Student Number

Moriah College

Year 12 - Task 2 - Pre-Trial
 MATHEMATICS
 2014

Time Allowed: 3 hours

Examiners: G. Busuttil, O. Golan,
OUTCOMES ADDRESSED: P3,P5,H2,H4,H5,H6,H7,H8

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the end of this paper
- All necessary calculations should be shown in every question.

Section I
Multiple choice questions 1-10
10 marks

Section II
Short response questions 11-16
90 marks
Total marks: 100

Section I Multiple Choice Questions. 1 mark each.

Circle the correct response on the answer sheet provided at the end of the paper.
(1) Factorise $2 h^{2}-11 h+15$
A. $(2 h+5)(h+3)$
B. $(2 h+5)(h-3)$
C. $(2 h-5)(h+3)$
D. $(2 h-5)(h-3)$
(2) How many terms are in the sequence $\sum_{7}^{30} 3 n$
A. 21
B. 22
C. 23
D. 24
(3) The derivative of $y=\frac{4}{x^{3}}$ is
A. $y^{\prime}=\frac{-12}{x^{4}}$
B. $y^{\prime}=\frac{-12}{x^{-4}}$
C. $y^{\prime}=4 x^{-3}$
D. $y^{\prime}=\frac{-2}{x^{2}}$
(4) Solve $2 x-1 \mid \leq 5$
A. $-2 \geq x \geq 3$
B. $-2 \leq x \leq 3$
C. $x \leq-2, x \geq 3$
D. $x \leq-3, x \geq 2$
(5) If $\log _{t} z=p$, then
A. $z=p^{t}$
B. $p=z^{t}$
C. $z=t^{p}$
D. $p=t^{2}$
(6) Factorise $a^{3}-64$
A. $(a-4)\left(a^{2}-8 a+16\right)$
B. $(a-4)\left(a^{2}+8 a+16\right)$
C. $(a-4)\left(a^{2}-4 a+16\right)$
D. $(a-4)\left(a^{2}+4 a+16\right)$

Questions 7 and 8 both refer to the function $f(x)=-x^{3}+x$

(7) $\quad f(x)$ is:
A. even
B. odd
C. neither
D. unable to be determined
(8) The integral of $f(x)=-x^{3}+x$ from $x=-1$ to $x=1$ is:
A. $2 \int_{-1}^{2}\left(-x^{3}+x\right) d x$
B. $2 \int_{0}\left(-x^{3}+x\right) d x$
C. Either A or B
D. 0
(9) The exact value of $\sin 225^{\circ}$ is:
A. $\frac{\sqrt{3}}{2}$
B. $-\frac{\sqrt{3}}{2}$
C. $\frac{\sqrt{2}}{2}$
D. $-\frac{\sqrt{2}}{2}$
(10) If $\log _{c} 2=0.46, \log _{c} 3=0.67, \log _{c} 5=1.27$, then $\log _{c} 30=$?
A. 0.391414
B. 2.4
C. 1.1591
D. 6.7

Section II Short response Questions. 15 marks each.

Question 11 (START A NEW BOOKLET)

(a) Calculate the perpendicular distance of the point (3, -1) from the line $4 y=3 x+2$.
(b) Express $\frac{\log _{3} 8}{\log _{3} 2}$ as an integer
(c) Evaluate $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
(d) Determine the value of n to make the following expression equal to a single digit number:

$$
5^{2} \times 2^{4} \times 10^{-n}
$$

(e) Find the equation of the tangent to the curve $y=5 \log _{\mathrm{e}} x$ at $x=1$.
(f) Solve for $x:(4 x-3)^{2}=25$
(g) If $(3+\sqrt{3})^{2}=a+b \sqrt{3}$, find the values of a and b.

END OF QUESTION 11

Question 12 (START A NEW BOOKLET)

(a) Differentiate with respect to x :
(i) $\quad x^{2} e^{-x}$
(ii) $\frac{x^{2}}{3 x+1}$
(b) Find $\int \frac{2 x^{2}}{2 x^{3}-3} d x$
(c) If α and β are the roots of the equation $3 x^{2}-4 x-1=0$, find:
$\begin{array}{ll}\text { (i) } \alpha+\beta & 1 \\ \text { (ii) } \alpha \beta & 1\end{array}$
(ii) $\alpha^{-1}+\beta^{-1} 1$
(iv) $\alpha \beta^{3}+\beta \alpha^{3}$
(d) (i) Solve the equation $5^{3 x}=0.04 \quad 2$
(ii) Solve $\log _{2} x-\log _{2}(x-3)=2$

Question 13 (START A NEW BOOKLET)

(a) The third term of an arithmetic progression is 23 and the tenth term is 72.
(i) Find the first term and the common difference.
(ii) Calculate the sum of the first 18 terms.
(b) The first term of a geometric progression is 6 and the common ratio is 3. How many terms of this progression are required to give a sum of 1594320 ?
(c) The derivative of a function is given by $f^{\prime}(x)=15(5 x-1)^{2}$. If $f(0)=10$, find the equation $f(x)$
(d) (i) Find the equation of the locus of $P(x, y)$, if P is always equidistant from $A(3,1)$ and $B(1,3)$.
(ii) Give a geometric description of this locus.
(e) (i) On the same set of axes, graph $y=|2 x-1|$ and $y=-x$.
(ii) Use your graph, or otherwise, to explain why $|2 x-1|+x=0$ has no solutions.

END OF QUESTION 13

Question 14 (START A NEW BOOKLET)

(a) The graph shows the curves $y=x^{2}-4 x$ and $y=2 x-5$

(i) Show the curves intersect when $x=1$ and $x=5$.
(ii) Find the shaded area between the two curves
(b) Solve $\log _{7} x^{2}=3$.

Give your answer in exact simplified form.
(c) Consider the function $f(x)=x^{3}+6 x^{2}+9 x+4$ in the domain $-4 \leq x \leq 1$
(i) Find the coordinates of any stationary points and determine their nature.
(ii) Determine the coordinates of its point(s) of inflexion.
(iii) Draw a sketch of the curve $y=f(x)$ in the domain $-4 \leq x \leq 1$ clearly showing all its essential features.
(iv) What is the global maximum value of the function $y=f(x)$ in the domain $-4 \leq x \leq 1$?

Question 15 (START A NEW BOOKLET)

(a) Tom sets a pendulum swinging and notices that each swing is 80% as long as the preceding swing. The first swing is 20 cm , the second swing is 16 cm , and it continues to swing until coming to rest.

What is the total distance the pendulum swings?
(b) Find the focus and directrix of the parabola $x^{2}-8 x-16 y+48=0$
(c) Prove that $\frac{\tan \theta \sec \theta}{1+\tan ^{2} \theta}=\sin \theta$.
(d) (i) Differentiate $y=x e^{x}$
(ii) Hence, evaluate $\int_{0}^{2} \frac{x e^{x}}{2} d x$
(e) (i) Use the trapezoidal rule with 5 function values to find an approximation to

$$
\int_{0}^{2} \frac{1}{x+1} d x
$$

(ii) Calculate the difference between your answer in part (i) to the exact value, correct to 3 decimal places.

END OF QUESTION 15

Question 16 (START A NEW BOOKLET)

(a) Find the maximum value of the function $y=-16 x^{2}+160 x-256$
(b) Triangle $X Y Z$ has $X Z=6, Y Z=x$ and $X Y=z$, as shown.

The perimeter of $\triangle X Y Z$ is 16 . All measurements are in centimetres.

(i) Express z in terms of x
(ii) Using the cosine rule, express z^{2} in terms of x and $\cos Z$
(iii) Hence, show that $\operatorname{Cos} Z=\frac{5 x-16}{3 x}$
(iv) Let the area of $\triangle \mathrm{XYZ}$ be A.

Show $A^{2}=9 x^{2} \sin ^{2} Z$
(v) Hence, show that $A^{2}=-16 x^{2}+160 x-256$
(vi) Using your answer from question (a), or otherwise, find the maximum area for $\Delta X Y Z$?

Question 16 continues on the next page

Question 16 (Continued)

(b) The quadratic equation $(k+1) x^{2}-4 k x+4 k-3=0$ has a root equal to 1 . Find k.

The shaded area is one square unit. Find the exact value of b.
(c)

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Student Number:
Teacher:

CIRCLE EACH CORRECT ANSWER.

MULTIPLE CHOICE ANSWER SHEET

$\mathbf{1}$	A	B	C	D
$\mathbf{2}$	A	B	C	D
$\mathbf{3}$	A	B	C	D
$\mathbf{4}$	A	B	C	D
$\mathbf{5}$	A	B	C	D
$\mathbf{6}$	A	B	C	D
$\mathbf{7}$	A	B	C	D
$\mathbf{8}$	A	B	C	D
$\mathbf{9}$	A	B	C	D
$\mathbf{1 0}$	A	B	C	D

PRETRIILL MATHEMATICS
2014
SECTION 1 MULTIPLE CHOICE

1. $2 h^{2}-11 h+15$
$(2 h-5)(h-3)$

1	D
2	D
3	A
4	B
5	C
6	D
7	B
8	D
9	P
10	B

4.

$$
\begin{align*}
& |2 x-1| \leqslant 5 \\
& -5 \leqslant 2 x-1 \leqslant 5 \\
& -4 \leqslant 2 x \leqslant 6 \\
& -2 \leqslant x \leqslant 3 \tag{B}
\end{align*}
$$

5. $\log _{t} z=p$ then
(c)
6. $a^{3}-64$

$$
\begin{equation*}
=(a-4)\left(a^{2}+4 a+16\right) \tag{D}
\end{equation*}
$$

7. (B) odd
8. (D)
9. $\sin 225$
10. $\log _{c} 30=\log _{c}(2 \times 3 \times 5)=0.46+0.67+1.27=2.4$

SECTION II.
Question 11
a)

$$
\begin{align*}
d & =\left\lvert\, \frac{3 \times 3-4(-1)+2 \mid}{\sqrt{3^{2}+4^{2}}}\right. \\
& =\frac{9+4+2}{5} \\
& =15 \\
& =3 \tag{2}
\end{align*}
$$

(1)

$$
\begin{aligned}
\text { f) } \begin{array}{l}
(4 x-3)^{2}=25 \\
4 x-3 \\
4 x- \pm 5 \\
4 x-3=5 \quad 4 x-3=-5 \\
4 x=8 \quad 4 x=-2 \\
x x=2 \quad x=-\frac{1}{2}
\end{array} \\
x+1
\end{aligned}
$$

b)

$$
\begin{align*}
\frac{\log _{3} 8}{\log _{2} 2} & =\frac{\log _{3} 2^{3} \cdot 1}{\log _{3} 2} \\
& =3
\end{align*}
$$

$$
\begin{aligned}
(3+\sqrt{3})^{2} & =a+b \sqrt{3} \\
9+6 \sqrt{3}+3 & =a+b \sqrt{3} \\
12+6 \sqrt{3} & =a+b \sqrt{3}
\end{aligned}
$$

e) $\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{(x-4)}=8$
(2)
d)

$$
\begin{aligned}
5^{2} \times 2^{+} \times 10^{-n} & =\frac{25 \times 16}{10^{n}} \\
& =\frac{400}{10^{n}}\left(1 \text {)or } 10^{-n}=100\right.
\end{aligned}
$$

$\frac{400}{10^{n}}<10$ (single digit)
$n=2 .{ }^{(2)} \frac{400}{10^{2}}=\frac{400}{100}=4$.
e)

$$
\begin{aligned}
& y^{\prime}=5(1) x=1, m=5, y=0 \\
& y=0=5(x-1) \\
& y=5 x-5
\end{aligned}
$$

ECT = int corine d Inv.
b)

$$
\begin{aligned}
& \int \frac{2 x^{2}}{2 x^{3}-3} d x \\
= & \frac{1}{3} \int \frac{6 x^{2}}{2 x^{3}-3} d x \\
= & \frac{1}{\ln \left(2 x^{3}-3\right)+c} .
\end{aligned}
$$

c)
i) $\alpha+\beta=\frac{4}{3}$
ii) $\alpha \beta=-\frac{1}{3}$
iii) $\frac{\alpha}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}$

$$
=\frac{\frac{4}{3}}{\frac{-1}{3}}
$$

Question 12.
a) (1)

$$
\text { (i) } \begin{aligned}
& y=x^{2} e^{-x} \\
& y^{-x}=2 x \cdot e^{-x}-x^{2} \cdot e^{-x} \\
&=x e^{-x}(2-x) \\
& \text { (ii) } \begin{aligned}
y & =\frac{x^{2}}{3 x+1} \\
y^{\prime} & =\frac{(3 x+1)(2 x)-x^{2}(3)}{(3 x+1)^{2}} \\
& =6 x^{2}+2 x-3 x^{2} \\
& =\frac{3 x+1)^{2}}{(3 x+1)^{2}}
\end{aligned}
\end{aligned}
$$

\checkmark product rule
d)

$$
\begin{aligned}
\text { (i) } \begin{aligned}
5^{3 x} & =0.04 \\
\log _{5} 0.04 & =3 x \\
x & =\frac{\log _{5} 0.04}{3} \\
& =\frac{\log _{5} 5^{-7}}{3} \\
& =\frac{-2 . \log _{5} 5}{3} \\
& =\frac{-2}{3}
\end{aligned} .
\end{aligned}
$$

$$
\text { (ii) } \begin{gathered}
\log _{2} x(x-3)=2 . \\
x(x-3)=2^{2} \\
x^{2}-3 x / 4=0 \\
(x-4 x+1)=0 \\
x=4 x=1
\end{gathered}
$$

$$
\log _{2}\left(\frac{x}{x+3}\right)=2
$$

$$
\begin{aligned}
& \frac{x}{x-3}=2^{2} \\
& x=4 x-12
\end{aligned}
$$

$$
x=4 x-12
$$

$$
=-4 .
$$

$$
\text { (ii) } \begin{aligned}
\alpha \beta^{3}+\beta \alpha^{3} & =\alpha \beta\left(\beta^{2}+\alpha^{2}\right) \\
& =\alpha \beta\left[(\alpha+\beta)^{2}-2 \alpha \beta\right] \\
& =-\frac{1}{-1}\left(\frac{4}{3}\right)^{2}-2\left(-\frac{1}{3}\right] \\
& =-\frac{-16}{27}-\frac{2}{9}=-\frac{22}{27}
\end{aligned}
$$

Question 13.
a) i)

$$
\text { i) } \begin{align*}
T_{3}: a+2 d & =23 \\
T_{10}: a+9 d & =72 \\
7 d & =49 \tag{2}\\
d & =7 \\
\therefore a & =9
\end{align*}
$$

ii)

$$
\begin{align*}
S_{18} & =\frac{18}{2}[2 \times 9+(17 \times 7)] \tag{2}\\
& =1233
\end{align*}
$$

b)

$$
\begin{align*}
& a=6 \quad r=3 . \\
& S_{n}=1594320 \\
& \frac{6\left(3^{n}-1\right)}{3-1}=1594320 \\
& 3^{n}-1=\frac{1594320}{3} \tag{2}\\
& 3^{n}=\frac{531441}{} \\
& \ln \cdot 3^{n}=\ln 531441 \\
& n=\frac{\ln 531441}{\ln 3} \\
& n=12.1
\end{align*}
$$

c)

$$
\begin{aligned}
f^{\prime}(x) & =15(5 x-1)^{2} \\
f(x) & =\frac{15(5 x-1)^{3}}{5 \times 3}+c \\
& =(5 x-b)^{3}+c \\
10 & =(-1)^{3}+c \\
10 & =-1+c \\
c & =11 \\
f(x) & =(5 x-1)^{3}+11
\end{aligned}
$$

$$
f(0)=10, \quad 10=(-1)^{3}+c
$$

d)
(i)

$$
\begin{gather*}
(x-3)^{2}+(y-1)^{2}=(x-1)^{2}+(y-3)^{2} \\
x^{2}-6 x+9+y^{2}-2 y+1=x^{2}-2 x+1+y^{2}-6 y+9 \\
-6 x-2 y+10=-2 x-6 y+10 . \\
-4 x+4 y=0 . \tag{2}\\
y=x .
\end{gather*}
$$

(ii) Straight line with gradient ${ }^{+1}$, through $(0,0)$
e)

(ii) $|2 x+1|=-x$

$$
|2 x+1|+x=0
$$

No solutions since the glaples do not intersect.

Question 14
(a). (i)

$$
\begin{gathered}
x^{2}-4 x=2 x-5 . \\
x^{2}-6 x+5=0 \\
(x-5 x x-1)=0 \\
x=1,5 .
\end{gathered}
$$

ii) Possible P.O.I. $f^{\prime \prime}(x)=0$.

$$
6 x+12=0 .
$$

2.
change in concavity \checkmark

$$
\therefore \text { P.O.I. }(-2,2)
$$

iii)

$-4 \leq x \leq 1$
(iv) global max in this domain $y=20$.
b)

$$
\begin{aligned}
\log _{9} x^{2} & =3 . \\
x^{2} & =7^{3} \\
x & =\sqrt{\sqrt{3}^{3}} \\
x & =\sqrt{843}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \begin{array}{l}
f(x)=x^{3}+6 x^{2}+9 x+4 \quad-4 \leqslant x \leq 1 \\
\text { (i) } f(x)=3 x^{2}+12 x+9
\end{array} \\
& \text { SP } f(x)=0 \quad x^{2}+9 x+3=0 \quad 3 . \\
& \begin{array}{r}
(x+3)(x+1)=0 \\
x=-1
\end{array} \\
& x=-1 ;-3 \text {. } \\
& f^{\prime \prime}(x)=6 x+12 \\
& x=-1, f^{\prime}(x)=-6+12>0: \mathrm{min} \quad \quad(-1,0) \mathrm{min} . \\
& x=-3, f^{\prime \prime}(x)=-18+12<0 \div \max \quad(-3,4) \max
\end{aligned}
$$

Question 15.
a)

$$
\begin{aligned}
a & =20 \\
r & =0.8 \quad \\
S_{\infty} & =\frac{20}{1-0.8} \\
& =100 \mathrm{~cm}
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{2}-8 x-16 y+48=0 \\
& x^{2}-8 x+16=16 y+16-48 \\
& (x-4)^{2}=16 y-32 \\
& (x-4)^{2}=16(y-2) \\
& \text { Vertav }(4,2)
\end{aligned}
$$

$$
\therefore \text { Vatex }(4,2)
$$

$$
\begin{gathered}
a=4 \\
\operatorname{cs}(4,6)
\end{gathered}
$$

Directsix $y=-2$. no mank fo one is wrmg.
c)

$$
\begin{aligned}
\text { LHS } & =\frac{\tan \theta \cdot \sec \theta}{1+\tan \theta} \quad \text { RHS }=\sin \theta \\
& =\frac{\frac{\tan \theta \cdot \sec \theta}{\sec \theta}}{} \\
& =\frac{\tan \theta}{\sec \theta} \\
& =\frac{\sin \theta}{\cos \theta} \times \cos \theta \quad \\
& =\frac{\sin \theta}{} \\
& =\operatorname{RHS}
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
y & =x \cdot e^{x} \\
y^{y} & =x\left(e^{x}\right)+e^{x}(1) \\
& =x e^{x}+e^{x}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{2} \frac{x e^{x}}{2} d x \\
&=\frac{1}{2}\left[x e^{x}-e^{x}\right]_{0}^{2} \\
&=\left.=\left[2 e^{2}-e^{2}\right)-(0-1)\right] \\
&= \frac{1}{2}\left(e^{2}+1\right) 】
\end{aligned}
$$

e) $\int_{0}^{2} \frac{1}{x+1}$ ax 5 fu valueo Trapesoibe bule.
(1)

x	y	k	$k y$
0	1	1	1
$\frac{1}{2}$	$\frac{2 / 3}{}$	2	$\frac{4}{3}$
1	$\frac{1}{2}$	2	1
$1 \frac{1}{2}$	$\frac{2}{5}$	2	$\frac{4}{5}$
2	$\frac{1}{3}$	1	$\frac{3}{3}$

$$
\begin{aligned}
A & \div \frac{t}{2}\left(\frac{67}{15}\right) \\
& =\frac{62}{60}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\int_{0}^{2} \frac{1}{x+1} \\
& =[\ln (x+1)]_{0}^{2} \\
& =\ln 3-\ln 1 \\
& =(\ln 3) \min x^{2}
\end{aligned}
$$

Question 16.
a)

$$
\begin{gather*}
y=-16 x^{2}+160 x-256 \\
y^{\prime}=-32 x+160 \\
\text { sp shew } y^{\prime}=0 \quad 160=32 x \tag{2}\\
x=5.1 \\
y^{\prime \prime}=-32<0 \therefore \text { max. } \quad x=5, \quad y=144
\end{gather*}
$$

Max y value is 144,1
b)
(1)

$$
\begin{align*}
x+z+6 & =16 \\
x+z & =10 \\
z & =10-x . \tag{11}
\end{align*}
$$

(ii)

$$
\begin{aligned}
& z^{2}=x^{2}+36-12 x \cdot \cos z . \\
& y^{2}=(100-x)^{2}+36-A^{12} x=\cos z \\
& 2 v^{2}=100-20 x-x^{2}+36 x 1 x \cos z .
\end{aligned}
$$

(iii)

$$
\begin{align*}
&(10-x)^{2}=x^{2}+36-12 x \cdot \cos z \\
& 100-20 x+x^{x}=x^{x}+36-12 x \cdot \cos z \\
& 64-20 x=-12 x \cos z \\
& 12 x \cos z=20 x-64 \tag{2}\\
& \cos z=\frac{20 x-64}{12 x} \\
& \cos z=\frac{5 x-16}{3 x}
\end{align*}
$$

