James Ruse Agricultural High School Year 12 Term1 Mathematics

Marks

2

2

Question 1

(a) Find: (i)
$$\int \{4sin2x - 6cos3x\} dx$$

(ii) $\int \frac{4x^3 + 3x^2 - 7}{x^4 + x^3 - 7x + 4} dx$
(iii) $\int \frac{3x^2 + 4x - 1}{\sqrt{x}} dx$
(b) Evaluate: (i) $\int_{\frac{1}{4}}^{\frac{1}{4}} (4x - 3)^2 dx$
(ii) $\int_{-1}^{\frac{1}{4}} \sqrt{1 - x^2} dx$
(c) Find the value of x, giving reasons.
4
 $\int \frac{42^{\circ}}{\sqrt{1 - x^2}} dx$
(c) Find the value of x, giving reasons.
4
 $\int \frac{42^{\circ}}{\sqrt{1 - x^2}} dx$

(d) By writing 0.12 as a series, express 0.12 as a fraction in simplest terms.

(e) Graph $y = \frac{x+2}{x-1}$ showing all asymptotes and intercepts with the x and y axes.

	Question	2 (Start .	Αľ	New	Page])
--	-----------------	-----	---------	----	-----	--------	---

(a)	(i) Graph the region defined by : $y \ge \sqrt{x}$, $y \le x^2 + 1$, $x \ge 0$ and $x \le 4$.	2
	(ii) Find the area of the region in (i).	2
	(iii) The region in (i) is rotated about the <i>x</i> axis.Find the Volume of the solid of revolution.	3
	(iv) The region in (i) is rotated about the <i>y</i> axis.Find the Volume of the solid of revolution.	4

(b)	Using the Trapezoidal Rule using 2 strips evaluate (to 4 significant figures) $\int_0^1 e^{\sin x} dx$	2
-----	--	---

(c) The gradient function of a curve is given by :

$$\frac{dy}{dx} = e^x (e^x + e^{2x})$$

Find y as a function of x if the point (ln2, 1) lies on the curve.

Marks

2

Question 3 (Start a New Page)

- (a) Find: $\int 3 \sec 3x \tan 3x \, dx$
- (b) On the same axes in the domain $0 \le x < \pi$ graph $y = \cos \frac{x}{2}$ and $y = \sec \frac{x}{2}$.

(c) (i) Evaluate
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)$$
 1

(ii) Using Simpsons Rule using 5 function values evaluate (to 4 decimal places) 4 $\int_{0}^{1} x \cos e cx \, dx.$

S

(d) (i) Given BK//JS prove ΔABK []] ΔAJS .

В

A

(ii) Hence deduce that $BK = \frac{AB.JS}{AJ}$, giving reasons.

Diagram not to scale

Marks

1

4

2

1

2

Question 4 (Start A New Page)

(a) The sum *S* of terms in an infinite series is given by :

 $S = 1 + 2x + 4x^2 + 8x^3 + \dots$

Find an expression for the sum to infinity, stating the restrictions on *x*.

(b) *ABCD* is a square with BC = 145 cm. Intervals *AH*, *BE*, *CF* and *DG* are drawn to form square *EFGH*.

Diagram not to scale

(i) Prove $\triangle ABE \equiv \triangle BCF$. (Hint: Let $\angle ABE = x^{\circ}$).

(ii) Find the length of *CF* when BF=17 cm.

	(iii) Find the area of square EFGH	2
(c)	A man obtains a monthly reducible loan of \$ 200 000 over 25 years, at an interest rate of 8% p.a.	
	(i) Show that the amount owing A_n after <i>n</i> monthly repayments of <i>R</i> is : $A_n = 200000 \left(\frac{151}{150}\right)^n - 150R \left(\left(\frac{151}{150}\right)^n - 1\right)$	2
	(ii) Find the monthly repayment <i>R</i> .	1
	(iii) Find the amount owing after 15 years if R is paid each month.	1
	(iv) After 15 years the man changes his repayment to \$1600 each month. Find the number of repayments needed to repay the loan.	2

End of Examination

2

1 2

4