

YEAR 12

MATHEMATICS

PRETRIAL TERM 1 2015

Time Allowed: 3 hours + 5mins reading time

Examiners: CO BT BR BO

Instructions:

- USE A BLACK PEN.
- Answer every QUESTION on a NEW PAGE.
- SHOW all working.
- Draw clear, well labelled, BIG diagrams.
- Marks may be deducted for careless or untidy work.
- Board approved calculators may be used.

Question 1 – (10 marks)

1. What is 4.09784 correct to three significant figures.

A) 4.09 B) 4.10 C) 4.097 D) 4.098

2. Find $\int \pi dx$

A)
$$\pi x + c$$
 B) $\frac{\pi x^2}{2}$ C) $\pi + c$ D) $\frac{\pi^2}{2} + c$

3. Solve:
$$(2^x)^2 = 2^8$$

A) $x = 6$ B) $x = 4$ C) $x = 2\sqrt{2}$ D) $x = 8$

4. Factorise:
$$3a^2 + 10a - 8$$

A) $(3a-2)(a+4)$
B) $(3a+2)(a-4)$
C) $(2a+4)(a-2)$
B) $(2a+4)(a-2)$

C) (3a+4)(a-2) D) (3a+4)(a+2)

5. Simplify:
$$\frac{x^2-4x}{2x-8}$$

A)
$$x-2$$
 B) $\frac{x-2}{4}$ C) $\frac{x}{2}$ D) $\frac{x^2-2}{-8}$

6. Solve the simultaneous equations 2x+y=3 and x-2y=4.

A)
$$x=-1, y=2$$

C) $x=2, y=-1$
B) $x=1, y=1$
D) $x=-2, y=1$

- 7. Solve for θ : $\sqrt{3} \tan \theta + 3 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$
 - A) $\theta = 150^{\circ}, 330^{\circ}$ C) $\theta = 120^{\circ}, 300^{\circ}$ B) $\theta = 60^{\circ}, 240^{\circ}$ D) $\theta = 30^{\circ}, 210^{\circ}$
- 8. $\int (2x+1)^{\frac{1}{3}} dx$ A) $\frac{3}{4} (2x+1)^{\frac{4}{3}} + c$ B) $-\frac{2}{3} (2x+1)^{\frac{-1}{3}} + c$ C) $\frac{8}{3} (2x+1)^{\frac{4}{3}} + c$ D) $\frac{3}{8} (2x+1)^{\frac{4}{3}} + c$
- 9. Find the derivative of $x^2 e^{2x}$ with respect to x A) $2x^2 e^{2x}$ B) $4x^2 e^{2x}$ C) $(2x+x^2)e^{2x}$ D) $(1+x)2xe^{2x}$
- 10. Find the values of a and b if $(\sqrt{a} + \sqrt{2})^2 = 5 + 2\sqrt{b}$
 - A) a = 25, b = 2 B) a = 25, b = 6
 - C) a=3, b=6 D) a=3, b=2

Question 11 (start each question on a new page) (15 marks)

a) Solve for x: $\frac{x-5}{3} - \frac{x+1}{4} = 5$ 3

b) Find the integers a and b such that
$$\frac{7}{5+3\sqrt{2}} = a - b\sqrt{2}$$
 3

c) In the quadrilateral ABCD the coordinates of the points A and B are (-2, 4) and (4, 1) respectively. The equation of the line DC is x+2y+2=0.

i)	Find the gradients of AB and DC. Hence, explain why he quadrilateral is a trapezium.	2
ii)	Find the length of AB	1
iii)	The line BC is parallel to the y-axis. Find the coordinates of C.	1
iv)	The line AD is parallel to the x-axis. Find the coordinates of D.	1
v)	Find the perpendicular distance from B to DC	2
vi)	Hence, find the area of the trapezium ABCD	2

Question 12	(start each question on a new page)	(15 marks)
-------------	--------------------------------------	------------

a)	Differentiate: $(2e^{3x}-4)^7$		
b)	The first t	hree terms of a sequence are 20, 15, $11\frac{1}{4}$	-
	i)	Give a reason why the sequence is geometric?	1
	ii)	Find the 8 th term of this sequence.(give answer in index form)	1
	iii)	Write an expression for the sum of n terms of this sequence. (give answer in simplified index form)	1
	iv)	Find the limiting sum of this sequence.	1
b)	Find the e where <i>x</i> =	quation of the normal to the curve $y = x + e^{2x}$ at the point = 0	4
c)	Consider t	the parabola $y^2 = 8(x+2)$	
	i)	Find the coordinates of the vertex.	1

ii)	Find the coordinates of the focus.	1
;;;)	Find the equation of the directrix	1

1 Find the end points of the latus rectum iv)

d) Evaluate:
$$\int_{1}^{2} e^{3x} dx$$
 (give answer to 2 decimal places) 2

Find the equation of the directrix.

iii)

- Question 13 (start each question on a new page) (15 marks)
- a) The graphs of y=x-4 and $y=x^2-4x$ intersect at A and B.

- i) Find the x-co-ordinates of the points of intersection of the 2 graphs. 2
- ii) Find the area of the region bounded by y=x-4 and **3** $y=x^2-4x$
- b) The quadratic equation $2x^2 + 8x + k = 0$ has roots α and β . Use this information to evaluate:
 - i) $\alpha + \beta$ 1
 - ii) Given that $\alpha^2 \beta + \alpha \beta^2 = 6$, find the value of **k**.
- c) For what values of m does the equation $2x^2 + mx + 8 = 0$ have 2 positive, unequal real roots? 3
- d) A tourist drives 25 km from town P on a bearing of $150^{\circ}T$ to town R. He then drives 45 km on a bearing of $022^{\circ}T$ to town Q.
 - i) Draw the diagram into your examination booklets and show that $\angle PRQ = 52^{\circ}$. (give reasons)
 - ii) Find the distance from P to Q. (to 2 decimal places)

Quest	ion 14 (sta	rt each question on a new page) (15 marks)	
a)	A function	$f(x)$ is defined by $f(x) = x^3 - 3x^2$ for $-3 \le x \le 4$.	
	i)	Find the x and y intercepts	2
	ii)	Find the stationary points and their nature	3
	iii)	Sketch the curve $y = f(x)$, clearly showing the intercepts and the point of inflexion.	2
	iv)	Find the range of $f(x)$.	2
b)	Use Simps	on's rule with 5 function values to find an approximation to	

$\int_{0}^{4} xe^{x} dx$		3
0	(give answer to 2 decimal places)	•

c) If
$$\sin\theta = x$$
, express $\frac{1 - \cos^2 \theta}{\sec^2 \theta}$ in terms of x

Question 15 (start each question on a new page) (15 marks)

a) Sami calculated that the area of the sector below is $4\pi \ cm^2$.

i) Find the radius of the sector.

ii) Find the perimeter of the sector.

b) The graphs of $3y = x^2$ and $y = -x^2 + 8x - 12$ are shown on the same system of axes. These curves meet at (3,3) as shown.

Calculate the area enclosed by the curves $3y = x^2$, $y = -x^2 + 8x - 12$ and the x-axis.

1

2

d) The area enclosed by the curve $y=2e^x+1$ and the lines x=1 and y=3 is shaded as shown in the diagram.

i) Show that the volume of the solid formed when this shaded region is rotated about the x-axis can be expressed as

$$V = 4\pi \int_{0}^{\infty} \left(e^{2x} + e^{x} - 2 \right) dx.$$

ii) Calculate the exact volume of the solid formed.

2

1

e) The diagram shows the graph of y = f(x)

- (i) For which values of x is the derivative, y = f'(x), negative?
- (ii) What happens to f'(x) for large values of x?
- (iii) Sketch the graph of y = f'(x) 1 on the attached tear-off sheet 2

Name

Teacher

Question 16 (start each question on a new page) (15 marks)

a) Differentiate
$$(x^4 + 8)^5$$
 hence find $\int_0^1 x^3 (x^4 + 8)^4 dx$. 3

b) If
$$\tan^2 \theta + 2 \sec^2 \theta = 5$$
, find the value of $\sin^2 \theta$.

c)
$$K(k,k-e^{-k})$$
, $L(-4,-3)$ and $M(5,9)$

Show that the area of
$$\Delta KLM$$
 is $A = \frac{3}{2} (3e^{-k} + k + 7)$ 3

d) A farmer is fencing a paddock using P metres of fencing. The paddock is to be in the shape of a sector of a circle with radius r and sector angle $\theta_{.}$

i)	Show that the length of the fencing required to fence the perimeter of the paddock is $P = r(\theta+2)$.	1
ii)	Show that the area of the sector is $A = \frac{1}{2} Pr - r^2$.	1
iii)	Find the radius of the sector, in terms of P, that will maximize the area of the paddock.	2
iv)	Find the angle $oldsymbol{ heta}$,that gives the maximum area of the paddock.	1
v)	Explain why it is only possible to construct a paddock in the shape of a sector if $\frac{P}{2(\pi+1)} < r < \frac{P}{2}$.	2

END OF TEST

Name

MULTIPLE CHOICE GRID

10 marks

1.	Α	В	С	D
2.	Α	В	С	D
3.	Α	В	С	D
4.	А	В	С	D
5.	Α	В	С	D
6.	Α	В	С	D
7.	Α	В	С	D
8.	Α	В	С	D
9.	Α	В	С	D
10.	Α	В	C	D

STANDARD INTEGRALS

$\int x^{n} dx$	=	$\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0.$
$\int \frac{1}{x} dx$	=	ln <i>x, x</i> > 0.
$\int e^{ax} dx$	=	$\frac{1}{a}e^{ax}, a\neq 0.$
$\int \cos ax dx$	=	$\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax dx$	=	$-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 a x dx$	=	1tan <i>ax, a</i> ≠ 0 <i>a</i>
$\int \sec \alpha x \tan \alpha x dx$	=	$\frac{1}{a}$ sec <i>ax</i> , <i>a</i> \neq 0
$\int \frac{1}{a^2 + x^2} dx$	=	$\frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	=	$\sin^{-1}\frac{x}{a}$, a > 0, -a < x < a
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	=	$\ln \left\{ x + \sqrt{(x^2 - a^2)} \right\}, x > a $
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	=	$\ln\left\{x+\sqrt{(x^2+a^2)}\right\}$

NOTE:
$$\ln x = \log_e x, x > 0$$
.