

Moriah College
MATHEMATICS DEPARTMENT

Year 12

Mathematics Pre-Trial 2007

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page and a detachable sheet is provided on page.
- All necessary working should be shown in every question

Total marks (120)

- Attempt Questions 1-10
- All questions are of equal value
- Use a SEPARATE answer sheet for each question
\qquad

Question 1 (12 marks). Use a SEPARATE Writing Booklet.

Marks

(a) Evaluate e^{-3} correct to three significant figures.
(b) Solve $|3 x+2| \leq 5$
(c) Fully factorise $27 x^{3}-64 y^{3}$
(d) Differentiate with respect to x :

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{4}{x^{2}} \tag{2}
\end{equation*}
$$

(e) Find the fractional equivalent of $0 \cdot 6 \dot{8}$.
(f) Find integers a and b such that:

$$
(3-\sqrt{2})^{2}=a-b \sqrt{2}
$$

Question 2 (12 marks). Use a SEPARATE Writing Booklet.

Marks
(a)

(a) The diagram shows the points $A(3,5)$ and B, where the line $A B$ cuts the x-axis at B. The line ℓ has equation $3 x-5 y-8=0$ and is parallel to $A B$.
i. Find the gradient of the line $A B$.
ii. Find the equation of the line $A B$.
iii. Find the coordinates of point B.
iv. Write down the size of $\angle A B O$ correct to the nearest degree.
v. Another point $C(-2,2)$ also lies on $A B$. Find the exact length of the interval $A C$.
vi. Find the exact perpendicular distance of C from the line ℓ.
vii. Find the exact area of the triangle formed by the points A, C and any point P, on the line ℓ.
viii. Explain why the area of triangle $A C P$ is constant, regardless of the position of P on the line ℓ.
(b) Find the equation of the normal to the curve $y=2 x^{2}-5 x+1$ at the point $(2,-1)$.

Question 3 (12 marks). Use a SEPARATE Writing Booklet.
(a) In $\triangle \mathrm{PQR}$ below, $\angle \mathrm{RPQ}=45^{\circ}$ and $\angle \mathrm{RQP}=30^{\circ}$.

Find the exact value of $\frac{p}{q}$.
(b) In \triangle CAT below, $\mathrm{CA}=8.3 \mathrm{~m}, \mathrm{AT}=58 \mathrm{~m}$ and $\angle \mathrm{TAC}=110^{\circ}$.

NOT TO SCALE
(i) Find the length of CT correct to one decimal place.
(ii) Find the size of the smallest angle correct to the nearest degree.
(ii) Hence or otherwise, solve: $2 \cos ^{2} A+3 \sin ^{2} A-3=0$ for $0^{\circ} \leq A \leq 360^{\circ}$.

Question 4 (12 marks). Use a SEPARATE Writing Booklet.
(a) Find:

$$
\lim _{x \rightarrow 2} \frac{2 x^{2}-3 x-2}{x-2}
$$

Marks

(b) Differentiate:
i. $y=5 \sqrt{x}-\frac{3}{x^{4}}$

2
ii. $\quad f(x)=\frac{2 x+3}{3 x+2}$

2
(c) A function $y=f(x)$ has $\frac{d^{2} y}{d x^{2}}=6 x-2$ and a stationary point at $(1,2)$.

Find the equation of $f(x)$.
(d) Solve for x :

$$
4^{x}-9 \times 2^{x}+8=0
$$

Question 5 (12 marks). Use a SEPARATE Writing Booklet.
(a) The sum of the first three terms of a geometric series is 19 and the sum to infinity is 27 .

Find:
i. the common ratio. $\mathbf{2}$
ii. the first term. 1
iii. the fifth term. $\mathbf{1}$
(b) The first four terms of a series are 3, x, y and 192.

Find the values of x and y if the series is:
i. Arithmetic 2
ii. Geometric 2
(c) The sum of n terms of a certain series is given by:

$$
S_{n}=2 n(n+1) .
$$

i. Find the first three terms of this sequence. $\mathbf{2}$
ii. Which term of the sequence is 124 ?

Question 6 (12 marks). Use a SEPARATE Writing Booklet.

Marks
(a) Consider the parabola $y=-4 x^{2}-16 x-15$,
i. Find the coordinates of its vertex. $\mathbf{2}$
ii. Find the coordinates of its focus.
(b) $\quad \alpha$ and β are the roots of the equation $2 x^{2}+5 x-5=0$. Find the values of:
i. $\alpha+\beta$
1
ii. $\alpha \beta$

1
iii. $\alpha^{-1}+\beta^{-1}$
(c)

i. Show that $y=x^{3}$ is an odd function.
ii. Hence, or otherwise, find the area between the curves $y=x$ and $y=x^{3}$.

Question 7 (12 marks). Use a SEPARATE Writing Booklet.

Marks

(a) Consider the curve given by $y=3 x^{2}+x^{3}-9 x-5$.
i. Find $\frac{d y}{d x}$.

1
ii. Find the coordinates of the two stationary points.

2
iii. Determine the nature of the stationary points.

2
iv. Sketch the graph of the function for the domain $-5 \leq x \leq 3$.
(b) Evaluate the following integral, giving your answer in exact form:

$$
\int_{0}^{1} e^{2-3 x} d x
$$

(c) Differentiate $y=e^{-x^{3}}$ and hence or otherwise find $\int_{1}^{2} x^{2} e^{-x^{3}} d x$ correct to three decimal places.

Question 8 (12 marks). Use a SEPARATE Writing Booklet.

Marks

(a) A point P moves so that the distance from the point $A(-6,-2)$, is three times the distance from the point $B(2,2)$.
i. Find the equation that describes the locus of the point P.
ii. Describe this locus geometrically.
(b) The area enclosed by the curve $x y=3$, the y-axis and the lines $y=1$ and $y=4$, is rotated about the y-axis.

Find the volume of the solid of revolution correct to three decimal places.

Question 9 (12 marks). Use a SEPARATE Writing Booklet.

Marks

(a) Differentiate the following functions:
i. $\quad y=\left(e^{4 x+3}-3\right)^{4}$
ii. $y=\frac{x}{e^{x}}$

2

2
(b) The diagram shows the sketch of $y=(x+1)(x-1)^{2}$.

i. Find the coordinates of the points A, B and C, the intercepts on the axes.
(c) The following table gives values of $f(x)=x \log _{e} x$.

x	1	2	3	4	5
$f(x)$	0	1.39	3.30	$5 \cdot 55$	8.05

Use Simpson's Rule and these five functional values in the table above to find an approximation of $\int_{1}^{5} x \log _{e} x d x$ correct to two decimal places.

Question 10 (12 marks). Use a SEPARATE Writing Booklet.
(a) Consider the function $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
i. Show that the curve represents an even function.

1
ii. Show that the function has only one stationary point and determine its nature.

3

1

1
(b) A metal chain hangs between two walls, which stand two metres apart, as shown in the diagram below. The height of this chain above the ground, is given by the equation: $y=e^{-2 x}+e^{x}$ (x and y are measured in metres)

Answer the following questions, giving all answers correct to 2 decimal places:
i. How far from the ground is the chain hooked to the right wall?
ii. Find the area of the shaded region.

MATHEMATICS PRE-TRIAL 2007

Solutions

Question 1
(a) $e^{-3}=0.0498$ (3 significant figures)
(b)

$$
\begin{aligned}
& -5 \leq 3 x+2 \leq 5 \\
& -7 \leq 3 x \leq 3 \\
& \frac{-7}{3} \leq x \leq 1
\end{aligned}
$$

(c)

$$
\begin{aligned}
& (3 x)^{3}-(4 y)^{3} \quad \Rightarrow \\
& (3 x-4 y)\left(9 x^{2}+12 x y+16 y^{2}\right)
\end{aligned}
$$

(d)

$$
\begin{aligned}
& y=\frac{1}{2} x^{2}-4 x^{-2} \Rightarrow \\
& y^{\prime}=x+8 x^{-3} \\
& y^{\prime}=x+\frac{8}{x^{3}}
\end{aligned}
$$

(e) Let: $x=0.6 \dot{8}$

So : $10 x=6 . \dot{8}$
And $: 100 x=68.8$

Subtracting [1] from [2] yields:
$90 x=62$
$x=\frac{62}{90}=\frac{31}{45}$
(f)

$$
\begin{aligned}
& (3-\sqrt{2})^{2}=a-b \sqrt{2} \\
& 9-6 \sqrt{2}+2=a-b \sqrt{2} \\
& 11-6 \sqrt{2}=a-b \sqrt{2}
\end{aligned}
$$

Comparing the rational coefficients and the irrational coefficients yields:
$a=11$
$b=6$

Question 2

(a)
i. Rearrange: $3 x-5 y-8=0$

$$
\begin{aligned}
y & =\frac{3}{5} x-\frac{8}{5} \\
m & =\frac{3}{5}
\end{aligned} \quad \Rightarrow
$$

$$
1
$$

ii. $\quad \frac{y-5}{x-3}=\frac{3}{5}$

$$
\begin{array}{lr}
x-3=\frac{2}{5} & 25=9 t \\
5 y-3 x-16=0 & b=\frac{16}{5}
\end{array}
$$

$$
y=\frac{3}{5} x+\frac{16}{5}
$$

Substitute $y=0$ in the equation of
$A B$:
$-3 x-16=0$
$x=\frac{-16}{3}$
$B:\left(\frac{-16}{3}, 0\right) \quad\left(-5 \frac{1}{3}, 0\right)$
iv. Let $\measuredangle A B O=\alpha$, then:

$$
\tan \alpha=\frac{3}{5} \quad \Rightarrow \alpha=31 \quad \text { (nearest dog }\left.\right|_{1}
$$

v. $A:(3,5)$ and $(-2,2)$, so the length $A B$ is:

$$
\begin{aligned}
& A C=\sqrt{(3+2)^{2}+(5-2)^{2}} \\
& A=\sqrt{5^{2}+3^{2}} \\
& A=\sqrt{34} \quad \text { units }
\end{aligned}
$$

3

$$
d=\frac{|a x+b+c|}{\sqrt{a^{2}+b^{2}}}
$$

vi. The distance of
from the line:

$$
3 x-5 y-8=0
$$

$$
\left|\frac{\left.3(-2)+(-5)^{2}\right)-9}{\sqrt{3^{2}+(-3)^{2}}}\right|
$$

$$
=\frac{24}{\sqrt{34}}=\frac{12 \sqrt{34}}{17}
$$

vii. Area:

$$
=\frac{1}{2} \times \sqrt{34} \times 24
$$

viii. The lines are parallel and,
therefore, the distance between the two lines is constant.
(b) $\quad y^{\prime}=4 x-5 \quad$ at $x=2 ; y^{\prime}=3$

$$
\begin{aligned}
& \therefore m_{1}=-\frac{1}{3} \\
& \therefore \quad y=-\frac{1}{3} x+c \\
&(2-1):-1=-\frac{2}{3}+c \\
& c=-\frac{1}{3} \\
& \therefore y=-\frac{1}{3} x-\frac{1}{3} \\
& \text { (Q) } 3 y+x+1=0 .
\end{aligned}
$$

Question 3

a) Applying the sine rule to the triangle $R P Q$:

$$
\begin{aligned}
& \frac{p}{\sin 45^{\circ}}=\frac{q}{\sin 30^{\circ}} \\
& \frac{p}{q}=\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}=\sqrt{2} \quad \frac{1}{\frac{1}{\sqrt{2}}}=\frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& 1
\end{aligned}
$$

b)
i. Applying the cosine rule to the triangle $A C T$:
$C T^{2}=8.3^{2}+5.8^{2}-2 \times 8.3 \times 5.8 \times \cos 110^{\circ}$
$\left.C T=11.6 \mathrm{~m} \quad(\mid d \rho)-\frac{1}{2} \quad \right\rvert\,$
ii. The smallest angles lies opposite the smallest side, so angle $T C A$ is the smallest angle.

Let $\measuredangle T C A=\theta$ Applying the sine rule to the triangle $T C A$:

$$
\frac{5.8}{\sin \theta}=\frac{11.6}{\sin 110^{\circ}} \quad \Rightarrow
$$

$$
\frac{5.8 \times \sin 110^{\circ}}{11.6}=\sin \theta
$$

$$
\begin{aligned}
& 0.468=\sin \theta \\
& \theta=28^{\circ} \quad \text { (告erest def) }
\end{aligned}
$$

$\frac{\sin \theta}{\delta .8}=\frac{\sin 110^{\circ}}{11.6}$
$\sin \theta=\frac{58 \sin 10^{\circ}}{11.6}$

> use the identity:
> $\cos ^{2} B+\sin ^{2} B=1$
> (i) $L H S$:
> $=2 \cos ^{2} B+3 \sin ^{2} B-2$
> $=2\left(1-\sin ^{2} B\right)+3 \sin ^{2} B-2$
> $=2-2 \sin ^{2} B+3 \sin ^{2} B-2$
> $=\sin ^{2} B$
> So, $L H S=R H S$
(ii)

$$
\begin{aligned}
& \underbrace{2 \cos ^{2} A+3 \sin ^{2} A-2}_{\sin ^{2} A}-1=0 \quad 1 \\
& \sin ^{2} A-1=0 \\
& \sin ^{2} A=1 \\
& \sin A= \pm 1 \\
& \sin A=1 \quad \Rightarrow A=90^{\circ} \quad 3 \\
& \sin A=-1 \quad \Rightarrow A=270^{\circ} \\
& \text { (ANOt,then mat }
\end{aligned}
$$

Question 4
(a) $\lim _{x \rightarrow 2} \frac{2 x^{2}-3 x-2}{x-2}$
$=\lim _{x \rightarrow 2} \frac{(x-2)(2 x+1)}{x-2}$
$=\lim _{x \rightarrow 2}(2 x+1)=5$
(b)

Rewrite: $y=5 x^{\frac{1}{2}}-3 x^{-4}$

$$
\begin{aligned}
& y^{\prime}=\frac{5}{2} x^{-\frac{1}{2}}+12 x^{-5} \\
& y^{\prime}=\frac{5}{2 \sqrt{x}}+\frac{12}{x^{5}} \\
& \text { Let } \begin{array}{ll}
u=2 x+3 & v=3 x+2 \\
u^{\prime}=2 & v^{\prime}=3
\end{array}
\end{aligned}
$$

(2)

Use the quotient rule:
$f^{\prime}(x)=\frac{u^{\prime} v-v^{\prime} u}{(v)^{2}}$
Formula wry
$f^{\prime}(x)=\frac{2(3 x+2)-3(2 x+3)}{(3 x+2)^{2}}$
$f^{\prime}(x)=\frac{-5}{(3 x+2)^{2}}$.
(c) Given $f^{\prime \prime}(x)=6 x-2$

$$
\Rightarrow \quad f^{\prime}(x)=3 x^{2}-2 x+C
$$

Also, given stationary
point: $f^{\prime}(1)=0$

$$
\begin{array}{ll}
\Rightarrow & 0=3-2+C \\
\Rightarrow & C=-1
\end{array}
$$

So, $f^{\prime}(x)=3 x^{2}-2 x-1$.
Therefore: $f(x)=x^{3}-x^{2}-x+D$
The point $(1,2)$ lies on the graph so $f(1)=2$. Substitute:

$$
\begin{aligned}
& 2=1^{3}-1^{2}-1+D \\
& \Rightarrow \quad D=3 \\
& f(x)=x^{3}-x^{2}-x+3
\end{aligned}
$$

(d) Let $m=2^{x}$, so the equation simplifies to:

$$
\begin{aligned}
& m^{2}-9 m+8=0 \\
& (m-1)(m-8)=0 \\
& m=1 \quad \text { or } \quad m=8 \\
& 2^{x}=1 \quad \text { or: } \quad \begin{array}{l}
2^{x}=8 \\
x=0
\end{array} \quad x=3
\end{aligned}
$$

Question 5

(a)
i. Given: $\left\{\begin{array}{l}S_{3}=19 \\ S=27\end{array}\right.$

$$
\Rightarrow\left\{\begin{array}{l}
\frac{a\left(1-r^{3}\right)}{1-r}=19 \\
\frac{a}{1-r}=27
\end{array}\right.
$$

[I]
[II]

Dividing [I] by [II] yields:
$1-r^{3}=\frac{19}{27}$ and that can be simplified to: Λ

$$
r^{3}=\frac{8}{27} \Rightarrow \quad r=\frac{2}{3} \quad \Lambda
$$

ii. Put in [II] and find the value of the first term: $a=9$

iii. And so, for a general formula:

$$
\begin{array}{ll}
T_{n}=9 \times\left(\frac{2}{3}\right)^{n-1} & \Rightarrow \\
T_{5}=\frac{16}{9} &
\end{array}
$$

(b) Let the sequence of numbers be:
$3, x, y, 192$
We know that $\left\{\begin{array}{l}a=3 \\ T_{4}=192\end{array}\right.$
i. If the sequence is an AP then: $192=3+3 \mathrm{~d}$ $\mathrm{d}=63$ and then: $x=66$ and $y=129$
i. If the sequence is a GP then:
$192=3 \times r^{3}$

$64=r^{3}$
$4=r$
(c)
$S_{1}=T_{1}=2 \times 2$
$\therefore T_{1}=4$
i. $\quad S_{2}=T_{1}+T_{2} \quad \Rightarrow$
$12=4+T_{2}$
$\therefore T_{2}=8$
$S_{3}=24$
$S_{3}=T_{1}+T_{2}+T_{3}$
$24=4+8+T_{3}$
$\therefore T_{3}=12$

clearly an AP emerging, for which the first term $=4$ and the common difference is 4 :
$T_{n}=4+4(n-1)$
$T_{n}=4 n \quad \Rightarrow$

$$
\begin{aligned}
& 124=4 n \\
& 31=n
\end{aligned}
$$

So, the $31^{\text {st } t}$ term of the given sequence is 124

Question 6

(a)

Rewrite the equation of the parabola:
$y=-4\left(x^{2}+4 x+4\right)+1$
$y-1=-4(x+2)^{2}$
$\frac{1}{4}(y-1)=-(x+2)^{2}$
The vertex is at: $(-2,1)$
Comparing the parabola to: $4 a(y-n)=-(x-p)^{2}$
We get: $4 a=\frac{1}{4}$ or: $a=\frac{1}{16}$
Therefore the focus is at: $\left(-2, \frac{15}{16}\right)$
(b) $\alpha+\beta=\frac{-b}{a}=\frac{-5}{2}$

$$
\alpha \beta=\frac{c}{a}=\frac{-5}{2}
$$

$$
\alpha^{-1}+\beta^{-1}=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=1
$$

(c)
i. Let: $f(x)=x^{3}$

$$
\begin{aligned}
& \text { So, } f(-x)=(-x)^{3}=-x^{3} \\
& f(-x)=-f(x) \quad \text { [Hence, odd function] }
\end{aligned}
$$

ii. Find points of intersection between $y=x^{3}$ and $y=x$

$$
\begin{aligned}
x=x^{2} & \Rightarrow \quad x^{3}-x=0 \\
& \Rightarrow x\left(x^{2}-1\right)=0 \quad \Rightarrow \quad x(x-1)(x+1)=0
\end{aligned}
$$

Intersection at: $(1,0),(-1,0)$ and $(0,0)$
Since the graph is of an odd function, it has a point symmetry and the area shaded in the first quadrant is the same as that in the fourth quadrant. Therefore, it is sufficient to
calculate: $A=2 \int_{0}^{1}\left(x-x^{3}\right) d x$
$2 \times \frac{1}{4}=\frac{1}{2} u n i t s^{2}$
$A=2 \times\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}=2 \times \frac{1}{4}$ so total area:

Question 7
a.
i. $\quad \frac{d y}{d x}=6 x+3 x^{2}-9$
ii. For stationary points, solve: $\frac{d y}{d x}=0$

$0=6 x+3 x^{2}-9$
$(-3,22) \quad$ or $\quad(1,-10)$
iii. $\quad \frac{d^{2} y}{d x^{2}}=6+6 x$

At $x=-3$

$$
\frac{d^{2} y}{d x^{2}}=-12<0
$$

$\Rightarrow \operatorname{Max}$

At $x=1$
\Rightarrow Min
iv.
$(-3,22)$
$\Rightarrow(2100$

6. $y^{\prime}=-3 x^{2} e^{-x^{2}}$
$\Rightarrow \int_{1}^{2} x^{2} e^{-x^{7}} d x=\left[\frac{e^{-x^{3}}}{-3}\right]_{1}^{2}=\left[\frac{\left(e^{-8}-e^{-1}\right)}{-3}\right]=0.123$
b. $\quad \int_{0}^{1} e^{2-3 x} d x=\left[\frac{e^{2-3 x}}{-3}\right]_{0}^{1}=\frac{e^{-1}-e^{2}}{-3}=\frac{e^{3}-1}{3 e}$

Question 8

Let $\mathrm{P}:(x, y)$, then: $\quad P A=\sqrt{(x+6)^{2}+(y+2)^{2}}$

Since $P A=3 P B$

$$
\begin{aligned}
& P B=\sqrt{(x-2)^{2}+(y-2)^{2}} \\
& \sqrt{(x+6)^{2}+(y+2)^{2}}=3 \sqrt{(x-2)^{2}+(y-2)^{2}} \\
& (x+6)^{2}+(y+2)^{2}=9\left((x-2)^{2}+(y-2)^{2}\right) \\
& x^{2}+12 x+36+y^{2}+4 y+4=9\left(x^{2}-4 x+4+y^{2}-4 y+4\right) \\
& x^{2}+12 x+y^{2}+4 y+40=9\left(x^{2}-4 x+y^{2}-4 y+8\right) \\
& x^{2}+12 x+y^{2}+4 y+40=9 x^{2}-36 x+9 y-36 y+72 \\
& 0=8 x^{2}-48 x+8 y^{2}-40 y+32 \\
& 0=x^{2}-6 x+y^{2}-5 y+4 \\
& 0=(x-3)^{2}-9+(y-2.5)^{2}-6.25+4 \\
& 11.25=(x-3)^{2}+(y-2.5)^{2}
\end{aligned}
$$

b. Rearrange: $x=\frac{3}{y}$

$$
\begin{aligned}
& V=\pi \int_{1}^{4}\left(\frac{3}{y}\right)^{2} d y \\
& V=\pi \int_{1}^{4}\left(\frac{9}{y^{2}}\right) d y \\
& V=\pi \int_{1}^{4}\left(9 y^{-2}\right) d y \\
& V=\pi\left[\frac{9 y^{-1}}{-1}\right]_{1}^{4} \\
& V=\pi\left[-\frac{9}{y}\right]_{1}^{4}=\pi\left(\frac{-9}{4}+9\right)=21.206 u^{3}
\end{aligned}
$$

c.
d.

Volume generated is given by:

Question 9
a.
i. $\quad y^{\prime}=4\left(e^{4 x+3}-3\right)^{3} \times 4 e^{4 x+3}$
$y^{\prime}=16 e^{4 x+3}\left(e^{4 x+3}-3\right)^{3}$
ii. Rearrange: $y=x e^{-x}$ Use product rule with:

$$
\begin{aligned}
& u=x \quad v=e^{-x} \\
& u^{\prime}=1 \quad v^{\prime}=-e^{-x} \\
& y^{\prime}=1 e^{-x}-x e^{-x} \\
& y^{\prime}=e^{-x}(1-x)
\end{aligned}
$$

b. For A and C need to solve: $(x+1)(x-1)^{2}=0$

$x=-1$ or	$x=1$
$A:(-1,0)$	$B:(1,0)$

For B, substitute $x=0$ in equation: $y=(0+1)(0-1)^{2}=1$ B: $(0,1)$
c. Rewrite: $y=x^{3}-x^{2}-x+1$

$$
\begin{array}{ll}
A_{1}=\int_{-1}^{0}\left(x^{3}-x^{2}-x+1\right) d x & A_{2}=\int_{0}^{1}\left(x^{3}-x^{2}-x+1\right) d x \\
A_{1}=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{x^{2}}{2}+x\right]_{-1}^{0} & A_{2}=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{x^{2}}{2}+x\right]_{0}^{1} \\
A_{1}=\frac{11}{12} u^{2} & A_{2}=\frac{5}{12} u^{2}
\end{array}
$$

$\frac{A_{1}}{A_{2}}=\frac{\frac{11}{\frac{12}{5}}}{\frac{11}{12}}=\frac{11}{5}$
b. $\quad \int_{1}^{5} x \log _{e} x \approx \frac{1}{3}(0 \times 1+1.39 \times 4+3.30 \times 2+5.55 \times 4+8.05 \times 1)$
$\int_{1}^{5} x \log _{e} x \approx 14.14$
c.

Question 10
a.
i. Consider: $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$

Then: $f(-x)=\frac{1}{2}\left(e^{-x}+e^{x}\right)$

$$
\therefore f(-x)=f(x) \quad \text { The function is even. }
$$

ii. $\quad f^{\prime}(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

For stationary point $f^{\prime}(x)=0 \quad \Rightarrow \quad 0=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
$\Rightarrow \quad 0=e^{x}-e^{-x}$
$\Rightarrow \quad e^{x}=e^{-x}$
$\Rightarrow \quad x=-x$
$\Rightarrow \quad 2 x=0$
$\Rightarrow \quad x=0$
At $x=0: f(0)=\frac{1}{2}(1+1)=1 \quad \Rightarrow \quad(0,1)$ stationary point
Nature of stationary point.
$f^{\prime \prime}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
At $x=0$
$f^{\prime \prime}(0)=1>0 \quad \Rightarrow$ Minimum
iii. For inflexion, need to solve:
$f^{\prime \prime}(x)=0$

b.
i. Substitute $x=2$ into the function:

$$
y=e^{-4}+e^{2}=7.41
$$

ii. $A=\int_{0}^{2}\left(e^{2 x}+e^{x}\right) d x$

$$
A=\left|\frac{e^{-2 x}}{-2}+e^{x}\right|_{0}^{2}=6.880 u^{2}
$$

