Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics/Mathematics Extension 1 Common, Mid Course Examination 2010

2010 HIGHER SCHOOL CERTIFICATE MID COURSE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time $2\frac{1}{2}$ hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 96

- Attempt Questions 1 8
- All questions are of equal value

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics/Mathematics Extension 1 Common, Mid Course Examination 2010

BLANK PAGE

Total Marks – 96 Attempt Questions 1-8 All questions are of equal value

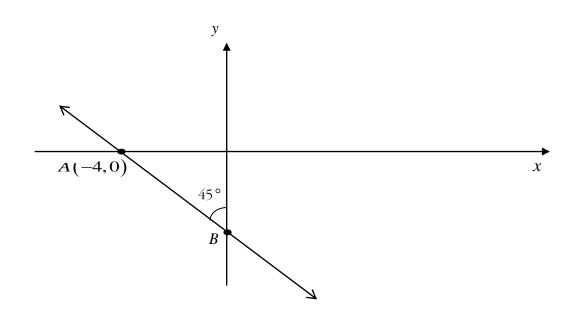
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing bookletMarks(a) Evaluate
$$\left(\frac{1}{\pi^{2:5}}-1\right)^2$$
 correct to 3 significant figures.2(b) Express $\frac{\sqrt{3}}{\sqrt{7}-\sqrt{2}}$ with a rational denominator.2(c) Solve $|3x-7| \le 4$ 2(d) State the domain of the function $y = \log_e x$ 1(e) If $\tan \theta = \frac{5}{12}$ and $\cos \theta > 0$, find the exact value of $\sin \theta$ 2(f) Solve $9^{2x-3} = 27^x$ 3

Question 2 (12 marks) Use a SEPARATE writing booklet

Marks

(a) Point *A* has coordinates A(-4,0). A line is drawn through point *A* as shown in the diagram below that intersects the *y*-axis at an angle of 45° .



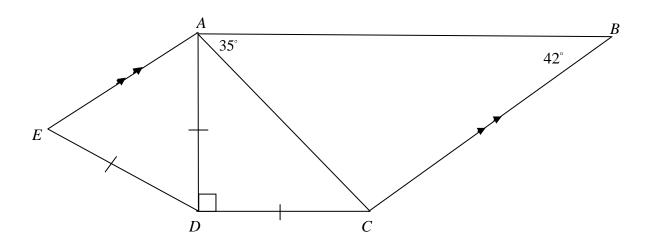
(i)	Find the gradient of the line <i>AB</i> and state the coordinates of the point <i>B</i> . You must show working out.	2
(ii)	Find the equation of the line that is parallel to AB passing through $(-4, -4)$	2
	If <i>AB</i> is the diameter of a circle, find:	
(iii)	The coordinates of the centre of the circle	1
(iv)	The equation of the circle with diameter AB	2
(v)	Show that the line in part (ii) is a tangent to the circle with diameter AB.	2

Question 2 continues on page 3

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics/Mathematics Extension 1 Common, Mid Course Examination 2010

Question 2 (continued)

(b) In the diagram below ED = AD = DC, $\angle ADC = 90^{\circ}$ and AE // BC. $\angle ABC = 42^{\circ}$, $\angle CAB = 35^{\circ}$



Find the size of $\angle AED$. Give reasons for your answer.

3

Question 3 (12 marks) Use a SEPARATE writing booklet

(a) Differentiate with respect to x

(i)
$$\frac{3}{x^5}$$
 1

(ii)
$$(5-x^2)^7$$
 2

(ii)
$$x^3 e^{4x}$$
 2

(b) Use Simpson's Rule with five function values to approximate

$$\int_{0}^{4} f(x)dx \text{ where } f(x) = \sqrt{x}$$

 $\int_{0}^{1} (e^{5x} - e^{-x}) dx$

Give your answer correct to 1 decimal place.

(c) Evaluate

Give your answer in exact form.

(d) Find

$$\frac{x^7 - x}{3x^5} dx$$

End of Question 3

Marks

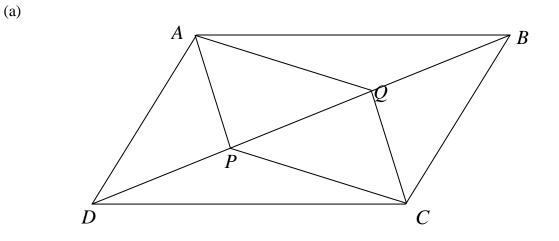
3

2

2

Question 4 (12 marks) Use a SEPARATE writing booklet

Marks



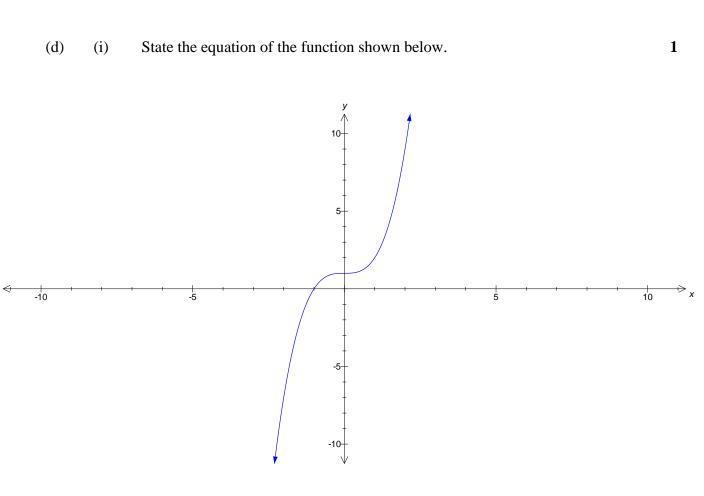
ABCD is a parallelogram. Points P and Q lie on the diagonal BD such that PD = QB.

	(i)	Copy or trace the diagram into your answer booklet and indicate all the information given on your diagram.	1
	(ii)	Prove that $\triangle ABQ \equiv \triangle CDP$ stating the congruency test used.	3
	(iii)	Hence show that $AQ = CP$	1
(b)		Find the values of k if the roots of the equation $2x^2 - 5x + k = 0$ are real and different.	2

(c) Find the values of a, b and c for which
$$3x^2 + 5x - 10 \equiv ax(x+3) + bx^2 + c(x+1)$$
 2

Question 4 continues on page 6

Question 4 (continued)

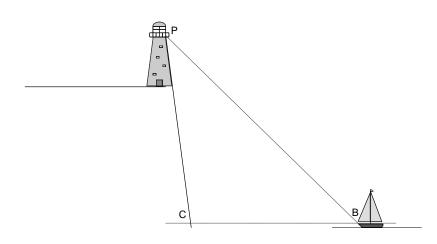


- (ii) Use the answer sheet page to accurately sketch on the same graph, y = |x-1| 1
- (iii) Hence solve $x^3 \le |x-1| 1$ 1

Question 5 (12 marks) Use a SEPARATE writing booklet

Marks

(a) A lighthouse sits at the top of a cliff which slopes at 105° from the horizontal. From the bow of the ship (B) the angle of elevation of the platform of the lighthouse (P) is 46° . Using radio signals the ship determines the distance PB is 800 metres.



(i)	Copy the diagram and mark all of the relevant information above on it.	1
(ii)	Calculate the distance <i>BC</i> of the bow from the base of the cliff Give your answer correct to the nearest metre.	2

(b) Find the equation of the normal to the curve
$$y = e^{5x-1}$$
 at the point $x = 1$ 3

(c) Show that
$$\frac{(1 + \tan^2 \theta) \cot \theta}{\cos ec^2 \theta} = \tan \theta$$
 3

(d) Solve
$$3\sin^2 \theta + 2\sin \theta = 1$$
 for $0 \le \theta \le 360^\circ$ 3
Give your answers in degrees and minutes.

Question 6 (12 marks) Use a SEPARATE writing booklet

(a) If α, β are the roots of the equation $2x^2 - 14x - 1 = 0$, find the value of

(i)
$$\alpha\beta$$
 1

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
. 2

(iii)
$$\alpha^2 + \beta^2$$
 1

(b) Given the quadratic polynomial $(x-4)^2 = -8(y+1)$, find the coordinates of the:

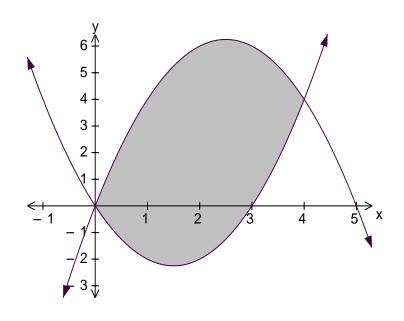
(i)	Vertex	1
(ii)	Focus (hint draw a diagram)	2
(iii)	Find the coordinates of the end points of the latus rectum	2

(c) The area bounded by the parabola $y=1-x^2$, and the x and y axes in the first quadrant 3 is rotated about the x-axis. Find the exact volume of the solid formed.

Question 7 (12 marks) Use a SEPARATE writing booklet

(a) If $\log_a 2 + 2\log_a x - \log_a 6 = \log_a 3$ find the value of x.

(b)



- (i) The curves $y = x^2 3x$ and $y = 5x x^2$ intersect at the point (0, 0). 1 Show that they also intersect at the point (4, 4).
- (ii) Find the exact shaded area enclosed between the two curves. 3
- (c) A closed cylindrical can is made from a sheet of metal with an area of 600π cm² Given that the surface area of a closed cylinder is $SA = 2\pi r^2 + 2\pi rh$ and the volume is $V = \pi r^2 h$:

(i)	Show that the volume of the can is given by $V = 300\pi r - \pi r^3$	2
(ii)	Find the exact maximum volume of the cylinder.	3
(iii)	Justify your answer to part (ii).	1

End of Question 7

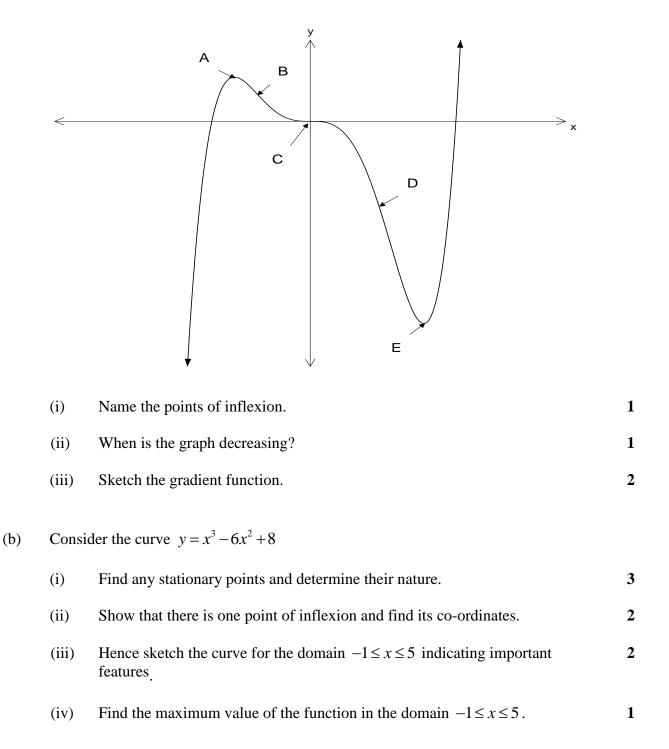
Marks

2

Question 8 (12 marks) Use a SEPARATE writing booklet

Marks

(a) The graph of the curve y = f(x) is drawn below.



End of Examination

2010 HIGHER SCHOOL CERTIFICATE HALF YEARLY EXAMINATION

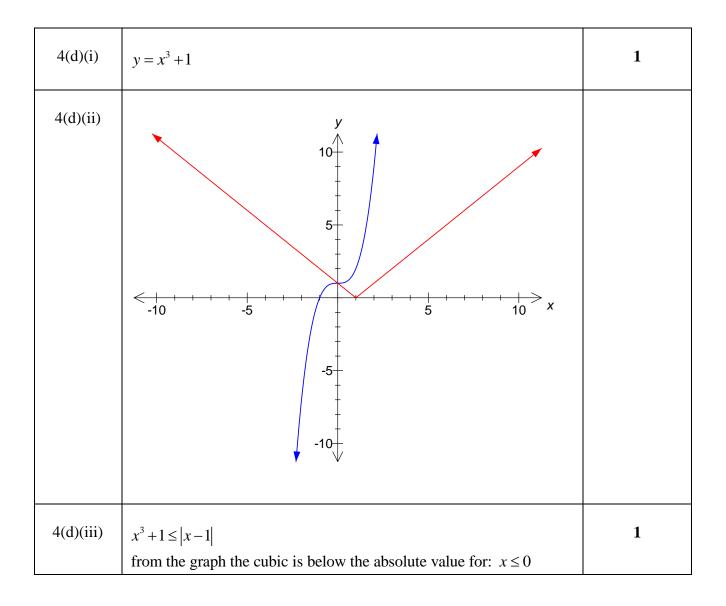
Mathematics SOLUTIONS

Question 1	Criteria	Marks
1(a)	0.88893905 = 0.889	1 1
1(b)	$\frac{\sqrt{3}\left[\sqrt{7} + \sqrt{2}\right]}{7 - 2}$ $= \frac{\sqrt{21} + \sqrt{6}}{5}$	1
1(c)	$x \le \frac{11}{3} = 3\frac{2}{3}$ and $x \ge 1$	1
	or $1 \le x \le \frac{11}{3}$	1
1(d)	Domain : $x > 0$, for all real x	1
1(e)	$H = \sqrt{5^2 + 12^2} = 13$ $\therefore \sin \theta = \frac{5}{13}$	1 1
1(f)	$3^{2(2x-3)} = 3^{3x}$ 4x-6=3x x=6	1 1 1

Question 2	Criteria	Marks
2(a)(i)	$m = \tan 135^\circ = -1$	1
2(a)(ii)	y+4 = -1(x+4) y = -x-8 or x + y + 8 = 0	1 1
2(a)(iii)	A(-4,0) B(0,-4) midpoint $AB = (-2,-2)$	1
2(a)(iv)	distance centre to $A = \sqrt{(-2+4)^2 + (-2+0)^2}$ = $\sqrt{8}$ or $2\sqrt{2}$ Circle: $(x+2)^2 + (y+2)^2 = 8$	1 1
2(a)(v)	$\frac{ x+y+8 }{\sqrt{1^2+1^2}} \text{ to } (-2,-2) = \frac{ -2-2+8 }{\sqrt{2}}$ $= \frac{4}{\sqrt{2}} \text{ or } 2\sqrt{2}$ Since the distance from the line to the centre of the circle is equal to the radius, the line must be a tangent to the circle	1
2(b)	$\angle EAB = 180^{\circ} - 42^{\circ} \text{(cointerior angles } \angle EAB \text{ and } \angle ABC; EA \parallel CB\text{)}$ $= 138^{\circ}$ $\angle DAC = 45^{\circ} \text{(equal angles of isosceles } \triangle ADC; \text{angle sum } \triangle ADC \text{)}$ $\angle DAE = 138^{\circ} - (45^{\circ} + 35^{\circ}) \text{(sum of adjacent angles)}$	1
	$= 58^{\circ}$ $\angle AED = 58^{\circ}$ (equal angles of isosceles $\triangle ADE$)	1

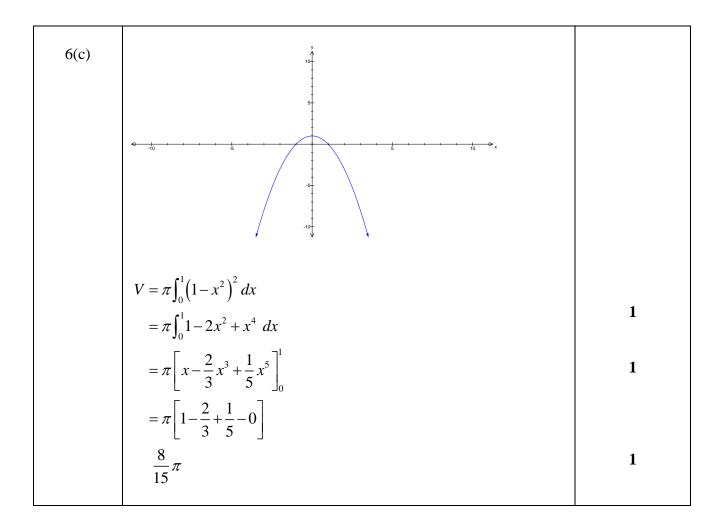
Question 3	Criteria	Marks
3(a)(i)	$-15x^{-6} = \frac{-15}{x^6}$	1
3(a)(ii)	$7(5-x^2)^6 \times -2x = -14x(5-x^2)^6$	1
3(a)(iii)	$3x^{2}e^{4x} + 4x^{3}e^{4x}$ = $x^{2}e^{4x}(3+4x)$	1
3(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	= 5.2522 = 5.3	1
3(c)	$\begin{bmatrix} \frac{1}{5}e^{5x} + e^{-x} \end{bmatrix}_{0}^{1}$ = $\left(\frac{1}{5}e^{5} + e^{-1}\right) - \left(\frac{1}{5}e^{0} + e^{0}\right)$ = $\frac{1}{5}e^{5} + e^{-1} - 1\frac{1}{5}$	1
3(d)	$\frac{1}{3}\int (x^2 - x^{-4})dx$ = $\frac{1}{3}\left[\frac{x^3}{3} + \frac{x^{-3}}{3}\right] + C$ = $\frac{1}{9}\left[x^3 + \frac{1}{x^3}\right] + C$ = $\frac{1}{9}x^3 + \frac{1}{9x^3} + C$	1

Question 4	Criteria	Marks
4(a)(i)		1
4(a)(ii)	$DC = AB \qquad (\text{opposite sides of parallelogram } ABCD \text{ are equal})$ $DP = QB \qquad (\text{given})$ $\angle PDC = \angle ABQ \qquad (\text{alternate } \angle \text{'s are equal}; AB \parallel DC)$ $\therefore \triangle ABQ \equiv \triangle CDP \qquad (\text{two sides and the included angle equal SAS})$	1 1 1
4(a)(iii)	AQ = CP (corresponding sides of congruent triangles are equal)	1
4(b)	$\Delta = (-5)^2 - 4 \times 2 \times k = 25 - 8k$ for real and different roots $\Delta > 0$ $\therefore 25 - 8k > 0$ $k < \frac{25}{8} \text{ or } k < 3\frac{1}{8}$	1 1
4(c)	$3x^{2} + 5x - 10 \equiv ax^{2} + 3ax + bx^{2} + cx + c$ $\equiv x^{2}(a+b) + x(3a+c) + c$ $c = -10$ $3a + c = 5 \implies a = 5$	1
	$a+b=3 \Longrightarrow b=-2$ a=5, b=-2, c=-10	1



Question 5	Criteria	Marks
5(a)(i)	800 <i>m</i> c 105° 46° B	1
5(a)(ii)	$\angle CBP = 29^{\circ}$ $\frac{BC}{\sin 29^{\circ}} = \frac{800}{\sin 105^{\circ}}$ $BC = 401.52948metres$ $BC = 402metres$	1
5(b)	$m = \frac{dy}{dx} = 5e^{5x-1}; x = 1, m_1 = 5e^4$ $\therefore m_2 = \frac{-1}{5e^4}$ $x = 1, y = e^4$ $\therefore y - e^4 = \frac{-1}{5e^4} [x-1]$ $y = \frac{-1}{5e^4} [x-1] + e^4 = \frac{1}{5e^4} + e^4 - \frac{x}{5e^4}$	1 1 1
5(c)	$\frac{\left(\sec^2\theta\right)\frac{1}{\tan\theta}}{\sin^2\theta} = \frac{\left(\frac{1}{\cos^2\theta}\right) \times \frac{\cos\theta}{\sin\theta}}{\sin^2\theta}$ $= \left(\frac{\sin^2\theta}{\cos^2\theta}\right) \times \frac{\cos\theta}{\sin\theta} = \frac{\sin\theta}{\cos\theta} = \tan\theta$	1,1
5(d)	$3\sin^{2} \theta + 2\sin \theta - 1 = 0$ (3sin $\theta - 1$)(sin $\theta + 1$) = 0 sin $\theta = \frac{1}{3}$, sin $\theta = -1$ $\theta = 19^{\circ}28', 160^{\circ}32', 270^{\circ}00'$	1 1 1

Question 6	Criteria	Marks
6(a)(i)	$\alpha\beta = -\frac{1}{2}$	1
6(a)(ii)	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta}$	1
	$= \frac{7}{-\frac{1}{2}} = -14$	1
6(a)(iii)	$\alpha^2 + \beta^2 = \left(\alpha + \beta\right)^2 - 2\alpha\beta$	
	$=7^{2}-2\left(-\frac{1}{2}\right)=50$	1
6(b)(i)	(4,-1)	1
6(b)(ii)	a = 2; (4, -3)	2
6(b)(iii)	length of latus rectum = 8; 4 left of focus and 4 right of focus $(8,-3)$ and $(0,-3)$	2



Question 7	Criteria	Marks
7(a)	$\log_a \left[\frac{2x^2}{6} \right] = \log_a 3$	1
	$\frac{x^2}{3} = 3$ $x^2 = 9$	
	$x = \pm 3$	
	$x \neq -3$ $\therefore x = 3$	1
7(b)(i)	$4^2 - 3(4) = 4, 5(4) - 4^2 = 4$	1
7(b)(ii)	$A = \int_0^4 (5x - x^2) - (x^2 - 3x) dx$	1
	$=\int_{0}^{4} (8x - 2x^{2}) dx = \left[4x^{2} - \frac{2x^{3}}{3} \right]_{0}^{4}$	
	$= \left\{ 4(4)^2 - \frac{2(4)^3}{3} \right\} - \left\{ 4(0)^2 - \frac{2(0)}{3} \right\}$	1
	$= 64 - \frac{2(64)}{3} - 0 = 21\frac{1}{3}units^{2}$	1
7(c)(i)	$600\pi = 2\pi r^2 + 2\pi rh$	
	$h = \frac{300 - r^2}{r}$	1
	$V = \pi r^2 \left[\frac{300 - r^2}{r} \right] = 300\pi r - \pi r^3$	1
7(c)(ii)	$\frac{dy}{dx} = 300\pi - 3\pi r^2 = 0$	1
	$r^2 = 100, \therefore r = 10cm, reject$ $r = -10cm$	1
	: $V = 3000\pi - 1000\pi = 2000\pi cm^3$	1
7(c)(ii)	$\frac{d^2 y}{dx^2} = -6\pi r = -6\pi(10) = -60\pi < 0$	1
	So <i>V</i> is a maximum.	

Question 8	Criteria	Marks
8(a)(i)	<i>B</i> , <i>C</i> , <i>D</i>	1
8(a)(ii)	Between A and C and C and E	1
8(a)(iii)		2
		→ _x
	1 correct zeros 1 correct shape	
8(b)(i)	$\frac{dy}{dx} = 3x^2 - 12x$	
	$dx \\ \therefore x = 0, 4 \qquad y = 8, -24$	1
	$\frac{d^2 y}{dx^2} = 6x - 12$	
	at $x = 0 \frac{d^2 y}{dx^2} < 0 \qquad \Rightarrow (0,8)$ is max	1
	dx $\frac{dy}{dx} = 0 \Rightarrow 3x(x-4) = 0$ $\therefore x = 0, 4 \qquad y = 8, -24$ $\frac{d^2 y}{dx^2} = 6x - 12$ $at \ x = 0 \ \frac{d^2 y}{dx^2} < 0 \qquad \Rightarrow (0,8) \ is \ max$ $at \ x = 4 \ \frac{d^2 y}{dx^2} > 0 \qquad \Rightarrow (4, -24) \ is \ min$	1

