James Ruse Agricultural High School
 Year 12 Term 1 Mathematics

Question 1

(a) Find:
(i) $\int(4 \sin 2 x-6 \cos 3 x) d x$
(ii) $\int \frac{4 x^{3}+3 x^{2}-7}{x^{4}+x^{3}-7 x+4} d x$
(iii) $\int \frac{3 x^{2}+4 x-1}{\sqrt{x}} d x$
(b) Evaluate: (i) $\int_{\frac{3}{4}}^{1}(4 x-3)^{2} d x$
(ii) $\int_{-1}^{1} \sqrt{1-x^{2}} d x$
(c) Find the value of x, giving reasons.

(d) By writing $0 . i \dot{2}$ as a series, express $0 . \dot{1} \dot{2}$ as a fraction in simplest terms.
(e) Graph $\mathrm{y}=\frac{x+2}{x-1}$ showing all asymptotes and intercepts with the x and y axes.
(a) (i) Graph the region defined by :
(iii) The region in (i) is rotated about the x axis.

Find the Volume of the solid of revolution.
(iv) The region in (i) is rotated about the y axis.

Find the Volume of the solid of revolution.
(b) Using the Trapezoidal Rule using 2 strips evaluate (to 4 significant figures) $\int_{0}^{\mathbf{1}} \boldsymbol{e}^{\sin x} d x$
(c) The gradient function of a curve is given by :

$$
\frac{d y}{d x}=e^{x}\left(e^{x}+e^{2 x}\right)
$$

Find y as a function of x if the point $(\ln 2,1)$ lies on the curve.

Question 3 (Start a New Page)

(a) Find: $\int 3 \sec 3 x \tan 3 x d x$
(b) On the same axes in the domain $0 \leq x<\pi$ graph $y=\cos \frac{x}{2}$ and $y=\sec \frac{x}{2}$.
(c) (i) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)$
(ii) Using Simpsons Rule using 5 function values evaluate (to 4 decimal places) $\int_{0}^{1} x \operatorname{cosec} x d x$.
(d) (i) Given $B K / / J S$ prove $\triangle A B K \|| | A J S$.
(ii) Hence deduce that $B K=\frac{A B . J S}{A J}$, giving reasons.

(iii) In $\triangle A J S$, $A J$ is divided into 8 equal intervals such that $A B=B C=C D=D E=E F=F G=G H=H J$.
Intervals $B K, C L, D M, E N, F P, G Q$ and $H R$ are drawn parallel to $J S$ in $\triangle A J S$, as shown.
If $J S=10 \mathrm{~cm}$ find the value of the length $B K+C L+D M+E N+F P+G Q+H R+J S$.

Diagram not to scale

Question 4 (Start A New Page)

(a) The sum S of terms in an infinite series is given by :

$$
S=1+2 x+4 x^{2}+8 x^{3}+\ldots \ldots \ldots
$$

Find an expression for the sum to infinity, stating the restrictions on x.
(b) $A B C D$ is a square with $B C=145 \mathrm{~cm}$. Intervals $A H, B E, C F$ and $D G$ are drawn to form square $E F G H$.

Diagram not to scale
(i) Prove $\triangle A B E \equiv \triangle B C F$. (Hint: Let $\left.\angle A B E=x^{\circ}\right)$.
(ii) Find the length of $C F$ when $B F=17 \mathrm{~cm}$.
(iii) Find the area of square $E F G H$
(c) A man obtains a monthly reducible loan of \$200 000 over 25 years, at an interest rate of 8% p.a.
(i) Show that the amount owing A_{n} after n monthly repayments of R is:

$$
A_{n}=200000\left(\frac{151}{150}\right)^{n}-150 R\left(\left(\frac{151}{150}\right)^{n}-1\right)
$$

(ii) Find the monthly repayment R.
(iii) Find the amount owing after 15 years if $\$ R$ is paid each month.
(iv) After 15 years the man changes his repayment to $\$ 1600$ each month. Find the number of repayments needed to repay the loan.

End of Examination

