=\ln (x+1)$.
a) Write down the exact coordinates of the point P.
b) Show that the equation, can be expressed in the form $x=e^{y}-1$.
c) $\quad \alpha$) Find the shaded area (in exact form).
β Hence calculate the exact value of $\int_{0}^{4} \ln (x+1) d x$.

Figure 3

Figure 4
ii) A square $A B C D$, of side length a units, is shown in Figure 4 (above).

The point P is the midpoint of $A B$ and Q is the midpoint of $B C$.
The lines $A Q$ and $D P$ are drawn and intersect at G.
Construction lines $M N$, through G parallel to $A B$ and $G E$, perpendicular from G to $D C$, have been included.
You may assume, without proof, that the triangles $A G P, A B Q, D A P$ and $D M G$ are similar.
a) Copy the diagram and show that $P D=\frac{a \sqrt{5}}{2}$ units.
b) Show that $P G=\frac{a \sqrt{5}}{10}$ units.
c) Deduce that $D G=\frac{2 a \sqrt{5}}{5}$ units.
d) Find the lengths of $M D$ and $M G$ and hence prove that $C G=a$ units.

