

Moriah College

MATHEMATICS DEPARTMENT

Mathematics Year 12

2 Unit Pre-Trial 2013

Examiners: P. Brown, G. Busuttil

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page 12.
- All necessary working should be shown in every question

Total Marks (100)

- Attempt Questions 1-16
- Section I: 10 multiple choice
- Section II: Questions 11-16
- Use a SEPARATE answer book for each question
\qquad

Section I

(10 Marks): Answer on the Multiple Choice Answer Sheet provided.
1 What is 5.07631 correct to three significant figures?
(A) 5.07
(B) 5.08
(C) 5.076
(D) 5.077

2 Which of the following is equal to $\frac{1}{3 \sqrt{2}-\sqrt{5}}$?
(A) $\frac{3 \sqrt{2}-\sqrt{5}}{13}$
(B) $\frac{3 \sqrt{2}+\sqrt{5}}{13}$
(C) $\frac{3 \sqrt{2}-\sqrt{5}}{23}$
(D) $\frac{3 \sqrt{2}-\sqrt{5}}{23}$

3 The quadratic equation $x^{2}+8 x+20=0$ has roots α and β.
What is the value of $\alpha \beta+(\alpha+\beta)$?
(A) -28
(B) -12
(C) 12
(D) 28

4 What is the perpendicular distance of the point $(3,2)$ from the line $y=2 x+3$?
(A) $\frac{7}{\sqrt{3}}$
(B) $\frac{11}{\sqrt{3}}$
(C) $\frac{7}{\sqrt{5}}$
(D) $\frac{11}{\sqrt{5}}$

5 Let $y=e^{x}$
Which expression is equal to $\log _{e}\left(y^{3}\right)$?
(A) $e^{3 x}$
(B) $e^{x^{3}}$
(C) $3 x$
(D) x^{3}
$6 \quad$ What is the value of $\int_{1}^{4} \frac{1}{5 x} d x$?
(A) $\frac{1}{5} \ln 5$
(B) $\frac{2}{5} \ln 2$
(C) $\quad \ln 20$
(D) $\ln 25$

7 What are the solutions of $-2 \cos \theta^{\circ}=\sqrt{3}$ for $0^{\circ} \leq \theta^{\circ} \leq 360^{\circ}$?
(A) 30° and 330°
(B) 30° and 210°
(C) 150° and 330°
(D) 150° and 210°

8 If $\log _{a} 6=3.1$ and $\log _{a} 5=2.7$, which of the following is true?
(A) $\log _{a} 30=8.37$
(B) $\log _{a} 30=5.8$
(C) $\quad \log _{a} 11=5.8$
(D) $\quad \log _{a} 11=8.37$

Which of the following statements is true?
(A) $\quad f^{\prime}(c)>0$ and $f^{\prime \prime}(c)<0$
(B) $\quad f^{\prime}(c)>0$ and $f^{\prime \prime}(c)>0$
(C) $\quad f^{\prime}(c)<0$ and $f^{\prime \prime}(c)<0$
(D) $\quad f^{\prime}(c)<0$ and $f^{\prime \prime}(c)>0$

The solutions to $|2 x+3|<9$ are:
(A) $-6<x<3$
(B) $-3<x<6$
(C) $\quad x<-3, x>6$
(D) $x<-6, x>3$

Student number: \qquad

MULTIPLE CHOICE ANSWER SHEET

Circle the letter of the correct answer
1 A B
C D

2 A B C D
3 A B C D
$4 \quad$ A \quad B \quad C
5 A \quad B \quad C \quad D
$6 \quad$ A \quad B \quad C \quad D
$7 \quad$ A \quad B \quad C \quad D

8 A B C D
$9 \quad$ A \quad B \quad C \quad D
10 A B C D

Section II

Question 11 (15 Marks): (Start a new booklet)
(a) Evaluate $\frac{2+\sqrt{2}}{7\left(e^{2}-4\right)}$ correct to 3 decimal places.
(b) If $\frac{2}{3+2 \sqrt{2}}=a+b \sqrt{2}$, find a and b.
(c) Evaluate $\int_{0}^{3} 2 d x$
(d) Solve $2^{2 x}-7\left(2^{x}\right)-8=0$
(e) If $g(x)=7 x^{3}-3 x+1$, find $g^{\prime}(1)$
(f) Simplify $\frac{a^{2}+a-2}{a+2} \times \frac{a^{2}-3 a}{a^{2}-4 a+3}$
(g) Differentiate
(i) $e^{x^{2}}+2 \quad 1$
(ii) $5 x \log _{e}\left(x^{3}+1\right)$
(a)

In the diagram A, B and C are the points $(-1,0),(2,4)$ and $(-6,0)$ respectively. D has coordinates $(-2,2)$ and is the midpoint of AE .
(i) Find the length of the interval AB .
(ii) Find the equation of the circle with centre at B which passes through the point A .
(iii) Find the size of $\angle C A B$ (to the nearest degree).
(iv) Find the midpoint of BC.
(v) Show that the equation of the line BC is $x-2 y+6=0$
(vi) Find the perpendicular distance of A from the line BC in simplest exact form.
(vii) What type of quadrilateral is ABEC? Give reasons for your answer.

Find A, B and C if
(b) $2 x^{2}-5 x+7 \equiv 2 A(x+1)^{2}+B(x+1)+C$
(a) Consider the curve given by $y=2 x^{3}-9 x^{2}+12 x$
(i) Find the coordinates of any stationary points and determine their nature.
(ii) Show that a point inflexion occurs at $x=\frac{3}{2}$
(iii) Sketch the graph $y=f(x)$, indicating clearly any important features.
(iv) For what values of x is the curve concave up?
(b) The first four terms of a sequence are 3, 6, 9, 12
(i) Show that 102 is a term of this sequence
(ii) Hence, or otherwise, find the sum of the terms of this sequence between 100 and 200
(c) Find $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$
(d) Evaluate $\int_{0}^{4} \frac{9 x^{2}}{3+x^{3}} d x$ correct to 2 decimal places
(a) Find:
(i) $\int(3 x-4)^{10} d x$
(ii) $\int \frac{x^{5}+x}{x} d x$
(iii) $\int e^{7 x} d x$
(iv) $\int \frac{3}{6 x-2} d x$
(b) The third term of a geometric series is 2.5 and the seventh term of the same series is 40 .
(i) Find the common ratio
(ii) If $r>0$, find the first term to exceed 1000000
(c) (i) Express $\sin \theta \cos \theta+\frac{\cos ^{3} \theta}{\sin \theta}$ as a single trigonometric ratio.
(ii) Hence, solve $\sin \theta \cos \theta+\frac{\cos ^{3} \theta}{\sin \theta}=\mathbf{1}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(a) Given that $f^{\prime}(x)=2 x+2$ and $f(2)=13$, find $f(x)$.
(b) The diagram below shows part of the graph of $y=\frac{1}{\log _{e}(2 x+1)}$

(i) Copy and complete the table of values for $y=\frac{1}{\log _{e}(2 x+1)}$ with each value correct to 3 decimal places.

\boldsymbol{x}	0.5	1.0	1.5	2.0
\boldsymbol{y}				

(ii) Use the trapezoidal rule with four function values to approximate

$$
\int_{0.5}^{2} \frac{1}{\log _{e}(2 x+1)} d x \text {, correct to three decimal places. }
$$

(c) The area bounded by the curve $y=x^{2}+2$ and the line $y=6$ is rotated about the y-axis. Find the volume of the solid formed. Leave your answer in exact form.
(d) Q is the point $(0,2)$ and $\mathrm{R}(4,-2)$. The point $\mathrm{P}(x, y)$ moves such that the angle QPR is a right angle.
(i) Draw a diagram to represent the above information.
(ii) Show that the equation of the locus of P is a circle, by finding its centre and radius.
(e) Find the equation of the tangent to the curve $y=x e^{x}$ where $x=1$. Give your answer in general form.

Question 16 (15 Marks): (Start a new booklet)

(a) Given the parabolic equation:

$$
x^{2}-4 x-36=-8 y
$$

Find:
(i) The coordinates of the vertex
(ii) The equation of the directrix
(iii) The coordinates of the focus
(iv) Find the co-ordinates of the endpoints of the latus rectum.
(b) Using the logarithm laws, find the value of $\log _{6} 4-2 \log _{6} 12$
(c) A farmer wishes to fence some of her land as shown in the diagram below. Fences are to be erected at FC, CD and BE. The side FD is a river and no fence is needed there. CD is twice the length of BE and $\mathrm{FB}=\mathrm{BC} . \angle \mathrm{FBE}=\angle \mathrm{FCD}=90^{\circ}$. Let $\mathrm{FB}=x$ metres and $\mathrm{BE}=y$

(i) Copy the diagram into your writing booklet.
(ii) Write an expression in terms of x and y for:
a. the area of $\triangle F C D$, and
b. the length, L , of fencing the farmer would need.
(iii) If the total area of the land to be enclosed is $1200 \mathrm{~m}^{2}$, show that the length of
fencing L is given by $L=2 x+\frac{1800}{x}$
(iv) Hence, find the values of x and y for which the length of fencing required will be

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

