<u>QUESTION 1</u> Start on a New Sheet of paper

i)

a) Evaluate exactly :

$$\int_{0}^{1} (3-2x)^{3} dx$$
 2

ii)
$$\int_{0}^{1} e^{\pi} dx$$
 1

iii)
$$\int_{1}^{4} (\sqrt{x} - 2)^2 dx$$
 3

b) Find the centre and radius of the circle $4x^2 + 4y^2 - 12x + 16y = 11$. 3 c) The gradient function of a curve is given by $\frac{dy}{dx} = x^2 - 4x$. If the curve passes through the point (2,-3), find the equation of the curve. 2

d) i) Write down the primitive of
$$\sec^2 2x$$
.
ii) Hence evaluate $\int_{1}^{\frac{\pi}{8}} (\tan^2 2x) dx$ exactly 3

ii) Hence evaluate
$$\int_{0}^{1} (\tan^2 2x) dx$$
 exactly. 3

<u>QUESTION 2</u> Start on a New Sheet of paper

MARKS

3

In the diagram, AD = BE = 25 cm. Also, $\angle C$ is a right angle, AB = 8 cm and AC = 15 cm. Find the length of DE.

<u>QUESTION 2</u> (Continued)

b) The first and last terms of an Arithmetic series are 10 and 60 respectively and the sum of the series is 3535. Find:

i)	the number of terms in the series	2
ii)	the common difference	2
i) ii)	Use Simpson's Rule to estimate $\int_{0}^{2} 4^{x} dx$ using 5 function values. Use the Trapezium Rule with 5 function values to approximate the same integral.	2 2
iii)	Given that $\frac{d}{dx}(4^x) = (4^x) \ln 4$, find the exact value of $\int_0^{\infty} 4^x dx$.	2
iv)	Hence, find the percentage error caused by using Simpson's Rule with 5 function values. (Answer to 2 Decimal Places)	2

QUESTION 3Start on a New Sheet of paperMARKS

- a) Sally invests \$6000 at the start of every year into a superannuation fund which pays 9% per annum, compounded annually.
 - i) How much will Sally's investment be worth at the end of the first year?
 ii) How much will Sally's investment be worth at the end of the 20th year?
 3 (Answer to the nearest dollar)
 - iii) If, instead of paying yearly, Sally pays \$500 monthly and the interest is accumulated monthly at 9% p.a., what will Sally's investment now be, after 20 years, to the nearest dollar?
- b)

c)

In the diagram alongside, *ABCD* is a parallelogram. *E* is the midpoint of *DC*. *DF* is parallel to *EB*.

Copy the diagram and prove that FB = AD.

Question 3 is continued on the next page

3

<u>QUESTION 3</u> (Continued)

c) The area enclosed between the curve $y = \ln x$, the two coordinate axes and the line y = 1 is rotated about the *y*-axis. Find the volume so generated.

MARKS

4

QUE	STIO	N 4 Start on a New Sheet of paper	MARKS
a)	i)	Prove that $\sqrt{2}-1$, 1 and $\sqrt{2}+1$ are in geometric sequence.	1
	ii)	If these are the first three terms of a geometric sequence, find, in exact form, the 5th term in the sequence.	2
	iii)	If the sequence is reversed to form the start of a geometric series, starting $\sqrt{2} + 1$, 1, $\sqrt{2} - 1$, find the sum to infinity of that series, simplifying your answer if possible.	2
b)	Shade	the region where $y \ge -\sqrt{9-x^2}$.	3
c)	i) ii)	Show that the curves $y = \cos \frac{\pi x}{2}$ and $y = 2(e^{x-1} - 1)$ intersect at (1,0). By considering the gradient of the exponential curve, or otherwise, explain why these curve will not cross anywhere else.	2 2
	iii)	Find the area enclosed between these curves and the <i>y</i> -axis $(x \ge 0)$, leaving your answer in an exact form.	3

END OF EXAM