Name:	
Class:	

YEAR 12

ASSESSMENT TEST 2 TERM 1, 2017

MATHEMATICS

Time Allowed - 120 Minutes
(Plus 5 minutes Reading Time)

General Instructions:

- All questions may be attempted
- All multiple choice questions are of equal value
- Reference Sheet will be supplied
- Department of Education approved calculators and templates are permitted
- In every Question, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged work
- No grid paper is to be used unless provided with the examination paper

The answers to all questions are to be returned in separate bundles clearly labelled Question 6, Question 7, etc. Each question must show your Candidate Number.

ANSWER THE FOLLOWING QUESTIONS, ON YOUR MULTIPLE CHOICE ANSWER SHEET.

1. What is $0.3 \ddot{5}$ as a fraction in its simplest form?

A] $\frac{7}{20}$
B] $\frac{7}{18}$
C] $\frac{35}{99}$
D] $\frac{35}{100}$
2. Differentiate $y=\sqrt[3]{\sin ^{2} 6 x}$

A] $\frac{2 \cos 6 x}{\sqrt[3]{\sin 6 x}}$
B] $\frac{4 \cos ^{2} 6 x}{\sqrt[3]{\sin ^{2} 6 x}}$
C] $\frac{4 \cos 6 x}{3 \sqrt{\sin ^{2} 6 x}}$
D] $\frac{4 \cos 6 x}{\sqrt[3]{\sin 6 x}}$
3. Evaluate exactly $\int_{1}^{2} \frac{2 x+1}{x+x^{2}} d x$

A] $\ln 3$
B] $\ln 12$
C] $\ln 6$
D] $\ln 4$
4. Which line is perpendicular to $3 x+4 y+7=0$?

A] $4 x+3 y-7=0$
B] $3 x-4 y+7=0$
C] $8 x-6 y-7=0$
D] $4 x-7 y+7=0$
5. For what values of m will the geometric series $1+2 m+4 m^{2}+8 m^{3}+\cdots \quad$ have a limiting sum?

A] $-1 \leq m \leq 1$
B] $\frac{-1}{2} \leq m \leq \frac{1}{2}$
C] $\frac{-1}{2}<m<\frac{1}{2}$
D] $m<\frac{1}{2}$

Question Six (27 marks)

(a) Convert 48^{0} to radians; give your answer as an exact value.
(b) The points J, K and L have coordinates (1, 0), $(0,8)$ and $(7,4)$.

The angle between the line JL and the x -axis is θ.

Copy the diagram below neatly onto your answer sheet.

(i) Find the gradient of JL 1
(ii) Find the size of angle θ to the nearest degree.
(iii) Find the coordinates of M, the midpoint of $J L$.
(iv) Show that JL is perpendicular to KM. 2
(v) Find the area of $\triangle \mathrm{JKL}$2
(vi) Write down the coordinates of the point N which makes JKLN a rhombus.
(c) Is $\frac{9}{2}$ a term of the sequence $T_{n}=\frac{3}{32}\left(2^{n-2}\right)$? Give reasons.
(d) (i) Find T_{n} for $14+11+8+5+$ \qquad
(ii) Express $14+11+8+5+$ \qquad .+-34 using Sigma notation.
(e) For the following sequence find the general term in simplest form.

$$
\log _{b} 5 x^{2}, \log _{b} 5 x, \log _{b} 5
$$

(f) If $S_{n}=n^{2}-4 n$ find an expression for T_{n}.
(g) In the diagram below; $\mathrm{AE}=18 \mathrm{~cm}, \mathrm{EC}=6 \mathrm{~cm}, \mathrm{AB}=16 \mathrm{~cm}$.
Copy the diagram onto your answer page.
(i) Prove that $\triangle A D E$ is similar to $\triangle A B C$.
(ii) Find the length of DB giving reasons.

(h) Find the size of the angles of the isosceles triangle in which the base angles are double the vertical angle.

Question Seven (27 marks)

START A NEW PAGE

(a) Draw a possible graph of the curve that satisfies all of the following conditions $0 \leq x \leq a, y^{\prime \prime}<0, y^{\prime}>0$ and $y>0$.
(b) On the separate question paper provided, neatly graph $y=f(x)$ and $y=f^{\prime \prime}(x)$.

Clearly label each graph.
(c) (i) Find the coordinates of the stationary points and determine their nature for the function $y=x^{3}-12 x+5$.
(ii) Find the coordinates of any points of inflexion.
(iii) Neatly sketch $y=x^{3}-12 x+5$ (no need to find x-intercepts).
(d) The area of a sector $A O B$ is $96 \mathrm{~cm}^{2}$ and its perimeter is 56 cm . Find the length of the radius and the size of the angle of the sector to the nearest degree. (O is the centre of the circle).

5
(e) The number 36 is divided into two parts. The smaller part is multiplied by the square of the larger part.
(i) Show the product is $P=1296 x-72 x^{2}+x^{3}$
(ii) Hence find the maximum product possible.
(f) If $\frac{d y}{d x}=\sec ^{2} 2 x$, and $y=0$ when $x=\frac{\pi}{6}$ find an expression for y.
(g) Find the exact area enclosed by the curve $y=4 \cos 2 x$ from $x=-\frac{\pi}{6}$ to $x=\frac{\pi}{6}$.
(h) Find the volume of the solid of revolution when $y=e^{x+1}$ is rotated about the x-axis from $x=0$ to $x=\ln 3$ correct to two decimal places.

Question Eight (27 marks) START A NEW PAGE

(a) (i) Show that the first derivative of $y=\ln \sqrt{\frac{1+x}{1-x}}$ is $\frac{d y}{d x}=\frac{1}{1-x^{2}}$.
(ii) Hence or otherwise evaluate exactly $\int_{0}^{\frac{1}{3}} \frac{4 d x}{1-x^{2}}$
(b) Evaluate exactly $\int_{0}^{\frac{\pi}{8}}(1-\cot 4 x) d x$
(c) Show that the exact area bounded by the curve $y=\ln 3 x$, the x-axis and the lines $x=\frac{2}{3}$ and $x=1$ is given by $A=\frac{1}{3}(3 \ln 3-2 \ln 2-1)$.
(d) Using Simpson's rule with five functional values approximate the volume of revolution when $y=x \sin x$ is rotated about the x-axis from $x=0$ to $x=\frac{\pi}{2}$. (Express your answer correct to two decimal places)
(e) A cylinder is inscribed in a sphere of radius 12 cm .
(i) If the height of the cylinder is h, show that the volume of the cylinder is given by $V=\frac{\pi h}{4}\left(576-h^{2}\right)$.
(ii) Find the maximum volume of the cylinder possible.
(iii) Find the ratio of this greatest volume of the cylinder to the volume of the sphere.
(f) (i) Graph neatly $y=3-2 \sin x$ for $0 \leq x \leq 2 \pi$.
(ii) How many solutions does the equation $1-\sin x-\frac{x}{3}=0$ have for $0 \leq x \leq 2 \pi$?
(g) Leonard invests $\$ 10000$ into an interest bearing account. At the beginning of every month, starting one month after opening the account, he deposits $\$ m$. Interest of 5\% p.a. is compounded monthly and is paid at the end of the month. If after 5 years immediately after the interest has been paid his account balance is $\$ 160000$, find the size of the monthly deposit.

End of Paper

MATHEMATICS: Questioru M/Chosice

1. $0.35=\frac{35}{99}$
2.

$$
\begin{aligned}
y & =\sqrt[3]{\sin ^{2} 6 x} \\
y & =(\sin 6 x)^{2 / 3} \\
d y & =\frac{2}{3}(\sin 6 x)^{-1 / 3} \cdot 6 \cos 6 x \\
& =\frac{4 \cos 6 x}{\sqrt[3]{\sin 6 x}}
\end{aligned}
$$

3.

$$
\begin{aligned}
& \int_{1}^{2} \frac{2 x+1}{x+x^{2}} d x \\
= & {\left[\ln \left(x+x^{2}\right)\right]_{1}^{2} } \\
= & \ln (2+4)-\ln (1+1) \\
= & \ln 6-\ln 2 \\
= & \ln 3
\end{aligned}
$$

Mathematics: Question M/Choice
4.

$$
\begin{gathered}
3 x+4 y+7=0 \\
4 y=-3 x-7 \\
y=-3 / 4 x-7 / 4 \\
m_{1}=-3 / 4 \\
m_{2}=4 / 3 \\
y=m x+b \\
y=\frac{4}{3} x+b \\
3 y=4 x+3 b \\
0=4 x-3 y+3 b \\
0=8 x-6 y+6 b
\end{gathered}
$$

$$
\text { 5. } 1+2 m+4 m^{2}+8 m^{3}+\ldots .
$$

MATHEMATICS: Question.......

$$
\begin{aligned}
& \text { Sub eq (2) in } \\
& \begin{array}{c}
12 x+8(-8 x+60)-64=0 \\
12 x-64 x+480-64=0 \\
-52 x+416=0 \\
52 x=416 \\
x=8 \\
\text { when } x=8 \Rightarrow y=60-64=-4 \\
\therefore N \text { is }(8,-4)
\end{array}
\end{aligned}
$$

MATHEMATICS: Question...!... page 3

[^0]

MATHEMATICS Question...7... page 2
Suggested Solutions

When $x=2 \quad y=8-24+5$

$$
\begin{aligned}
& =-11 \\
x=-2-y & =-8+24+5 \\
& =21
\end{aligned}
$$

\therefore Stationary points at $(2,-11)$ and $(-2,21)$
To test the nature of the stationary point look at $y^{\prime \prime}$
When $x=2 \quad y^{\prime \prime}=12>0 \therefore$ concave up
\therefore (relative)min TP at $(2,-11)$
When $x=-2 y^{\prime \prime}=-12<0 \therefore$ concave down
\therefore (relative) max TP at $(-2,21)$
(ii) Point of inflexion when $y^{\prime \prime}=0$

AND concavity changes.
ie $6 x=0$

$$
x=0
$$

x	-1	0	1
$y^{\prime \prime}$	-6	0	6
	<0		>0

\therefore Change in concaunty >0.
When $x=0 \quad y=5$
\therefore Point of Inflexion at $(0,5)$

(1) for $y^{\prime \prime}=0$ a $x=0$.
$(0,5)$.
(1) for checking

$$
\begin{aligned}
& \text { MATHEMATICS: Question } \\
& \text { Suggested Solutions } \\
& \text { (d) Area sector }=96 \mathrm{~cm}^{2} \\
& A=\frac{1}{2} r^{2} \theta=96 \mathrm{~cm}^{2} \\
& \frac{1}{2} r^{2} \theta=96 \\
& \text { Perimeter }=56 \mathrm{~cm} \\
& \theta=\frac{192}{r^{2}}
\end{aligned}
$$

$$
\text { where } l=r \theta
$$

ie $l+2 r=56$ where $l=r \theta$

$$
\begin{aligned}
& r \theta+2 r=56 \\
& r(\theta+2)=56
\end{aligned}
$$

Subset $\theta=\frac{192}{r^{2}}$ from (1)

$$
\begin{aligned}
& r\left(\frac{192}{r^{2}}+2\right)=56 \\
& \frac{192}{r}+2 r=56 \\
& 192+2 r^{2}=56 r \\
& r^{2}-28 r+96=0 \\
& (r-24)(r-4)=0 \\
& r=24 \text { OR } r=4 .
\end{aligned}
$$

When $r=4 \quad \theta=\frac{192}{r^{2}}=12^{c}$
When $r=24 \quad \theta=\frac{192}{24^{2}}=\frac{1}{3}$
However, $0 \leq \theta \leq 2 \pi$ because it is a sector of circle. $1 \theta \neq 12^{c}>2 \pi$

$$
\begin{aligned}
\therefore \theta & =\frac{1}{3}^{2} \text { only. } \\
\theta & =\frac{180}{\pi} \times \frac{1}{3}=19.0986 \\
\therefore \theta & =19^{\circ} \text { व } r=24 .
\end{aligned}
$$ question. You were asked for degree.

MATHEMATICS Question....7.. page 4
Marker's Comments
(e) Let the smaller part he x, then the larger part is $36-x$.

$$
\begin{aligned}
P & =x(36-x)^{2} \\
P & =x\left(1296-72 x+x^{2}\right) \\
P & =1296 x-72 x^{2}+x^{3} \\
\frac{d P}{d x} & =1296-144 x+3 x^{2}
\end{aligned}
$$

(ii) Possible maximum product when

$$
\frac{d P}{d x}=0
$$

ie $\quad 1296-144 x+3 x^{2}=0$

$$
x^{2}-48 x+432=0
$$ - you knew the answer.

Note: If you could not do

$$
(x-12)(x-36)=0
$$

(i) then use the

$$
x=12, x=36 \quad x<36
$$ given result to

$$
\therefore \quad x=12
$$ do (ii). Don't leave it out!!

$$
\frac{d^{2} P}{d x^{2}}=-144+6 x
$$

when $\begin{aligned} x=12 \quad \begin{aligned} d^{2} P & =-144+6 \times 12 \\ d x^{2} & =-72\end{aligned}, ~\end{aligned}$

$$
=-72
$$

\therefore concave down
\therefore Max product occurs when

$$
x=12 \text { ie } P=12(36-12)^{2}
$$

$$
=6912 .
$$

MATHEMATICS Question...7... page 5
(f)

$$
\begin{aligned}
\frac{d y}{d x} & =\sec ^{2} 2 x \\
y & =\frac{1}{2} \int 2 \sec ^{2} 2 x d x \\
& =\frac{1}{2}(\tan 2 x)+c
\end{aligned}
$$

When $y=0 \quad x=\frac{\pi}{6}$

$$
\begin{aligned}
& 0=\frac{1}{2} \tan \frac{2 \pi}{6}+c \\
& 0=\frac{1}{2} \sqrt{3}+c \\
& c=-\frac{\sqrt{3}}{2}
\end{aligned}
$$

$\therefore \quad y=\frac{1}{2} \tan 2 x-\frac{\sqrt{3}}{2}$.
(9)

$$
\begin{aligned}
y & =4 \cos 2 x \\
A & =2 \int_{0}^{\frac{\pi}{6}} 4 \cos 2 x d x \\
& =\frac{8}{2} \int_{0}^{\frac{\pi}{2}} 2 \cos 2 x d x \\
& =4[\sin 2 x]_{0}^{\frac{\pi}{6}} \\
& =4 \sin \frac{2 \pi}{6}-4 \sin 0 \\
& =4 \times \frac{\sqrt{3}}{2}-4 \times 0 \\
& =2 \sqrt{3} u^{2}
\end{aligned}
$$

Marker's Comments
(h)

$$
\begin{aligned}
& \ln 3 \\
V & =\pi \int_{0}^{\ln 3}\left(e^{x+1}\right)^{2} d x \\
& =\pi \int_{0}^{\ln 3} e^{2 x+2} d x \\
& =\pi\left[\frac{e^{2 x+2}}{2}\right]_{0}^{\ln 3} \\
& =\pi\left[\frac{\left.e^{2 \ln 3+2}-\frac{e^{2}}{2}\right]}{2}\right] \\
& =\frac{\pi}{2}\left(e^{2 \ln 3} \cdot e^{2}-e^{2}\right) \\
& =\frac{\pi}{2}\left(e^{\ln 9} e^{2}-e^{2}\right) \\
& =\frac{\pi}{2}\left(9 e^{2}-e^{2}\right) \\
& =\frac{8 e^{2} \pi}{2} \\
& =4 e^{2} \pi u^{3} \\
& =92.85361743 \\
& =92.85 u^{3}(2 d p)
\end{aligned}
$$

Note:

$$
\left(e^{x+1}\right)^{2} \neq\left(e^{x}+1\right)^{2}
$$

Volume
Formula wrong o marks!

Note if you had CFE, the mark: for $2 d$ p was not given unless you. had the full calculator. answer first.

MATHEMATICS TASK 2 TERMI HSC 2017

MATHEMATICS TASK 2 TERM HS 2017

h correct.

$$
\begin{aligned}
& =\pi\left(\frac{\pi}{24}\right)(7.91321 \ldots) \\
& =3.25 u^{3}(2 d p)
\end{aligned}
$$

MATHEMATICS TASK 2 TERM HST 2017 if $/ 8$

using pythagor as

$$
\begin{aligned}
h^{2}+2 r^{2} & =24^{2} \text { oR } r^{2} \\
14 r^{2} & =576-h^{2} \\
r & =\sqrt{\frac{576-h^{2}}{4}} \\
& = \pm \frac{\sqrt{576-h^{2}}}{2} \quad r>0
\end{aligned}
$$

$$
V=\pi h r^{2}
$$

$$
\left.=\pi h\left(\frac{576-h^{2}}{4}\right)\right\}
$$

$$
=\frac{\pi h}{4}\left(576-h^{2}\right) \text { shown }
$$

ii) To find max do $\frac{d V}{d h}$ and expond V from above

$$
\therefore \quad v=144 \pi h-\frac{\pi h^{3}}{4}
$$

MATHEMATICS TASK 2 TERMI HSC 2017 5/8

MATHEMATICS TASK 2 TERM HS 2017

$8 \sqrt{\text { SUGGESTED SOLUTIONS. }}$| (iii) Ratio Vmax Cylinder: V Sphere |
| :---: |

$$
\begin{aligned}
\text { V8phere } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi(12)^{3} \\
& \therefore 768 \sqrt{3} \%: \frac{4}{3} r(1728) ?
\end{aligned}
$$

f) Graph $y=3-2 \sin x \quad 0 \leqslant x \leqslant 2 \pi$

\because

$$
\begin{aligned}
& 1-\sin x-\frac{x}{3}=0 \\
& \left(1-\sin x=\frac{x}{3}\right) \times 2 \\
& 1-2 \sin x=\frac{2 x}{3}=8
\end{aligned}
$$

- shift the graph down from $3 \rightarrow 2$ then draw $y=2 x$

MATHEMATICS TASK2 TERMI HSC 2017

[^0]: J:Mathsไmarking templates \backslash Suggested Mk solns template.doc

