Name:	
Class:	

YEAR 12

ASSESSMENT TEST 2 TERM 1, 2017

MATHEMATICS

Time Allowed – 120 Minutes (*Plus 5 minutes Reading Time*)

General Instructions:

- All questions may be attempted
- All multiple choice questions are of equal value
- Reference Sheet will be supplied
- Department of Education approved calculators and templates are permitted
- In every Question, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged work
- No grid paper is to be used unless provided with the examination paper

The answers to all questions are to be returned in separate bundles clearly labelled Question 6, Question 7, etc. Each question must show your Candidate Number.

ANSWER THE FOLLOWING QUESTIONS, ON YOUR MULTIPLE CHOICE ANSWER SHEET.

.

1. What is 0.35 as a fraction in its simplest form?

A]
$$\frac{7}{20}$$

B] $\frac{7}{18}$
C] $\frac{35}{99}$
D] $\frac{35}{100}$

2. Differentiate
$$y = \sqrt[3]{\sin^2 6x}$$

A] $\frac{2\cos 6x}{3\sqrt[3]{\sin 6x}}$
B] $\frac{4\cos^2 6x}{\sqrt[3]{\sin^2 6x}}$
C] $\frac{4\cos 6x}{3\sqrt{\sin^2 6x}}$
D] $\frac{4\cos 6x}{\sqrt[3]{\sin 6x}}$

3. Evaluate exactly
$$\int_{1}^{2} \frac{2x+1}{x+x^2} dx$$

A] ln3

- B] ln12
- C] In6
- D] In4

4. Which line is perpendicular to 3x + 4y + 7 = 0?

.

- A] 4x + 3y 7 = 0B] 3x - 4y + 7 = 0
- C] 8x 6y 7 = 0
- D] 4x 7y + 7 = 0
- 5. For what values of *m* will the geometric series
- $1 + 2m + 4m^{2} + 8m^{3} + \cdots$ have a limiting sum? A] $-1 \le m \le 1$ B] $\frac{-1}{2} \le m \le \frac{1}{2}$ C] $\frac{-1}{2} < m < \frac{1}{2}$ D] $m < \frac{1}{2}$

Question Six (27 marks)

- (a) Convert 48° to radians; give your answer as an exact value.
- (b) The points J, K and L have coordinates (1, 0), (0,8) and (7,4).

The angle between the line JL and the x-axis is θ .

Copy the diagram below neatly onto your answer sheet.

(i) Find the gradient of JL	1
(ii) Find the size of angle θ to the nearest degree.	1
(iii) Find the coordinates of M, the midpoint of JL.	1
(iv) Show that JL is perpendicular to KM.	2
(v) Find the area of ΔJKL	2
(vi) Write down the coordinates of the point N which makes JKLN a rhombus.	2
(c) Is $\frac{9}{2}$ a term of the sequence $T_n = \frac{3}{32}(2^{n-2})$? Give reasons.	2
(d) (i) Find T_n for 14 + 11 + 8 + 5 +	2
(ii) Express 14 + 11 + 8 + 5 ++ -34 using Sigma notation.	2
(e) For the following sequence find the general term in simplest form.	

 $\log_b 5x^2$, $\log_b 5x$, $\log_b 5$,

- (f) If $S_n = n^2 4n$ find an expression for T_n .
- (g) In the diagram below; AE = 18cm, EC = 6cm, AB = 16cm.

Copy the diagram onto your answer page.

- (i) Prove that $\triangle ADE$ is similar to $\triangle ABC$.
- (ii) Find the length of DB giving reasons.

(h) Find the size of the angles of the isosceles triangle in which the base angles are

double the vertical angle.

Question Seven (27 marks)

START A NEW PAGE

- (a) Draw a possible graph of the curve that satisfies all of the following conditions $0 \le x \le a$, y'' < 0, y' > 0 and y > 0.
- (b) On the separate question paper provided, neatly graph y = f(x) and y=f''(x).

Clearly label **each** graph.

- (c) (i) Find the coordinates of the stationary points and determine their nature for
 - the function $y = x^3 12x + 5$.4(ii) Find the coordinates of any points of inflexion.2(iii) Neatly sketch $y = x^3 12x + 5$ (no need to find x-intercepts).1

2

2

2

- (d) The area of a sector AOB is $96cm^2$ and its perimeter is 56cm. Find the length of the radius and the size of the angle of the sector to the nearest degree. (O is the centre of the circle).
- (e) The number 36 is divided into two parts. The smaller part is multiplied by the square of the larger part.

(i) Show the product is
$$P = 1296x - 72x^2 + x^3$$
 1

(ii) Hence find the maximum product possible.

(f) If
$$\frac{dy}{dx} = sec^2 2x$$
, and y = 0 when x = $\frac{\pi}{6}$ find an expression for y. 2

- (g) Find the exact area enclosed by the curve $y = 4\cos 2x$ from $x = -\frac{\pi}{6}$ to $x = \frac{\pi}{6}$. 2
- (h) Find the volume of the solid of revolution when $y = e^{x+1}$ is rotated about the *x*-axis from *x* =0 to *x* = ln3 correct to two decimal places.

Question Eight (27 marks) START A NEW PAGE

(a) (i) Show that the first derivative of
$$y = \ln \sqrt{\frac{1+x}{1-x}}$$
 is $\frac{dy}{dx} = \frac{1}{1-x^2}$.

(ii) Hence or otherwise evaluate exactly
$$\int_0^{\frac{1}{3}} \frac{4dx}{1-x^2}$$
 2

(b) Evaluate exactly
$$\int_0^{\frac{\pi}{8}} (1 - \cot 4x) dx$$
 3

(c) Show that the exact area bounded by the curve $y = \ln 3x$, the *x* –axis and the lines $x = \frac{2}{3}$ and x = 1 is given by $A = \frac{1}{3}(3ln3 - 2ln2 - 1)$. 5

4

3

(d) Using Simpson's rule with five functional values approximate the volume of revolution when $y = x \sin x$ is rotated about the x-axis from x = 0 to $x = \frac{\pi}{2}$. (Express your answer correct to two decimal places).

4

2

- (e) A cylinder is inscribed in a sphere of radius 12cm.
 - (i) If the height of the cylinder is h, show that the volume of the cylinder is given by V = $\frac{\pi h}{4}(576 - h^2)$.
 - (ii) Find the maximum volume of the cylinder possible. 3
 - (iii) Find the ratio of this greatest volume of the cylinder to the volume of the sphere. 1
- (f) (i) Graph neatly y = 3 2sinx for $0 \le x \le 2\pi$.
 - (ii) How many solutions does the equation $1 \sin x \frac{x}{3} = 0$ have for $0 \le x \le 2\pi$? 2
- (g) Leonard invests \$10 000 into an interest bearing account. At the beginning of every month, starting one month after opening the account, he deposits \$*m*.
 Interest of 5% p.a. is compounded monthly and is paid at the end of the month.
 If after 5 years immediately after the interest has been paid his account balance is \$160 000, find the size of the monthly deposit.

End of Paper

	MATHEMATICS: Question	Icho	ice
	Suggested Solutions	Marks	Marker's Comments
4.	3x + 4y + 7 = 0 4y = -3x - 7 y = -3/4x - 7/4 $M_1 = -3/4$ $M_2 = 7/3$		~
	y = Mx + b $y = \frac{4}{3}x + b$ $3y = \frac{4}{5}x + 3b$ $0 = \frac{4}{3}x - \frac{3}{5}y + 3b$ 0 = 85x - by + 6b	С	
5.	1+2m+4m2+8m+		
	c = 2m		
	-1 < 2m < 1 -1/2 < m < 1/2	С	

mercury/staffhomeS'WOIFAdmin_M Fac/Assessment info/Suggested Mk solqs tempiate_V2.doo

mercury staffhomu\$ WOH Admin_M Fac\Assessment info\Suggested Mk solns template V2.doe

MATHEMATICS: Ques		
Suggested Solutions	Marks Awarded	Marker's Comments
$48^{\circ} = \frac{48\pi}{180} = \frac{4\pi}{15}$	I york.	Generally Well done
a) (i) $M_{3L} = \frac{4-0}{7-1}$		
= 4		
= 2 /	1 Mark.	
(ii) $\tan \Theta = \frac{2}{3}$		Question said
0 = 33 41 24" 0 = 34" (nearest deque)	1 mark	to the nearest degree.
(iii) Midpoint of JL		
$\left(\frac{7+1}{2}, \frac{0+4}{2}\right) = (4, 2)$	I Mark	
$(1V) M_{KM} = \frac{8-2}{0-4} = \frac{-3}{-4} = \frac{-3}{2}$		I mark for getting correct gradient
$M_{JL} \times M_{KM} = \frac{2 \times -3}{3 \times 2}$	2 marks	of KM J I work for
= -1 products of gradients is -1		proving products of gradients is -1.
: KM 1 JL		
(V) Area = 1×d _{JL} ×d _{KM}		+ (0,8)
$= \frac{1}{2} \times \sqrt{(7-1)^{2} + (4-0)^{2}} \times \sqrt{(0-4)^{2} + (8-2)^{2}}$	2	Perpendicub height.
$=\frac{1}{2}\sqrt{36+16}\times\sqrt{16+36}$	2 marks	
= 12 J52 × J52		(7,4) M (4,2)
= 1×2513×2513		(w°)
= 2b		I wark - Distance JL and perpendic height
i. Area is 26 unit		I nave - formula 16

MATHEMATICS: Ques	tion 6	page 3
Suggested Solutions	Marks Awarded	Marker's Comments
(c) $\frac{q}{2} = \frac{3}{32} \cdot 2^{n-2}$ $\frac{q}{2} = \frac{3}{32} \cdot 2^{n-2}$ $\frac{1}{48} = 2^{n-2}$ $\ln 48 = n-2 \ln 2$. $n-2 = \ln 48 \pm \ln 2$ $n = 5.585^{n}$ $\therefore n = 7.8587$ Since n is not on integer $\frac{q}{2}$ is not in the sequencer	1 nark for explanation	or $q = \frac{3}{2} \left(2^{n-2} \right)$ $3 = \frac{1}{2} \left(2^{n-2} \right)$ but $2 = \frac{1}{2} \left(2^{n-2} \right)$ $3 = \frac{1}{2} \left(2^{n$
		instead of 2.
(d) (i) 14 + 11 + 8 + 5	2 marks). 1 for correct substitution of a and d 1 mark for substitutions and simplifying	
(ii) $14 + 11 + 8 + 5$	2 marks 1 mark for getting n=17 1 mark for summation	accepted 17 $\sum_{n=1}^{17} (14 - 3n + 3)$ as cfE

MATHEMATICS: Quest	tion6	page 4
Suggested Solutions	Marks Awarded	Marker's Comments
(e) $\log_{b} 5x^{2}$, $\log_{b} 5x$, $\log_{b} 5$		Poor attempt.
$(\log_{b} 5 + 2\log_{b} x), (\log_{b} 5 + \log_{b} x), \log_{b} 5$	3 marks	I mark for recognising
It is a AD with		$d = -\log x$
$a = \log_{b} 5x^{2}$ $d = -\log_{b} x$		I movie for
T(n) = a + (n-1)d		substituting in $T_n = a + (n-1)d$
= log 52+ (n-1)-log bx		1 movies for
$= \log_{b} 5x^{2} - n\log_{b} x + \log_{b} x$		final answer.
$= \log_{b} 5 + 2 \log_{b} 2 - n \log_{b} 2 + \log_{b} 2$		
$= \log_{b} 5 + 3\log_{b} 2 - n\log_{b} 2$		
$= \log_{b} 5 + \log_{b} 2(3-n)$		
$= (3=n)\log_{b} 5x$		
DR log 5x (3-n)		
(f) Sn = n ² - 4m		Hostly well done
$5n-1 = (n-1)^2 - 4(n-1)^2 = n^2 - 2n+1 - 4n+4$		getting
$= n^2 - 6n + 5$	2 marks	5-1
$T_{n} = S_{n} - S_{n-1}$ $n^{2} - 4m - (n^{2} - 6m + 2)$		I mark for
$n^2 - 4n - n^2 + 6n - 3$ 2n - 5		Manipulating Tr.

$$\begin{array}{c|c} & \text{MATHEMATICS: Question 7} & \text{Page 3} \\ \hline \\ & \text{Suggested Solutions} & \text{Marks} & \text{Marker's Comments} \\ \hline \\ & \text{(d)} & \text{Area sector : = 9bcm}^2 \\ & \text{Area sector : = 9bcm}^2 \\ & \text{A = } \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{A = } \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{A = } \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \text{(I)} \\ & \frac{1}{2} r^2 \theta = 9bcm}^2 \\ & \frac{1}{2} r^2 \theta = 1000 \\ & \frac{1}{2} r^2$$

Marks **Suggested Solutions** Marker's Comments (e) Let the smaller part be x, then the Method important - you knew the larger part is 36-x. $P = x(36-x)^2$ $P = x (1296 - 72x + x^{2})$ $P = 1296x - 72x^{2} + x^{3}$ answer. \bigcirc $\frac{dP}{dx} = 1296 - [44x + 3x^2]$ (ii) Possible maximum product when $\frac{dP}{d\tau} = 0$ Note: If you \bigcirc could not do ie 1296-144x+3x2=0 $2c^2 - 48x + 432 = 0$ (i) then use the (2 - 12)(2 - 36) = 0given result to 2c = 12, 2c = 36 2c <36 \bigcirc do (ii). Don't 1, 00=12 leave it out !! $\frac{d^2 P}{d^2 = -144 + 6x}$ daz when x = 12 $d^2P = -144+6 \times 12$ $dx^2 = -72$ i concave down (1)". Max product occurs when x = 12 ie $P = 12(36 - 12)^2$ = 6912. " maximum product possible is 69/2 ()

Marker's Comment Suggested Solutions $dy = sec^2 2x$ (f) $y = \frac{1}{2} \int 2^{3} \sec^{2} 2x \, dx$. $= \pm (\tan 2\pi) + c$ (1)When y=0 $2c=\overline{6}$ $0 = \frac{1}{2} \tan 2\pi + c$ $0 = \frac{1}{2}\sqrt{3} + C$ $C = -\frac{\sqrt{3}}{2}$ $d_{1} = \frac{1}{2} \tan 2x - \sqrt{3}$ (1) $y = 4 \cos 2x.$ $A = 2\int_{0}^{\frac{1}{6}} 4 \cos 2x. dx$ $\frac{1}{4} = \frac{1}{2} \frac{1}{\pi}$ (9) $=\frac{8}{2}\int_{-\infty}^{\frac{\pi}{2}}2\cos dx dx$ $= 4 \left[\sin 2\pi \right]^{\frac{T}{6}}$ (1)= $4 \sin 2\pi - 4 \sin 0$ $= 4 \times \sqrt{3} - 4 \times 0$ (1) $= 2\sqrt{3}u^{2}$

MATHEMATICS Question......7. page 6 olutions Marks M Suggested Solutions Marker's Comments = e7-+1 Volume Formula wrong (h) e O marks! $V = TT \left(\frac{\ln 3}{(e^{2k+1})} \frac{1}{dx} \right)$ Note: $(e^{x+i})^2 \neq (e^{2i}+i)$ -ln3 2x+2 dx \bigcirc = TT $\int \frac{e^{2x+2}}{2} \int \frac{e^{3}}{2}$ (1) $= \prod_{n=1}^{\infty} \left(e^{\ln q} e^{2} - e^{2} \right)$ $= \frac{\pi}{2} \left(9e^2 - e^2 \right)$ 8eTT. Note if you had = 4e² T U CFE, the mark = 92.85361743 for 2dp was not = 92.85 u3 (2dp) (1)given unless you had the full calculato, answer first.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{AATHEMATICS} & \text{TASK 2 TERM} & \text{HSC 2017} & \frac{1}{8} \end{array} \\ \hline \text{SUGGCSTED SOLUTIONS} & \text{MARKS} & \text{MARKERS} \\ \hline \text{AWARDED COMMENT} \\ \hline \text{QUESTION 8} \\ \text{QUESTION 8} \\ \text{gr h} \left\{ \frac{11x}{1-x} \\ = \frac{1}{2} \int_{n} (1+x) - \frac{1}{2} \int_{n} (1-z) \\ = \frac{1}{2} \int_{n} (1+x) - \frac{1}{2} \int_{n} (1-z) \\ = \frac{1}{2} \int_{n} (1+x) - \frac{1}{2} \int_{n} (1-z) \\ = \frac{1}{2} \int_{(1-x)^{2}} (1-x) \\ = \frac{1}{2} (1-z)^{2} (1-z)^{2} \\ = \frac{1}{2} (1-z)^{2} \\ = \frac{1}{2} (1-z)^{2} \\ = \frac{1}{2} \int_{0} (1-z)^$$

MATHEMATICS TASK 2 TERMI HSC 2017
$$3/8$$

SUGGESTED SOLUTIONS: MARKS MARKERS
 $SUGGESTED SOLUTIONS: AWARDED COMMENT
 $\int_{0}^{7/4} (1 - (0 + 4x)) dx$
 $\int_{0}^{7/4} (1 - (0 + 4x)) \int_{0}^{7/4} (1 + 1) \int_{$$

MATHEMATICS TASK 2 TERM | HSC 2017
$$3/5$$

SUGGESTED SOLUTIONS:
 $AWARDED COMMENT$
 $AWARDED COMMENT
 $AWARDED COMMENT$
 $AWARDED COMMENT
 $AWAR$$

чт нь r

_

MATHEMATICS TASK 2 TERMI	HSC 201	7 4/8
SUGGESTED SOLUTIONS.	MARKS AWARDED	MARKERS COMMENT
se) i) h 1/2 radius of sphere.		
using pythagovas $h^2 + 2r^2 = 24^2 \text{ or } r^2 +$ $4r^2 = 576 - h^2$	$\left(\frac{h}{2}\right)^2 = 13$	2
$r = \sqrt{\frac{576 - h^2}{4}}$ $= \frac{\sqrt{576 - h^2}}{2} r > 6$		
$V = \pi h r^{2}$ $= \pi h \left(\frac{576 - h^{2}}{4} \right) \int \frac{1}{4} dt$ $= \frac{\pi h}{4} \left(576 - h^{2} \right) showh$	-()	-
ii) To find max do $\frac{dV}{dh}$ and expand V from $\frac{dV}{dh} = \frac{\pi h^3}{4}$	060VR	

MATHEMATICS TASK 2 TERMI SUGGESTED SOLUTIONS. $JV = 144\pi - \frac{3\pi h^2}{4}$	MARKS AWARDED	MARKERS
	AWARDED	Contraction 1
dv = 14417 - 311/2		COMMENT
$\frac{dv}{dh} = 0$		
$\frac{3\pi h}{4} = 144\pi$		
$\frac{3\pi h^2}{4} = 144\pi$ h = 192 $h = 9\sqrt{3}$ $h > 0$		
$\frac{d^2 V}{dh^2} = -\frac{6\pi h}{4}$		SEME
$= -\frac{3\pi h}{2} \qquad \text{when } h = 8\sqrt{3}$		students assumed it will be
$\frac{1}{2} \qquad \qquad \frac{\sqrt{2}}{\sqrt{4}} < 0 - \frac{\sqrt{4}}{\sqrt{4}} < 0 - \frac{\sqrt{4}}{\sqrt{4}} < 0 - \frac{\sqrt{4}}{\sqrt{4}$	()	totag d ² V dotag d ² V dh2
OR.		nor the tabl
4/12 353 14 VV + 0 -	• Yangi	awarded.
: $V_{max} = 144 n(853) - n(853) - 4$)3	
$= 1152\sqrt{3}\pi - 384\sqrt{3}\pi$ $= 768\sqrt{3}\pi u^{3}$	2 -	-(1)
$= 768 \int 3\pi u^{3}$		
		1

تو بند بند بن چر ۲۹۹۰۹ غ تو ۲ مامد سا کر ما می معتود.

			According to a constrained and a constrained as
	MATHEMATICS TASK 2 TERMI	HSC 201	7 7/8
T		MARKS	MARKERS
	SUGGESTED SOLUTIONS.	AWARDED	COMMENT
	$\frac{\partial R}{\partial - 2 \sin x} = \frac{2 \pi}{3}$ $\frac{\partial 2 - 2 \sin x}{3 - 2 \sin x} = \frac{2 \pi}{3} + 1$		
	$y = \frac{2x}{3} + 1$ $y = \frac{3}{3} + 1$	- (Dm	arh
£9)	$A_{2} = (A_{1} + M) \times \frac{341}{340} = \frac{1}{340}$ $= \frac{1}{340}$	h= 60	() mark for writing A, A, -> Ac Dirock to write in GP
160			form (j)

8	/	8
---	---	---

010

$\frac{gu gg ested Solutions}{gu gg ested Solutions} \qquad MARKS \qquad MARKERS \qquad Marker$	$SUGGESTED SOLUTIONS: AWARDED COMMENT DR. A_1 = 10000 R. A_2 = 10000 R2 + MR A_3 = 10000 R3 + MR3 + MR, A_3 = 10000 R3 + M(R + R3 + + R-1) R = 10000 Rn + M(R + R2 + + R-1) = 10000 Rn + M R(Rn-1-1) R = R = 241/ 240 R = R = 241/ 240 N = 60 N = 60$	MATHEMATICS TASK 2 TERMI	ASC IUI	1
$ \begin{array}{rcl} & A& A& A& A& B& B \\ \hline & A& A& A& B& B& B \\ \hline & A& A& A& B& B& B \\ \hline & A& A& A& B& B& B \\ \hline & A& A& A& B& B& B& B \\ \hline & A& A& A& B& B& B& B& B& B& B\\ \hline & A& A& A& B& B&$	$DR :$ $A_{1} = 10000 R :$ $A_{2} = 10000 R^{2} + MR$ $A_{3} = 10000 R^{3} + MR^{3} + MR :$ $A_{3} = 10000 R^{3} + M(R + R^{2} + \dots + R^{-1})$ $R = 10000 R^{n} + M \frac{R(R^{n-1} - 1)}{R - 1} \qquad R = R = \frac{241}{240}$ $R = R = \frac{241}{240}$	RUGGESTED SOLUTIONS.	MARKS	MARKERS
$A_{1} = 10000 R.$ $A_{2} = 10000 R^{2} + MR$ $A_{3} = 10000 R^{3} + MR^{3} + MR,$ $A_{3} = 10000 R^{4} + M(R + R^{2} + \dots + R^{n-1})$ $R = R = \frac{241}{240}$ $= 10000 R^{n} + M \frac{R(R^{n-1} - 1)}{R - 1} R = R = \frac{241}{240}$ $R = R = \frac{241}{240}$	$\begin{array}{l} \dot{A}_{1} = 10000 \ R \\ \dot{A}_{2} = 10000 \ R^{2} + MR \\ \dot{A}_{3} = 10000 \ R^{3} + MR^{2} + MR \\ \dot{A}_{3} = 10000 \ R^{3} + M(R + R^{2} + \dots + R^{n-1}) \\ R = 10000 \ R^{n} + M(R + R^{2} + \dots + R^{n-1}) \\ = 10000 \ R^{n} + M \ \frac{R(R^{n-1} - 1)}{R - 1} \\ R = R \\ = \frac{241}{240} \\ R = R \\ = \frac{241}{240} \\ n = 60 \end{array}$	30199-0720	AWARDED	COMMENT
		$DR .$ $A_{1} = 10000 R .$ $A_{2} = 10000 R^{2} + MR$ $A_{3} = 10000 R^{3} + MR^{3} + MR .$ $A_{3} = 10000 R^{3} + M(R+R^{2} + \dots + R^{n})$ $= 10000 R^{n} + M(R+R^{2} + \dots + R^{n})$ $= 10000 R^{n} + M \frac{R(R^{n-1}-1)}{R-1}$ $A_{60} = 10000 \left(\frac{341}{340}\right)^{60} + M\left(\frac{341}{340}\left(\frac{3}{40}\right)^{60}\right)$	1) a=R R=R	$ \frac{24}{240} = \frac{241}{240} $