Student Number

Moriah College

Year 12 - Task 2 - Pre-Trial MATHEMATICS
 2009

Time Allowed: 3 hours
Examiners: C. White, L. Bornstein

General Instructions

-Reading time - 5 minutes

- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions $1-10$
- All questions are of equal value
(a) Evaluate correct to 3 significant figures:

$$
\frac{e^{3}+2.58}{\sqrt{3.5-2.3}}
$$

(b) Solve $|x-5| \leq 7$
(c) Solve $x^{2}-3 x-10=0$

2
(d) Differentiate $x^{6}-2 x^{-1}+3$ with respect to x
(e) Find integers a and b such that $(4+\sqrt{3})^{2}=a+b \sqrt{3}$

2
(f) Solve the following pair of simultaneous equations:

$$
\begin{aligned}
& 3 x+2 y=14 \\
& 2 x-4 y=-12
\end{aligned}
$$

(a) Find the equation of the normal to the curve $y=x^{2}+5 x$ at the point $(1,6)$.
(b)

The points $A(3,0), B$ and $C(5,2)$ form a triangle, as shown in the diagram. The line $B C$ has equation $x+2 y-9=0$ and the line $A B$ has equation $2 x+y-6=0$.
(i) Find the gradient of the line $A C$.
(ii) Show that the equation of the line $A C$ is $x-y-3=0$.
(iii) Show that the coordinates of the point B are $(1,4)$.
(iv) Show that the perpendicular distance between the point B and the line $A C$ is $3 \sqrt{2}$.
(v) Find the area of the triangle $A B C$.
(a) Evaluate $\int_{1}^{2}\left(\frac{3 x^{4}-2 x}{x^{3}}\right) d x$

2

2

In the diagram $A B C D$ is a parallelogram. Given that $\angle C B D=23^{\circ}$, $\angle C A D=18^{\circ}$ and $\angle B D C=87^{\circ}$, find the size of $\angle A C D$. Give reasons for your answer.
(c) Differentiate with respect to x :
(i) $\left(x^{2}-3\right)^{7}$
(ii) $\frac{2 x}{e^{x}}$
(d)

In the diagram above $A B=2.4 \mathrm{~m}, A C=5.8 \mathrm{~m}, B D=2.8 \mathrm{~m}$, $\angle B A C=30^{\circ}$ and $\angle D B C=20^{\circ}$.
(i) Show that the length of $B C=3.9 \mathrm{~m}$, to 1 decimal place.
(ii) Hence or otherwise find the area of triangle $B C D$, to the nearest metre.
(a) The first 3 terms of arithmetic series are $-5+1+7+\ldots$:
(i) Find the $55^{\text {th }}$ term of the series.

2
(ii) Hence, or otherwise find the sum of the first 55 terms of the series.
(b) Given that $\sin \theta=\frac{2}{3}$ and $90^{\circ} \leq \theta \leq 180^{\circ}$, find the exact value of the following expressions, making sure that you fully simplify your answers:
i) $\cos \theta$.
ii) $\sin \theta-\tan \theta$.
(c) State the domain and range of the function $y=x^{2}-9$.
(d) The diagram below shows an aerial view of the Duck Pond in Centennial park. The length of the Duck Pond is 200 m and the width of the lake is shown at 50 metre intervals.

Use Simpson's rule with 5 function values to find an approximation for the surface area of the lake.
(a) Find the values of k for which the quadratic equation $0=x^{2}-k x+k+8$:
(i) has two equal roots.
(ii) has two real roots.
(b) Find all the values of θ such that $\sin 2 \theta=-\frac{\sqrt{3}}{2}$ for $0 \leq \theta \leq 360^{\circ}$
(c) (i) Sketch the curve $y=x^{2}-3 x+2$, clearly indicating the x and y intercepts.
(ii) On the same set of axes from part (i), sketch the line $y=2-x$ and shade the region represented by:

$$
\int_{0}^{2}\left(2-x-\left(x^{2}-3 x+2\right)\right) d x
$$

(iii) Find the exact value of the area of the shaded region in part (ii) 2
(a) A function $f(x)$ is defined by $f(x)=x^{3}-6 x^{2}+9 x-4$ for the domain $-1 \leq x \leq 5$.
(i) Find the coordinates of the turning points of $f(x)$ and determine 3
their nature.
(ii) Find the coordinates of the point of inflexion.

2
(iii) Hence, sketch the graph of $y=f(x)$, showing all turning points, 3 the point of inflexion and the y-intercept.
(b) Evaluate $\sum_{r=3}^{6} \frac{1}{r^{2}}$, to 2 decimal places.
(c)

3

In the diagram the shaded region is bounded by the curve $y=e^{x}+1$, the x-axis, the y-axis and the line $x=1$.

Find the exact volume of the solid formed when the region is rotated about the x-axis, making sure that you fully simplify your answer.
(a) Let α and β be the solutions to the equation $0=x^{2}-5 x+7$.
(i) Find $\alpha \beta$ and $\alpha+\beta$.

1
(ii) Hence, find $\alpha^{3} \beta+\alpha \beta^{3}$. 2
(b) A parabola is defined by the equation $-8 x=y^{2}-4 y-4$.
(i) Show that the equation can be written as $(y-2)^{2}=-8(x-1)$.
(ii) Sketch the parabola, clearly indicating the coordinates of the 4 vertex, the coordinates of the focus and the equation of the directrix.
(c) Consider the geometric series

$$
1+(\sqrt{3}-2)+(\sqrt{3}-2)^{2}, \ldots
$$

(i) Find the value of the $7^{\text {th }}$ term of the series to 2 significant figures.
(ii) Explain why the series has a limiting sum.
(iii) Find the exact value of the limiting sum of the series, making sure 2 that you fully simplify your answer.
(a)

In the diagram above the points A, B, and P have coordinates $(-2,0)$, $(4,2)$ and (x, y) respectively.
(i) Given that $\angle A P B=90^{\circ}$, show that the locus of the point P is the curve with equation $x^{2}-2 x+y^{2}-2 y-8=0$.
(ii) Show that this is a circle and find its centre and radius.

2
(b) Solve the equation $3^{2 x}-7\left(3^{x}\right)-18=0$.
(c) Find the coordinates of the point P on the curve $y=\frac{1}{(x-5)^{2}}$ at which the tangent to the curve is perpendicular to the line $y=4 x-3$.
(d) Differentiate $3 x e^{x}$ and hence find $\int_{0}^{2} e^{x}+x e^{x} d x$.
(a)

A cylinder is to be cut out of a sphere, as shown in the diagram.
The sphere has radius 10 cm and the cylinder has radius $r \mathrm{~cm}$ and height $2 x \mathrm{~cm}$.
(i) Show that the volume, V, of the cylinder is $V=2 \pi x\left(100-x^{2}\right)$
(ii) Find the value of x for which the volume of the cylinder is a maximum. You must give reasons why your value of x gives the maximum volume.
(b) Find $f(x)$, if $f^{\prime}(x)=e^{3 x-2}$ and $f(1)=\frac{4 e}{3}$.
(c) The shaded region $A B C D$ is bounded by the line $x=7$, the curve $y=\sqrt{x+1}$, the line $y=5-x$ and the x-axis, as in the diagram.

(i) Show that B has coordinates $(3,2)$.
(ii) Find the shaded area.
(a) (i) Prove that $\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta=\tan ^{2} \theta$.
(ii) Hence, or otherwise solve the equation
$2\left(1+\tan ^{2} \theta\right) \sin ^{2} \theta+5 \tan \theta=7$ for $-180^{\circ} \leq \theta \leq 180^{\circ}$, giving your answer to the nearest minute.
(b)

In the diagram $A(-4,8)$ and $B(2,2)$ are points of intersection of the parabola $y=\frac{x^{2}}{2}$ with the line $y=4-x$. The point $P\left(t, \frac{t^{2}}{2}\right)$ is a variable point on the parabola, below the line.
(i) Find the area between the line $y=4-x$ and the curve $y=\frac{x^{2}}{2}$.
(ii) Show that the shortest distance between the line and the point P can be given by the expression:

$$
d=\frac{4-t-\frac{t^{2}}{2}}{\sqrt{2}} \text { for }-4 \leq t \leq 2
$$

(iii) Hence, show that the maximum area of the triangle $A P B$ is $\frac{3}{4}$ of the $\mathbf{3}$ area between the line and the curve.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

接 $1 a$) 20.7 (to 3 sf).
b)

$$
\begin{array}{ccc}
x-5 \leq 7 & \text { AND } & x-5 \geq-7 \\
x \leq 12 & x \geq-2 . \\
-2 \leq x \leq 12 . &
\end{array}
$$

c)

$$
\begin{aligned}
& (x-5)(x+2)=0 \\
& x=5 \quad x=-2
\end{aligned}
$$

d)

$$
\begin{gathered}
y=x^{6}-2 x^{-1}+3 \\
\frac{d y}{d x}=6 x^{5}+2 x^{-2} \\
16+8 \sqrt{3}+3=a+b \sqrt{3} \\
\therefore a=19 \\
b=8
\end{gathered}
$$

e)
F).

$$
\begin{gathered}
6 x+4 y=28 \\
-6 x+12 y=+36 \\
16 y=64 \\
y=4 \\
3 x+8=14 \\
3 x=6 \\
x=2
\end{gathered}
$$

\#2a).

$$
\begin{gathered}
\frac{d y}{d x}=m(\tan)=2 x+5 \\
\text { at } x=1 \\
m(t a n)=7 \\
m(\text { nomal })=-\frac{1}{7} \quad(1,6) \\
\therefore \text { eq } \quad 6=-\frac{1}{7}(x-1) \\
7 y-42=-x+1 \\
7 y=-x+43
\end{gathered}
$$

b)e) $m(A C)=\frac{2-0}{5-3}=\frac{2}{2}=1$.
ii) $A C$:

$$
\begin{gathered}
y-2=1(x-5) \\
y-2=x-5 \\
y=x-3 . \\
x-y-3=0 .
\end{gathered}
$$

iii)

$$
\begin{gathered}
x=9-2 y-11 . \\
2(9-2 y)+y-6=0 . \\
18-4 y+y-6=0 \\
-3 y=-12 \\
y=4 . \\
x=9-8 \\
x=1 \quad \text { (2) }
\end{gathered}
$$

iv). $B(1,4) \quad \mid x+y-3=0$

$$
\perp d=\frac{|(1)(1)+(-1)(4)+(-3)|}{\sqrt{1^{2}+(-1)^{2}}}=\left\lvert\, \frac{|1-4-3|}{\sqrt{2}}\right.
$$

$$
\begin{aligned}
& =\frac{6}{\sqrt{2}} \times \sqrt{2} \\
& =\frac{6 \sqrt{2}}{2} \\
& =3 \sqrt{2}
\end{aligned}
$$

$$
d(A C)=\sqrt{(5-3)^{2}+(2-0)^{2}}
$$

$$
=\sqrt{4+4}
$$

$$
=\sqrt{8}
$$

\therefore v) are of $\triangle A B C=\frac{1}{2}(\sqrt{8})(3 \sqrt{2})=6 u^{2}$.
\# 3 a).

$$
\begin{aligned}
\int_{1}^{2} \frac{3 x^{4}}{x^{3}}-\frac{2 x}{x^{3}} d x & =\int_{1}^{2} 3 x-2 x^{-2} \\
& =\left[\frac{3 x^{2}}{2} \frac{2 x^{-1}}{-1}\right]_{1}^{2} \\
& \left.=\frac{3 x^{2}}{2}+\frac{2}{x}\right]_{1}^{2} \\
& =(6+1)-\left(\frac{3}{2}+2\right) \\
& =(7)-\left(3 \frac{1}{2}\right) \\
& =3 \frac{1}{2}
\end{aligned}
$$

(b).

$$
\begin{aligned}
& \angle B D A=23^{\circ} \quad \text { alt } \angle= \\
& \therefore \angle B C D=70^{\circ} \quad \text { cont } \angle \text { suppl } \\
& \angle A C D=52^{\circ} \quad
\end{aligned}
$$

b) i) $y=\left(x^{2}-3\right)^{7}$

$$
\begin{aligned}
& y=\left(x^{2}-3\right)^{6} \\
& y=7\left(x^{2}-3\right)^{6} \times 2 x V=14 x\left(x^{2}-3\right)^{6}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& y=\frac{2 x}{e^{x}} \\
& u=2 x \quad v=e^{x} \\
& u=2 \quad v^{\prime}=e^{x} \\
& y^{\prime}=\frac{\left(e^{x}\right)(2)-(2 x)\left(e^{x}\right)}{\left(e^{x}\right)^{2}}=\frac{2 e^{x}(1-x)}{e^{2 x}}=\frac{2(1-x)}{e^{x}}
\end{aligned}
$$

d)

$$
\begin{aligned}
& B C^{2}=2.4^{2}+5.8^{2}-2(2.4)(5.8) \cos 30 \\
& B C^{2}=15.289 \\
& B C=3.9
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { are } & =\frac{1}{2}(2.8)(3.9) \sin 20^{\circ} \\
& =1.867 \\
& =2 \mathrm{~m}^{2}(10 \text { nearest } m)
\end{aligned}
$$

\# $4 a)-5+1+7 \ldots \quad a=-5, \quad d=6$
i) $T_{5 s}=a+54 d$

$$
\begin{aligned}
& =-5+54(6) \\
& =319 \\
S_{55} & =\frac{55}{2}[2(-5)+(54)(6)] \\
& =8635
\end{aligned}
$$

ii)
b). $\sin \theta=\frac{2}{3} h$

i) $\cos \theta=\frac{-\sqrt{5}}{3}$
c)
i) $\sin \theta-\tan \theta=\frac{2}{3}-\sqrt{5} \frac{\sqrt{5}}{\sqrt{5}}=\frac{2}{3}+\frac{2 \sqrt{5}}{5}$. correctly)
C

d)

x	y	5	$5 x y$
0	198	1	198
50	200	4	800
100	185	2	370
150	150	4	600
200	132	1	132

$$
\begin{aligned}
& \sum^{2100} \\
\therefore \quad \text { Area } & =\frac{50}{3} \times 2100 \\
& =3500 \mathrm{~m}^{2}
\end{aligned}
$$

\#5 a). For equal roots $\Delta=0$

$$
\begin{gathered}
(-k)^{2}-4(1)(k+8)=0 \\
k^{2}-4 k-32=0 \\
(k-8)(k+4)=0 \\
k=8 \quad k=-4
\end{gathered}
$$

for rat roots $\Delta \geqslant 0$

$$
k \leq-4 \quad k \geq 8
$$

b) $\quad \sin 2 \theta=-\frac{\sqrt{3}}{2}$.
(forgot equals sign then 1 mark only)

$$
\mathrm{rd} \alpha=60^{\circ}
$$

\sin is -in

(1 work for partial solus,
c) $y=x^{2}-3 x+2$.

$$
y=(x-2)(x-1)
$$

$$
\begin{aligned}
A & =\int_{0}^{2}\left(2-x-x^{2}+3 x-2\right) d x \\
& =\int_{0}^{2} 2 x-x^{2} d x \\
& =\left[\frac{2 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =\left(4-\frac{8}{3}\right)-(0) \\
& =\frac{4}{3} u^{2}
\end{aligned}
$$

\#6. $\quad y=x^{3}-6 x^{2}+9 x-4 \quad-1 \leq x \leq 5$

$$
\begin{gather*}
\text { s. } y^{\prime}=0: \quad 3 x^{2}-12 x+9=0.3 .2 . \tag{6.}\\
(x-1)(x-3)=0 \\
x=1 \quad x=3 \\
y=0 \quad y=-4 .
\end{gather*}
$$

natues $y^{\prime \prime}=6 x-12$
at $x=1$
at $x=3$

$$
y^{\prime \prime}=6
$$

$U_{\min }$
(3, -4)man
P.0.1. $\quad y^{\prime \prime}=0$
$x=2 \quad$ dreck charge in concavily.

x	0	2	3
$y^{\prime \prime}$	-12	0	6

$$
\begin{gathered}
x=-1 \\
y=-20
\end{gathered}
$$

$$
\begin{aligned}
& x=5 \\
& y=16
\end{aligned}
$$

\# 6b)

$$
\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}=0.24 /\left(\text { to } 2 d_{p}\right) .
$$

c)

$$
\begin{aligned}
v & =\pi \int_{0}^{1}\left(e^{x}+1\right)^{2} d x \\
& =\pi \int_{0}^{10} e^{2 x}+2 e^{x}+1 d x \\
& =\pi\left[\frac{e^{2}}{2}+2 e^{x}+x\right]_{0}^{1} \\
& =\pi\left[\left(\frac{e^{2}}{2}+2 e+1\right)-\left(\frac{1}{2}+2\right)\right] \\
& =\pi\left(\frac{e^{2}}{2}+2 e+1-2 \frac{1}{2}\right) \\
& =\pi\left(\frac{c^{2}}{2}+2 e-1 \frac{1}{2}\right) u^{3} .
\end{aligned}
$$

\#7a). $\begin{gathered}x^{2}-5 x+7=o 1 \\ \alpha+\beta=5\end{gathered}$

$$
\alpha+\beta=5 \quad \sqrt{3} \quad \alpha \beta=7
$$

i)

$$
\begin{aligned}
& \alpha^{3} \beta+\alpha \beta^{3} \\
= & \alpha \beta\left(\alpha^{2}+\beta^{2}\right) \\
= & \left.\alpha \beta\left((\alpha+\beta)^{2}-2 \alpha \beta\right)\right) \\
= & 7\left(5^{2}-2 \times 7\right) \\
= & 7(25-14 \lambda \\
= & 77
\end{aligned}
$$

Tbi). $-8 x+4=y^{2}-4 y$

$$
\begin{aligned}
& -8 x+4+(2)^{2}=y^{2}-4 y+(2)^{2} \\
& (y-2)^{2}=-8 x+8 \\
& (y-2)^{2}=-8(x-1) \\
& (y-2)^{2}=-4(2)(x-1) \\
& \therefore \text { vertex }(1,2)
\end{aligned}
$$

Focal longth $=2$.

$$
\begin{aligned}
\text { (c) i).1 } & +(\sqrt{3}-2)+(\sqrt{3}-2)^{2} \ldots \\
7 & =a r^{6} \\
& =1(\sqrt{3}-2)^{6} \\
& =0.00057 \\
r & =\sqrt{3}-2=-0.267 \\
& -1<r<1
\end{aligned}
$$

iii) $S_{\infty}=\frac{a}{1-r}$

$$
\begin{aligned}
=\frac{1}{1-(\sqrt{3}-2)} & =\frac{1}{1-\sqrt{3}+2}=\frac{1}{3-\sqrt{3}}+\sqrt{3}+\sqrt{3} \\
& =\frac{3+\sqrt{3}}{9-3} \\
& =\frac{3+\sqrt{3}}{6} .
\end{aligned}
$$

\#8 $m(A P)=\frac{y-0}{x+2}$

$$
m(B P)=\frac{y-2}{x-4}
$$

$\varepsilon P P \perp B P S$

$$
\frac{y}{x+2}=\frac{-(x-4)}{y-2}
$$

$$
y_{2}(y-2)=-(x-4)(x+2)
$$

$$
\begin{aligned}
& y^{2}-2 y=-x^{2}+2 x+8 \\
& -2 x+y^{2}-2 y-8=0
\end{aligned}
$$

ii)

$$
x^{2}-2 x+y^{2}-2 y-8=0
$$

 with cente $(1,1)$ radeis $\sqrt{10}$.
b) $3^{2 x}-7.3^{x}-18=0$
let $3^{x}=k$

$$
\left.\begin{gathered}
k^{2}-7 k-18=0 \\
(k-9 x(k+2)=0 \\
k=9 \\
3^{x}=3^{2} \\
x=2
\end{gathered} \right\rvert\, \begin{gathered}
3^{x}=-2 \\
\text { no sol2 }
\end{gathered}
$$

8c)

$$
\begin{gathered}
y=(x-5)^{-2} \\
y^{\prime}=-2(x-5)^{-3} \cdot 1 \\
=\frac{-2}{(x-5)^{3}} \\
\frac{2}{(x-5)^{3}}=-\frac{1}{4} \\
8=(x-5)^{3} \\
m=4 . \\
\sqrt[3]{8}=x-5 \\
x-5=2 \\
x=7 \\
y=2^{-2}=\frac{1}{4} \quad \therefore P(7,1 / 4)
\end{gathered}
$$

d). tet $y=3 a e^{x}$

$$
\begin{array}{rl}
u=3 x & v=e^{x} \\
u^{\prime}=3 & v^{\prime}=e^{x} \\
\frac{d y}{d b^{2}} & =3 e^{x}+3 x e^{x} \\
\int \begin{aligned}
\int \frac{d y}{d b} & =\int 3\left(e^{x}+x e^{x}\right) d x \\
\int_{0}^{2} e^{x}+x e^{x} d x & =\frac{1}{3}\left[3 x e^{x}\right]_{0}^{2} \\
& =\left[x e^{x}\right]_{0}^{2} \\
& =2 e^{2}-0 \\
& =2 e^{2}
\end{aligned}
\end{array}
$$

\# 9a) Vof cylinder $=\pi r^{2} \times h$.

$$
=\pi r^{2} \times 2 x
$$

by pythay: $\quad r^{2}+x^{2}=100$.

$$
\begin{gathered}
r^{2}=100-x^{2} \\
\therefore V=2 \pi x\left(100-x^{2}\right)
\end{gathered}
$$

To max uol: $V^{\prime}=0$.

$$
\begin{gathered}
V=200 \pi x-2 \pi x^{3} \\
V^{\prime}=200 \pi-6 \pi x^{2}=0 \\
200 \pi=6 \pi x^{2} \\
\frac{200 \pi}{6 \pi}=x^{2} \\
x=\sqrt{\frac{100}{3}}
\end{gathered}
$$

deek max: $v^{\prime \prime}--12 \pi x<0$.
b).

$$
\begin{aligned}
& f^{\prime}(x)=e^{3 x-2} \\
& f(x)=\frac{e^{3 x-2}}{3}+c
\end{aligned}
$$

$f(1)$

$$
\begin{aligned}
&=\frac{e^{3-2}}{3}+c=\frac{4 e}{3} \\
& c=\frac{4 e}{3}-\frac{1 e}{3}=e \\
& \therefore f(x)=\frac{e^{3 x-2}}{3}+e
\end{aligned}
$$

+9c).

$$
\begin{aligned}
& \sqrt{x+1}=5-x \\
& x+1=25-10 x+x^{2} \\
& 0=x^{2}-11 x+24 \\
& 0=(x-3)(x-8) \\
& x=3 \quad x>8 . \\
& y=2 \quad B(3,2)
\end{aligned}
$$

or any alternative mehod-

Shaded are $=\int^{3}(x+1)^{\frac{1}{5}}+\int^{5}(5-x) d x+\left|\int(5-x) d x\right|$

$$
\begin{aligned}
& \left.\left.\left.=\frac{2}{3}(x+1)^{\frac{3}{2}}\right]_{-1}^{1}+5 x-\frac{x^{2}}{2}\right]_{3}^{5}+\left\lvert\, 5 x-\frac{x^{3}}{2}\right.\right]_{5}^{7} \mid \\
& \left.=\frac{2}{3} \sqrt{(x+1)}\right]_{-}^{3}+\left(25-12 \frac{1}{2}\right)-\left(15-\frac{9}{2}\right)+\left(35-\frac{49}{2}\right)-\left(25-\frac{x^{2}}{2}\right. \\
& =\frac{2}{3}[8-0]+\left(12 \frac{1}{2}\right)-\left(\frac{21}{2}\right)+\left|\frac{21}{2}-\frac{25}{2}\right| \\
& =\frac{16}{3}+2+|-2| \\
& =\frac{16}{3}+4 \\
& =9.3 u^{2}
\end{aligned}
$$

\#10. AMS :

$$
\begin{aligned}
& \left(\sec ^{2} \theta\right) \sin ^{2} \theta \\
& =\frac{1}{\cos ^{2} \theta} \cdot \sin ^{2} \theta \\
& =\tan ^{2} \theta \\
& =R+15 . \\
& \quad \theta=105^{\circ} 57^{\prime}
\end{aligned}
$$

$$
(2 \tan \theta+7)(\tan \theta-1)=0
$$

$$
\tan \theta=-\frac{7}{2} \quad \quad \tan \theta=1
$$

$$
\mathrm{rl}<=74^{\circ} 3^{\circ} \quad \mathrm{rl}<245^{\circ}
$$

1st
$3 r d$ $\theta=225 \% / 135$
$106)$.

$$
\begin{aligned}
A & =\int_{-4}^{2}(4-x)-\left(\frac{x^{2}}{2}\right) d x \\
& =\left[4 x-\frac{x^{2}}{2}-\frac{x^{3}}{6_{6}}\right]^{2} \\
& =\left(8-2-\frac{8}{6}\right)-\left(-16-8+\frac{64}{6}\right) \\
& \frac{14}{3}-\frac{40}{3} \\
& =18
\end{aligned}
$$

ii) $P\left(t, \frac{t^{2}}{2}\right)$
$1 x+y-4=0$.

$$
\begin{aligned}
& 1 d=\frac{\left|(1)(t)+(i)\left(\frac{t^{2}}{2}\right)+(-4)\right|}{\sqrt{1^{2}+1^{2}}} \\
& -d=\frac{\left|t+\frac{t^{2}}{2}-4\right|}{\sqrt{2}}
\end{aligned}
$$

since $-4 \leq t \leq 2$. and d must be positive (ar similar)

$$
1 d=\frac{-t-\frac{t^{2}}{2}+4}{\sqrt{2}}
$$

iii)

$$
\begin{aligned}
A_{\Delta} & =\frac{1}{2}(A B) \perp d \\
& =\frac{1}{2} 6 \sqrt{2} \times\left(4-t-\frac{t^{2}}{2}\right) \\
& =12-3 t-\frac{3 t^{2}}{2}
\end{aligned}
$$

\therefore max are w $A^{\prime}=0:-3-3 t=0$.

$$
\begin{aligned}
-3 & =3 t \\
-1 & =t
\end{aligned}
$$

$$
\begin{aligned}
\therefore A \Lambda & =12-3(-1)-3(-1)^{2} \\
& =12+3-\frac{1}{2}
\end{aligned}
$$

$$
=12+3-1 \frac{1}{2}
$$

$$
=13.5
$$

and 13.5 is $3 / 4$ of 18 .

